Skip to main content

Advertisement

Log in

Decadal changes of heatwave aspects and heat index over Egypt

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This study aims to utilize the existing new and superior heatwave (HW) indices (ClimPACTv2) software to identify the decadal changes of HW aspects (number (HWN), duration (HWD), frequency (HWF), amplitude (HWA), and magnitude (HWM)) over Egypt during the period 1979–2018. The 90th percentile threshold maximum (TX90), minimum (TN90) temperatures, and excess heat factor (EHF) indices were chosen to compute these five HW aspects. The results showed that the lowest decadal summations of HWN (5–20), HWD (20–40 days), and HWF (20–80 days) were detected in the first decade (1979–1988) and increased significantly with positive decadal anomaly trends up to the last decade (2009–2018). Furthermore, Egypt especially the southeastern part subjected to HWA above 300 °C and HWM above 200 °C from both TX90 and TN90 and is confined to the northwestern part with HWA above 140°C2 and HWM exceed 50°C2 from EHF, particularly during the last two decades. Also, the decadal averages of temperature (T, °C) increased gradually over time especially in the southeastern part of Egypt, while the decadal averages of relative humidity (RH, %) nearly remained constant. Therefore, T has a most effective role than RH in determining HI over Egypt during the study period. This creates a relatively tolerable environment for the human body despite the increasing trend over time in the five HW aspects. Thus, all of Egypt falls within the heat index (HI) caution range (26–32 °C) except for the southeastern part which has extreme caution values (32–41 °C) in the last two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data supporting the findings of this article is included within the article.

Code availability

The ClimPACTv2 software is used to calculate the five heatwave aspects.

References

  • Abatan AA, Abiodun BJ, Lawalc KA, Gutowski WJ (2016) Trends in extreme temperature over Nigeria from percentile-based threshold indices. Int J Climatol 36:2527–2540. https://doi.org/10.1002/joc.4510

    Article  Google Scholar 

  • Abdel Basset H, Hasanen HM (2006) Heat wave over Egypt during the summer of 1998. Int J Meteorol 31(308):133–145

    Google Scholar 

  • Aboelkhair H, Morsy M, El Afandi G (2019) Assessment of agroclimatology NASA POWER reanalysis datasets for temperature types and relative humidity at 2 m against ground observations over Egypt. Adv Space Res 64(1):129–142. https://doi.org/10.1016/j.asr.2019.03.032

    Article  Google Scholar 

  • Alexander LV, Herold N (2015) ClimPACTv2 indices and software. WMO Commission for Climatology Expert Team on Sector-Specific Climate Indices. Accessed 19 Feb 2016. https://github.com/ARCCSS-extremes/climpact2

  • Alghamdi AS, Harrington J Jr (2018) Time-sensitive analysis of a warming climate on heat waves in Saudi Arabia: temporal patterns and trends. Int J Climatol 38:3123–3139. https://doi.org/10.1002/joc.5489

    Article  Google Scholar 

  • Andersen OB, Seneviratne SI, Hinderer J, Viterbo P (2005) GRACE-derived terrestrial waterstorage depletion associated with the 2003 European heat wave. Geophys Res Lett 32:L18405. https://doi.org/10.1029/2005GL023574

    Article  Google Scholar 

  • Añel J, Fernández-González M, Labandeira X, López-Otero X, Torre L (2017) Impact of cold waves and heatwaves on the energy production sector. Atmosphere 8:209. https://doi.org/10.3390/atmos8110209

    Article  Google Scholar 

  • Athar H (2014) Trends in observed extreme climate indices in Saudi Arabia during 1979–2008. Int J Climatol 34:1561–1574

    Article  Google Scholar 

  • Baldi M, Dalu G, Maracchi G, Pasqui M, Cesarone F (2006) Heat waves in the Mediterranean: a local feature or a larger scale effect. Int J Climatol 26:1477–1487

    Article  Google Scholar 

  • Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, Garcia-Herrera R (2011) The hot summer of 2010: Redrawing the temperature record map of Europe. Science 332:220–224. https://doi.org/10.1126/science.1201224

    Article  Google Scholar 

  • Chen Y, Hu Q, Yang Y, Qian W (2017) Anomaly based analysis of extreme heat waves in Eastern China during 1981–2013. Int J Climatol 37:509–523. https://doi.org/10.1002/joc.4724

    Article  Google Scholar 

  • Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2:491–496. https://doi.org/10.1038/nclimate1452

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Dole R, Hoerling M, Perlwitz J, Eischeid J, Pegion P, Zhang T, Quan X-W, Xu T, Murray D (2011) Was there a basis for anticipating the 2010 Russian heat wave? Geophys Res Lett 38:L06702. https://doi.org/10.1029/2010GL046582

    Article  Google Scholar 

  • Domroes M, El-Tantaw A (2005) Recent temporal and spatial temperature changes in Egypt. Int J Climatol 25:51–63. https://doi.org/10.1002/joc.1114

    Article  Google Scholar 

  • Donat MG, Peterson TC, Brunet M, King AD et al (2014) Changes in extreme temperature and precipitation in the Arab region: long-term trends and variability related to ENSO and NAO. Int J Climatol 34:581–592

    Article  Google Scholar 

  • Efthymiadis D, Goodess CM, Jones PD (2011) Trends in Mediterranean gridded temperature extremes and largescale circulation influences. Nat Hazard 11:2199–2214

    Article  Google Scholar 

  • El Afandi G, Morsy M, El Hussieny F (2013) Heavy rainfall simulation over Sinai Peninsula using the weather research and forecasting model. Int J Atmos Sci 2013:11. https://doi.org/10.1155/2013/241050

    Article  Google Scholar 

  • El Ashmawy FM (2015) Study of extreme weather events over Egypt during the period from 1970 to 2010. Doctoral Thesis, Al-Azhar University, pp 153

  • El Kenawy AM, Hereher ME, Robaa SM (2019a) An assessment of the accuracy of MODIS land surface temperature over Egypt using ground-based measurements. Remote Sens 11(20):2369. https://doi.org/10.3390/rs11202369

    Article  Google Scholar 

  • El Kenawy AM, Lopez-Moreno JI, McCabe MF, Robaa SM, Domínguez-Castro F, Peña-Gallardo M, Trigo RM, Hereher ME, Al-Awadhi T, Vicente-Serrano SM (2019b) Daily temperature extremes over Egypt: spatial patterns, temporal trends, and driving forces. Atmos Res 226:219–239

    Article  Google Scholar 

  • Erlat E, Türkes M (2013) Observed changes and trends in numbers of summer and tropical days and the 2010 hot summer in Turkey. Int J Climatol 33:1898–1908

    Article  Google Scholar 

  • Fink AH, Bruecher T, Leckebusch GC, Krueger A, Pinto JG, Ulbrich U (2004) The 2003 European summer heatwaves and drought-synopstic diagnosis and impacts. Weather 59:209–216

    Article  Google Scholar 

  • Fischer EM, Schar S (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3:398–403. https://doi.org/10.1038/ngeo866

    Article  Google Scholar 

  • Fontaine B, Janicot S, Monerie P-A (2013) Recent changes in air temperature heat waves occurrences and atmospheric circulation in Northern Africa. J Geophys Res Atmos 118:8536–8552. https://doi.org/10.1002/jgrd.50667

    Article  Google Scholar 

  • Gamal G (2017) Future analysis of extreme temperature indices for Sinai Peninsula-Egypt. Imp J Interdiscip Res 3(1):1960–1966

    Google Scholar 

  • Hasanean HM (2004) Wintertime surface temperature in Egypt in relation to the associated atmospheric circulation. Int J Climatol 24:985–999. https://doi.org/10.1002/joc.1043

    Article  Google Scholar 

  • Hasanean HM, Abdel Basset H (2006) Variability of summer temperature over Egypt. Int J Climatol 26:1619–1634. https://doi.org/10.1002/joc.1321

    Article  Google Scholar 

  • Hussein MMA, Mohamed EEE (2016) Temperature trend over Nile Delta Egypt in 20th century. Adv Res 7(2):1–14

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2013) Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom.

  • Kent ST, McClure LA, Zaitchik BF, Smith TT, Gohlke JM (2014) Heat waves and health outcomes in Alabama (USA): the importance of heat wave definition. Environ Health Perspect 122:151–158. https://doi.org/10.1289/ehp.1307262

    Article  Google Scholar 

  • Khalil AA, Hassanein MK (2016) Extreme weather events and negative impacts on Egyptian agriculture. Int J Adv Res 4(12):1843–1851. https://doi.org/10.21474/IJAR01/2592

    Article  Google Scholar 

  • Kim DW, Deo RC, Chung JH, Lee JS (2016) Projection of heatwave mortality related to climate change in Korea. Nat Hazards 80:623–637. https://doi.org/10.1007/s11069-015-1987-0

    Article  Google Scholar 

  • Klein Tank AMG, Konnen GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe 1946–1999. J Clim 16:3665–3680

    Article  Google Scholar 

  • Koppe C, Kovats S, Jendritzky G, Menne B (2004) Heat-waves: risks and responses. Health and global environmental change series, No. 2, 123 pages. World Health Organization, Geneva, Switzerland, 2004. https://www.euro.who.int/_data/assets/pdf_file/0008/96965/E82629.pdf

  • Kostopoulou E, Jones PD (2005) Assessment of climate extremes in the Eastern Mediterranean. Meteorol Atmos Phys 89:69–85

    Article  Google Scholar 

  • Kostopoulou E, Giannakopoulos C, Hatzaki M, Karali A, Hadjinicolaou P, Lelieveld J, Lange MA (2014) Spatiotemporal patterns of recent and future climate extremes in the eastern Mediterranean and Middle East region. Nat Hazard 14:1565–1577

    Article  Google Scholar 

  • Kousari MR, Ahani H, Hendi-zadeh R (2013) Temporal and spatial trend detection of maximum air temperature in Iran during 1960–2005. Global Planet Chang 111:97–110

    Article  Google Scholar 

  • Kuglitsch FG, Toreti A, Xoplaki E, Della-Marta PM, Zerefos CS, Türkes M, Luterbacher J (2010) Heat wave changes in the eastern Mediterranean since 1960. Geophys Res Lett 37:L04802. https://doi.org/10.1029/2009GL041841

    Article  Google Scholar 

  • Lasheen MA (2000) on formation of summer stability condition over east Mediterranean. Al-Azhar Bulletin of Science 11(2):1–14

    Google Scholar 

  • Lelieveld J, Hadjinicolaou P, Kostopoulou E, Chenoweth J, El Maayar M, Giannakopoulos C, Hannides C, Lange MA, Tanarhte M, Tyrlis E, Xoplaki E (2012) Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim Chang 114:667–687

    Article  Google Scholar 

  • Lelieveld J, Proestos Y, Hadjinicolaou P, Tanarhte M, Tyrlis E, Zittis G (2016) Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim Change 137(1–2):245–260. https://doi.org/10.1007/s10584-016-1665-6

    Article  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87

    Article  Google Scholar 

  • Mcgree S, Herold N, Alexander L, Schreider S, Kuleshov Y, Ene E, Finaulahi S, Inape K, Mackenzie B, Malala H, Ngari A, Prakash B, Tahani L (2019) Recent changes in mean and extreme temperature and precipitation in the Western Pacific Islands. J Clim 32:4919–4941

    Article  Google Scholar 

  • Muslih KD, Błażejczyk K (2017) The inter-annual variations and the long-term trends of monthly air temperatures in Iraq over the period 1941–2013. Theoret Appl Climatol 130:583–596. https://doi.org/10.1007/s00704-016-1915-6

    Article  Google Scholar 

  • Nairn J, Fawcett R (2013) Defining heatwaves: heatwave defined as a heat-impact event servicing all community and business sectors in Australia. CAWCR technical report.

  • Nairn JR, Fawcett RJB (2015) The excess heat factor: a metric for heatwave intensity and its use in Understanding classifying heatwave severity. Int J Environ Res Public Health 12:227–253. https://doi.org/10.3390/ijerph120100227

    Article  Google Scholar 

  • Nairn J, Fawcett R, Ray D (2009) Defining and predicting excessive heat events a national system high impact weather, CAWCR modelling workshop 017: 83-86

  • Nashwan MS, Shahid S, Abd Rahim N (2018) Unidirectional trends in annual and seasonal climate and extremes in Egypt. Theoret Appl Climatol 136(1–2):457–473. https://doi.org/10.1007/s00704-018-2498-1

    Article  Google Scholar 

  • Önol B, Bozkurt D, Turuncoglu UU, Sen OL, Dalfes HN (2014) Evaluation of the twenty-first century RCM simulations driven by multiple GCMs over the Eastern Mediterranean-Black Sea region. Clim Dyn 42:1949–1965

    Article  Google Scholar 

  • Ozturk T, Ceber ZP, Türkeş M, Kurnaz ML (2015) Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. Int J Climatol 35(14):4276–4292. https://doi.org/10.1002/joc.4285

    Article  Google Scholar 

  • Perkins SE (2011) Biases and model agreement in projections of climate extremes over the tropical Pacific. Earth Interactions 15(24):1–36. Available online at http://EarthInteractions.org

  • Perkins SE, Alexander LV (2013) On the measurement of heat waves. J Clim 26:4500–4517

    Article  Google Scholar 

  • Perkins SE, Alexander LV, Nairn JR (2012) Increasing frequency intensity and duration of observed global heatwaves and warm spells. Geophys Res Lett 39(20):L20714

    Article  Google Scholar 

  • Peterson TC, Easterling DR, Karl TR, Groisman P, Nicholls N, Plummer N, Torok S, Auer I, Boehm R, Gullett D, Vincent L, Heino R, Tuomenvirta H, Mestre O, Szentimrey T, Salinger J, Førland EJ, Hanssen-Bauer I, Alexandersson H, Jones P, Parker D (1998) Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol 18(13):1493–1517

    Article  Google Scholar 

  • Piticar A, Croitoru AE, Ciupertea FA, Harpa GV (2018) Recent changes in heat waves and cold waves detected based on excess heat factor and excess cold factor in Romania. Int J Climatol 38(2):1777–1793. https://doi.org/10.1002/joc5295

    Article  Google Scholar 

  • Ragatoa DS, Ogunjobi KO, Klutse NAB, Okhimamhe AA, Eichie JO (2019) A change comparison of heat wave aspects in climatic zones of Nigeria. Environ Earth Sci 78:111. https://doi.org/10.1007/s12665-019-8112-8

    Article  Google Scholar 

  • Rothfusz LP (1990) The heat index ‘‘equation’’ (or, more than you ever wanted to know about heat index). National Oceanic and Atmospheric Administration, National Weather Service, Office of Meteorology, Southern Region Tech. Attachment SR-9023, Fort Worth, Texas, 2 pp.  http://www.srh.noaa.gov/images/ffc/pdf/ta_htindx.PDF

  • Russo S, Dosio A, Graversen RG, Sillmann J, Carrao H, Dunbar MB, Vogt JV (2014) Magnitude of extreme heat waves in present climate and their projection in a warming world. J Geophys Res Atmoss 119(22):500–512. https://doi.org/10.1002/2014JD022098

    Article  Google Scholar 

  • Said MA, El-Geziry TM, Radwan AA (2012) Long-term trends of extreme climate events over Alexandria Region Egypt. INOC-CNRS International Conference on “Land-Sea Interactions in the Coastal Zone” Jounieh – LEBANON, 06–08 November: 286–293

  • Saleh SM, Heggi MAM, Abdrabbo MAA, Farag AA (2017) Heat waves investigation during last decades in some climatic regions in Egypt Egypt. J Agric Res 95(2):863–889

    Google Scholar 

  • Shaposhnikov D, Revich B, Bellander T, Bedada GB, Bottai M, Kharkova T, Kvasha E, Lezina E, Lind T, Semutnikova E, Pershagen G (2014) Mortality related to air pollution with the Moscow heat wave and wildfire of 2010. Epidemiology 25(3):359–364. https://doi.org/10.1097/EDE.0000000000000090

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5multimodel ensemble: part 2 Future climate projections. J Geophys Res Atmos 118:2473–2493. https://doi.org/10.1002/jgrd50188

    Article  Google Scholar 

  • Smith TT, Zaitchik BF, Gohlke JM (2013) Heat waves in the United States: definitions patterns and trends. Clim Change 118:811–825

    Article  Google Scholar 

  • Souch C, Grimmond CSB (2004) Applied climatology: heat waves. Phys Geogr 28:599–606

    Article  Google Scholar 

  • Spinoni J, Lakatos M, Szentimrey T, Bihari Z, Szalai S, Vogt J, Antofie T (2015) Heat and cold waves trends in Carpathian region from 1961 to 2010. Int J Climatol 35:4197–4209. https://doi.org/10.1002/joc4279

    Article  Google Scholar 

  • Steadman RG (1979) The assessment of sultriness. Part I: a temperature-humidity index based on human physiology and clothing science. J Appl Meteorol 18(7):861–873. https://doi.org/10.1175/1520-0450(1979)018%3c0861:taospi%3e2.0.co;2

    Article  Google Scholar 

  • Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614

    Article  Google Scholar 

  • Tanarhte M, Hadjinicolaou P, Lelieveld J (2015) Heat wave characteristics in the Eastern Mediterranean and Middle East using extreme value theory. Clim Res 63:99–113. https://doi.org/10.3354/cr01285

    Article  Google Scholar 

  • Tayanç M, Im U, Dogruel M, Karaca M (2009) Climate change in Turkey for the last half century. Clim Chang 94:483–502

    Article  Google Scholar 

  • Wang Y, Shi L, Zanobetti A, Schwartz JD (2016) Estimating and projecting the effect of cold waves on mortality in 209 US cities. Environ Int 94:141–149

    Article  Google Scholar 

  • WHO (World Health Organization) (2010) Wildfires and Heat-Wave in the Russian Federation - Public Health Advice. WHO, Copenhagen, Denmark, pp 17. Retrieved from www.euro.who.int/__data/assets/pdf_file/0012/120090/190810_EN_Russia_wildfire_advisory.pdf. Accessed 4 May 2011

  • World Meteorological Organization (2003) Extreme weather events may increase, Press Release 695, 2 July 2003, Geneva. Accessed 29 Oct 2003. http://www.wmo.ch/web/Press/Press695.doc. 318 LAREEF ZUBAIR.

  • Zampieri M, Russo S, di Sabatino S, Michetti M, Scoccimarro E, Gualdi S (2016) Global assessment of heat wave magnitudes from 1901–2010 and implications for the river discharge of the Alps. Sci Total Environ 571:1330–1339

    Article  Google Scholar 

  • Zhang X, Aguilar E, Sensoy S, Melkonyan H et al (2005) Trends in Middle East climate extreme indices from 1950 to 2003. J Geophys Res 110:D22104. https://doi.org/10.1029/2005JD006181

    Article  Google Scholar 

  • Zittis G, Hadjinicolaou P, Lelieveld J (2014) Role of soil moisture in the amplification of climate warming in the Eastern Mediterranean and the Middle East. Clim Res 59:27–37

    Article  Google Scholar 

  • Zittis G, Hadjinicolaou P, Fnais M, Lelieveld J (2016) Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Reg Environ Chang 16:1863–1876

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the European Centre for Medium-Range Weather Forecasts Interim (ECMWF/ERA-Interim) for providing the gridded meteorological parameters and to Expert Team on Sector-Specific Climate Indices (ET-SCI) for developing and making available the ClimPACTv2 software to compute the cores set of their defined climate-related.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, Idea, and design. Material preparation, data collection and analysis, and discussion of results were performed by all authors. The first draft of the manuscript was written and prepared by all authors. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mostafa Morsy.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morsy, M., El Afandi, G. Decadal changes of heatwave aspects and heat index over Egypt. Theor Appl Climatol 146, 71–90 (2021). https://doi.org/10.1007/s00704-021-03721-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-021-03721-x

Navigation