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Abstract

Time series with a significant trend, as is now being the case for the temperature in the course of climate change, need a careful
approach for statistical evaluations. Climatological means and moments are usually taken from past data which means that the
statistics does not fit to actual data anymore. Therefore, we need to determine the long-term trend before comparing actual data
with the actual climate. This is not an easy task, because the determination of the signal—a climatic trend—is influenced by the
random scatter of observed data. Different filter methods are tested upon their quality to obtain realistic smoothed trends of
observed time series. A new method is proposed, which is based on a variational principle. It outperforms other conventional
methods of smoothing, especially if periodic time series are processed. This new methodology is used to test, how extreme the
temperature of 2018 in Vienna actually was. It is shown that the new annual temperature record of 2018 is not too extreme, if we
consider the positive trend of the last decades. Also, the daily mean temperatures of 2018 are not found to be really extreme
according to the present climate. The real extreme of the temperature record of Vienna—and many other places around the

world—is the strongly increased positive temperature trend over the last years.

1 Introduction

The average temperature 2018 in Vienna resulted in 13.0 °C,
an unprecedented value, nearly 1 degree higher than the
warmest year in the whole 244-year time series since 1775
(Hiebl et al. 2019). If we compare this value with the mean
temperature of the last climate normal period 1961-1990
(T =9.7°C), it yields a positive anomaly of +3.3 °C. This
corresponds to more than 4 times the standard deviation
(SDEV) of that period. Even if we compare the 13.0°C with
the average of the last completed three decades 1981-2010
(T = 10.5°C), the deviation is +2.5 °C, corresponding to
more than three times the SDEV of that period. Taking longer
periods, e.g., the twentieth century or the whole 244-year se-
ries (including the year 2018), the deviation was even larger,
roughly 5 SDEV and 4 SDEV respectively. Hence, the year
2018 is commonly be seen as extraordinary and an extreme
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outlier temperature-wise. But is this simple statistical evalua-
tion adequate?

The World Meteorological Organization (WMO) has de-
fined a climate normal period long ago as a 30-year period
(WMO 1989). Starting in 1900, the periods 1901-1930,
1931-1960, and 1961-1990 have been defined and the next
normal period 1991-2020 will be used from 2021 onwards.
Due to the rapid global temperature increase now also the use
of 30-year overlapping periods (e.g., 1981-2010) are recom-
mended (WMO 2007). A thirty year period has been neatly
chosen for temperature, because on one hand it is long enough
to give a statistically reasonable mean value and statistical
moments, on the other hand it is short enough, that climate
trends do not have a strong impact on the statistical moments
(Angel etal. 1993). This was certainly true until the eighties of
the twentieth century, when the climatological global temper-
ature trends were never larger than a few tenths of a degree
within two consecutive 30-year periods. Hence, the climato-
logical time series were close enough to stationarity. Since
around 1980 however, the temperature trends, locally, region-
ally as well as globally have significantly increased in the
course of global warming. Hence, for the statistical treatment
and interpretation of recent temperature time series, ¢.g., the
determination of statistical moments, we have to consider
trends.
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In Section 2, different methods to smooth (filter) time series
are discussed and a new method is introduced, which allows a
reasonable determination of trends from the very beginning
until the very end of a time series. In Section 3, the application
of the filter is used to compute the trend of the temperature
time series of Vienna and to determine time dependent mean
values and the corresponding statistical moments. The con-
cluding Section 4 gives suggestions, how to treat time series
and to receive adequate statistical measures in times of signif-
icant climate trends.

2 Filtering time series

There are many ways how to filter time series (Hamming
1989; Schonwiese 2013; Shumway and Stoffer 2006). The
simplest—and mathematically cheapest—is the application
of MOVing Average Smoothing, furthermore denoted as
MOVAS. This method, however, has some unwelcome
properties. Part of high frequency variations may still be
present after smoothing and the spectral response may even
invert the phase of some wavelike variations. A further
problem is the fact, that moving averages do not allow to
determine values at both ends of a time series, as long as we
stay with centered averaging. If we continue the averaging
until the very end of the series, we have to take one-sided
averages, which usually lead to a significant underestima-
tion of the magnitude of a trend. The problem of determin-
ing reasonable trends at the end of time series has been
extensively investigated (e.g., Arguez et al. 2008; Mann
2004, 2008). Besides the determination of trends at the
end of time series also trend extrapolation is applied in
many scientific disciplines (Box and Jenkins 1970;
Livezey et al. 2007).

A better method than MOV AS, which is frequently used to
filter climatological time series (e.g., ZAMG 2019) is the
Gaussian Smoothing filter, furthermore denoted by GAUSS.
Here, the averaging is performed by weighting the data within
an averaging window according to the Gaussian frequency
distribution. Such a Gaussian filter smooths out the high fre-
quency parts of a time series much better than MOVAS but
still does not allow to get reasonable trends at the ends of a
time series. Other frequently used time filters in many fields of
science are the closely related Locally Estimated Scatterplot
Smoothing (LOESS) and the Locally Weighted Scatterplot
Smoothing (LOWESS) (Cleveland 1981; Savitzky and
Golay 1964). Within an arbitrary time window usually a qua-
dratic polynomial is used for LOESS and a linear polynomial
is fitted to weighted data for LOWESS. In addition a
LOWESS?2 has been investigated here, which takes a weight-
ed quadratic polynomial fit. The suggested weighting function
is given by
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where 7 is the time difference with respect to the center of the
particular time window and Ar represents the half-width of
the smoothing time window. This function has some similar-
ity to the Gaussian function. Another smoothing filter is based
on a selective cutoff frequency of harmonic waves. Only the
lowest b harmonics of a time series are considered, whereas
the higher harmonics are completely disregarded. For a peri-
odic temperature time series, this can be expressed as:

(1) =
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2kt
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where T(t) denotes the smoothed value of the variable at time
tand 7y, s and Ty, . denote the coefficients (amplitudes) of the
kth sine and cosine harmonics, which are determined by a least
square method. For a non-periodic time series, the first term
on the right hand side of Eq. 2 can be replaced by the intercept
and slope of the linear regression of 7(¢) with regard to time.
This type of filter is denoted by SPECtral Smoothing filter
(SPECS) in the following. A new filter method proposed here
is the mean value smoothing spline, furthermore denoted by

MEVSS. For that, discrete values 7'(¢) of the smoothest pos-
sible function are searched, which equal the mean value of 71(¢)
of the original time series within arbitrary, non-overlapping
smoothing time windows. Mathematically this can be
expressed for a time series with n data points by the condition:

1
ny

b
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where we set for the latter 7(0) = T'(n) and T(n+ 1)
=T(1).

The constraint for Eq. 3 for all i non-overlapping smooth-
ing time intervals is

mi+At; mi+At;
Ao X T=N X T@) (4)
t=m;—At; t=m;—=At;

where m; denotes the center data point and At is the half-
width of the ith smoothing interval of the time series and A;
are Lagrangian multipliers. For open time series, the first/last
smoothing interval must start/end with the time series, where-
as for periodic series no such limitation exists. The smoothed
values for MEVSS are yielded by deriving Egs. 3 and 4 by all

T(t) and \; and solving the resulting set of n + i linear
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equations. Even if the number of data points is large, the
numerical solution is very effective and fast, because the ma-
trix of coefficients is an extremely sparse matrix. It should be
noted that MEVSS is not equal to the conventional smoothing
spline procedure, also known as variational interpolation
(Sasaki 1955), furthermore denoted in this paper by SPLIS.
There, a function is searched for by the condition

n—1 ,_ ~ ~ 2
5 (T(t—l)—ZT(t) T+ 1))
=2
n ~ 2
S (T(t)—T(t)) —Min. (5)

~ determines the degree of smoothness of the filtered time
series. The smaller ~, the smoother is the filtered time series.

To study the effect of different smoothing procedures, we
take two synthetic temperature time series with 360 discrete
points of 7(¢). The first is based on an analytic sinusoidal
function 7(f) superposed by a random Gaussian noise 7,,(¢).
This is similar to an annual time series of a multi-year average
of the daily mean, minimum or maximum temperature with
the time increment of 1 day (d). In contrast to a single year
daily temperature record, two consecutive days in an average
multi-year record usually are hardly correlated. Figure 1
shows such a synthetic periodic time series for 360 days with

T(t) = To + T(t) + To(t) = 10°C

2mt
10°C*si
+ 10°C Sm(360d>

+ Tu(1). (6)

26.0

The Gaussian distributed random noise has a standard de-
viation of 2.

The second synthetic time series consists of an exponential
function 7,(f) superposed by a random Gaussian noise with a
standard deviation of 1. This is similar to a very long (360
years) time series of annual mean temperatures with an in-
creasing positive temperature trend at the end and a time in-
crement of 1 year (a) (see Fig. 2):

T(t) = To + To(t) + T,(t) = 8°C + 2°C¥exp|t/360a]*

+ T (1) (7)

An optimal smoothing filter should keep the signal (sine or
exponential) un-modified and remove or damp the noise as
much as possible.

To compare the different smoothing methods, we have to
select adequate time windows and parameter settings. Figure 3
shows the filter response (weights) of a time series where all
data points are set to zero 7(¢#0)=0 except at the center,
where the value is set to unity 7(¢=0) = 1. The width of the
response around the center point should be similar for all
applied filters to allow a meaningful comparison. To fulfill
this criterion, the smoothing window for MOVAS is set to
31 time increments, the standard deviation for GAUSS is set
to 10, and the whole window spans over 61 time increments.
LOWESS, LOESS, and LOWESS?2 use a half-width of 25
time increments which results according to (1) also in a total
smoothing window of 51. For SPECS and SPLIS, the whole
domain is considered, for SPECS, the first 6 harmonics are
used, and the smoothing parameter for SPLIS ~ = 6*10™* is
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Fig. 1 Synthetic 360-day time series of temperature 7(t) consisting of a pure sine function 7(t) with an amplitude of 10 °C (thin line) and a Gaussian

random noise 7,,(t) with a standard deviation of 2 °C, according to Eq. 6
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Fig. 2 Synthetic 360-year time series of temperature 7(t) consisting of an exponential function 7,(t) and a superimposed Gaussian noise 7,,(t) with a

standard deviation of 1 °C according to Eq. 7

chosen. The averaging window for MEVSS has been selected
as 30 time increments. In Table 1, some statistical results are
shown to compare the quality of the different smoothing
methods. Four different smoothing intervals were chosen,
0.5, 1, 2, and 3 times the window settings of Fig. 1. For the
sine function, periodic boundaries are used and for the expo-
nential function, reduced windows are used; i.e., for MOVAS,
GAUSS, LOWESS, LOESS, and LOWESS?2, one-sided
smoothed values are computed at both ends. For MEVSS, it
is not necessary to compute the smoothed values for all pos-
sible time increments, because the results for time windows
shifted by one time increment are quite similar. Only three
different smoothing settings, shifted by 1/3 of the averaging
window, were used here for the full domain and the resulting
values have then been averaged. For the 30 time increment
window of the periodic sine (left) and the non-periodic expo-
nential function (right), only the mean values for the following
windows were computed for the constraint (Eq. 3) of MEVSS:

Window setting penodlc sine non — periodic exponentlal

360 60
I Z Ty, Z Ty X T4 Z Ty, ¥ Tu. Z T,
t=1 =31 )‘ 331 r=1 t=31 l 331
. 20 360 50 350 20 360
2" Z T+ 2 Tu Z Tty 2 T: Z Ty, Z Ty 2 T4
= =351 =2 =321 = = =321
" 360
3 ZT/ ZTI Z Tl+le ZTI ZTI o T
[ S st} C1=341 i i =341
(8)

This means that for an open domain at both ends, time
windows with different lengths are being chosen.

It comes out clearly from Table 1 that for MOVAS,
GAUSS, and LOWESS, the smoothing leads to a damping of
the (sine) amplitude, especially for wide smoothing intervals.
Hence, for the smoothing of diurnal or annual (periodic) time
series, these methods are not recommendable. LOESS,
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LOWESS2, SPECS, and MEVSS do much better in this per-
spective. The same is true for the sine fit, i.e., that the whole
sine function is not much modified by the latter four smoothing
methods. According to the damping of the noise, however, the
latter methods behave differently. Although the noise generated
for this test is only one possible realization, a comparison be-
tween the different smoothing algorithms seems to be never-
theless possible. Especially for short smoothing periods,
LOESS and LOWESS?2 do not filter the noise very well. It
might be surprising that SPECS, which is conserving the sine
function perfectly, does not filter the noise too well. This is due
to random wave components, which are contained in the noise.
For short smoothing windows, GAUSS and for long smoothing
windows MEVSS are performing best. This can be understood,
because GAUSS and MEVSS are using mean values, which
are determined by setting the positive and negative deviations
equal. LOESS, LOWESS, LOWESS2, SPECS and SPLIS use
squared deviations (regression) and are hence more sensitive to
extremes. The same is true for filtering the sine function plus
noise. The interincremental RMSE, i.e., the day to day variation
of the smoothed sine plus noise is much higher as compared to
the pure sine especially for MOVAS, LOESS, and LOWESS2
with short averaging windows. For long windows, GAUSS and
LOWESS even show a smaller RMSE than the pure sine. This
is due to the significant damping of the sine function. For an
open domain it comes out clearly, that the smoothing of the
exponential function does not give reasonable values for the
end of the time series by MOVAS and GAUSS. The offset
becomes increasingly large for long smoothing intervals. If
we consider the performance of the smoothing methods against
noisy data at the ends of an open domain, it is surprising, how
strong the noise—with an RMS of only 30% of the total expo-
nential increase—changes the offset. The impact of noise
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Table1 Comparison of the quality of different smoothing methods. All . . RMSE (i (O-T. (1))
numbers are given in percent. Sine damping is defined  function. Exp fitis defined as 100*{1_ (Toma Tomn) |” 2 value > 97

aleO*[l—M (Ts‘max—TS,min)], a value of < 1 means an

amplitude error < 0.1 °C. Sine fit is defined as
100*[1—%#“?} , a value of > 99 means an RMSE < 0.1 °C.

ruse (T()-T,(1))

Noise damping is defined as 100*{1—WM

}, a value > 90

means a reduction of the RMSE of the noise to < 0.2 °C. Sine noise fit
 ruse(T()-1.()

is defined as 100* {1 -
0.5%( s~ Tmin )

} , a value of > 98 means an RMSE

of (I,— T, ) < 0.2 °C. The interdiurnal RMSE is defined as 100*

B ~ ~7(1))
[1 RMSE(T(H— D) mma

RMSE of+0.01 °C with respect to the interdiurnal RMSE of the pure sine

—T4(t))], a value of + 8.0 means an

means an RMSE of < 0.1 °C. Exp + noise fit is defined as

IOO*{l—RM(STEG(%Z(;))} , a value > 94 corresponds to an RMSE of

(T(t) = T.(1)) < 0.2 °C. End offset is defined as IOO*f(t = 360)

% a value within + 7 means an error of the last data point

less than + 0.2 °C against the pure exponential function. End trend is

defined as 100*[1—T(t =360) 7=a) ~Te(t = 359)], a value of =

10 means an error of + 0.2 °C/30 years. The interannual RMSE is

defined as 100*[1—RMSE(T(r +1) g ~Te(0)]. a value of

+ 25.0 means an RMSE of + 0.01 °C with respect to the interannual
RMSE of the pure exponential function

Method, Parameter 360-day sine function (periodic)

360-year exponential function (open)

setting
Sine Sine  Noise Sine + noise Interdiurnal Exp Exp+noise End End trend Interannual
damping  fit Damping fit RMSE fit fit offset RMSE
Acceptable range <1.0 >99.0 >90.0 >98.0 —8.0 to 8.0 >97.0 >94.0 <10.0 -10.0to  —25.0 to 25.0
10.0
MOVAS, window = 0.3 99.8 76.2 95.3 86.7 99.6 93.0 1.2 —82.4 605.3
15d/a
GAUSS,oc=5d/a 0.4 99.7 783 95.7 10.7 99.4 935 6.9 —38.7 203.3
LOWESS, Ar=12d/a 0.3 99.8 779 95.6 78.5 99.8 933 25.2 —5.2 112.0
LOESS, window =25 0.0 100.0 72.9 94.6 843 99.1 923 19.2 —114.6 213.6
d/a
LOWESS2, Ar=12 0.0 100.0 68.7 93.7 64.4 99.1 90.1 9.3 0.8 123.6
d/a
SPECS, wave numbers 0.0 100.0 752 95.0 11.2 79.5 772 —42.0 783 100.9
1-12
SPLIS, y=3.2%10"° 0.0 100.0 77.1 95.4 11.7 100.0 93.1 22.8 37.2 119.6
MEVSS, window =15 0.0 100.0 77.0 95.4 11.8 99.9 949 9.6 -12.7 43.6
d/a
MOVAS, window = 1.2 99.1 83.1 96.6 22.7 98.6 949 —23.1 -—1814 333.8
31dAa
GAUSS, o =10d/a L5 99.0 842 96.8 0.5 98.6 955 -11.4 593 22.8
LOWESS, Ar=25d/a 14 99.0 84.1 96.8 30.8 98.6 954 -114  -63.6 —31.4
LOESS, window =51 0.0 100.0 80.4 96.1 24.7 99.4  94.0 21.0 109.9 41.5
d/a
LOWESS2 At=25 0.0 100.0 78.0 95.6 8.6 99.4 933 32.7 184.9 —0.8
d/a
SPECS, wave numbers 0.0 100.0 80.4 96.1 2.6 78.9 773 =360 -17.7 14.4
1-6
SPLIS, y=2.0¥10"* 0.0 100.0 82.9 96.6 21 99.9 949 18.0 11.9 35.5
MEVSS, window =30 0.0 100.0 822 96.4 1.2 99.6 972 15 -8.8 7.4
d/a
MOVAS, window = 4.7 96.7 88.8 96.2 34 96.9 95.6 —40.2 885 85.9
61 d/a
GAUSS, 0 =20d/a 5.8 959 899 95.6 —4.2 96.7 96.1 -375 675 -21.8
LOWESS, Ar=50d/a 5.4 96.2 89.9 96.0 —4.6 98.9 96.6 17.1 6.9 16.3
LOESS, window =101 0.2 99.9 855 97.1 6.8 99.4 954 29.1 46.3 -11.1
d/a
LOWESS2, A7=50 0.1 100.0 83.5 96.7 1.7 994 95.1 18.3 -1.5 —-36.1
d/a
SPECS, wave numbers 0.0 100.0 84.1 96.8 14 78.1 77.0 =579 11 —29.3
1-3
SPLIS, y=12%10" 0.8 99.5 89.2 97.8 0.0 99.3 96.7 33 —-13.8 8.1
0.0 100.0 90.9 98.2 0.8 98.1 972 —219 474 -16.2
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Table 1 (continued)

Method, Parameter 360-day sine function (periodic)

360-year exponential function (open)

setting
Sine Sine  Noise Sine + noise Interdiurnal Exp Exp+noise End End trend Interannual
damping  fit Damping fit RMSE fit fit offset RMSE
MEVSS, window = 60
d/a
MOVAS, window = 10.2 92.8 93.1 92.9 —6.2 949  96.1 —-64.5 —10.1 275
91 d/a
GAUSS, 0 =30d/a 12.5 91.1 939 91.3 -12.1 948 935 -60.3  -73.1 —45.2
LOWESS, Ar=75d/a 11.8 91.7 94.2 91.8 —-11.3 98.1 973 6.0 -2.6 24
LOESS, window =151 1.0 99.3 90.1 98.0 2.4 99.9 96.4 19.8 -20.9 -27.5
d/a
LOWESS2, Ar=75 0.3 99.8 86.8 97.4 0.6 99.4  95.6 24.6 432 -36.7
d/a
SPECS wave numbers 0.0 100.0 89.5 97.9 0.9 772 76.2 —645 183 —40.0
1-2
SPLIS, y=2.5%10° 3.7 974 94.0 97.4 -33 98.2 98.2 -13.8 336 -10.8
MEVSS, window =90 0.1 99.9 959 99.2 0.0 96.0 96.0 —49.5  —67.1 —36.1

d/a

Bold means that the value lies within the acceptable range

seems to be least for the MEVSS method especially for medium
smoothing windows. The trend at the end of an open domain,
i.e., the difference between the last and the second last date, is
reasonably captured only by LOESS, LOWESS, LOWESS2,
and by MEVSS for short to medium averaging intervals. Noisy
data do not allow to get reasonable estimates for the end trend of
a time series, except for short to medium smoothing windows
by MEVSS or for long windows by LOWESS2. For wide
smoothing intervals and periodic domains, MEVSS outper-
forms all other methods because it smooths the noise best and

keeps the signal rather unchanged. Hence, we have chosen
MEVSS for smoothing the long-term annual temperature time
series and for the mean daily temperature series.

3 Application of MEVSS to long-term time
series

The 244-year time series of annual mean temperatures of
Vienna (see Fig. 4) has been smoothed with the 30-year

0.05
~ MOVAS
T s ——GAUSS
0.04
—— LOWESS
- . - LOESS
0.03
— .- LOWESS2
0.02 — —SPECS
——-- SPLIS
0.01 - = -MEVSS
0 —— PRl // \“\~ S
~ s ~F N Ce-- ! / (A = N 7
7 [ ! /, 7/
~N 4 ~ \\ <~ - / \ Moo / N -~ ~ '
-0.01 \_ </
At
-0.02
-180 -160 -140 -120 -100 -80 -60 -40 20 O 20 40 60 80 100 120 140 160 180

Fig. 3 Weights (spectral response) for different smoothing methods of a
time series with unity value at time ¢ = 0 and zero at all other times. The
smoothing time window for MOVAS is 31 years, for GAUSS 60 years
(with o = 10 years) and for LOWESS, LOESS and LOWESS2 51 years.
For SPECS only the first 6 harmonics are considered and the smoothing
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parameter for SPLIS has been set to iy = 6%107*. The smoothing time
window for MEVSS is 30 years. The sum of all weights is 1 and the
setting was selected such that the standard deviation of weights is as close
as possible at 10 years for all methods
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MEVSS method (see Fig. 5). In addition, the 25-year (half-
width) LOWESS smoothing has been carried out, which
agrees to less than 0.1 °C to the MEVSS curve except at the
very beginning and end of the series. Due to the very high
value in 2018, the LOWESS curve ends with a 0.26 °C higher
value at the end and due to the two low values in 1776 and
1777 it begins with a 0.17 °C lower value. A more conserva-
tive value at the beginning and the end of an open time series,
like produced by MEVSS, seems to be the preferable way to
avoid an exaggerated trend.

If we compute the mean temperature of all climate normal
periods 1781-1810, 1811-1840, ... and ending with the only
28-year period of 1991-2018 (Table 2), we see that until
1931-1960, all values were close to 9 °C. 1961-1990 and
especially 1991-2018 show an increasing mean temperature
due to global warming. Looking at the SDEV of the periods,
we see somewhat larger values up to 1870 and in the recent
period 1990-2018. Does that mean the variability of annual
mean temperatures was higher (more extreme) in the early and
recent years of the series? Not necessarily, because to deter-
mine the true climatic SDEV, we need to de-trend time series.
If we do so and take the deviations of the annual mean tem-
perature from the smooth MEVSS curve (lower part of Fig. 5)
and compute the root mean square differences (RMSD
(MEVSS), Table 2), we see that up to 1960, they lie very close
to the SDEV values. This means, we do not need to de-trend
time series when trends are small. The increasing difference
between SDEV and RMSD (MEVSS) from 1960 onwards
tells us however, that during periods of significant trends we
need to de-trend the series to get a realistic climatic measure of

14

dispersion. Instead of taking the SDEV directly, RMSD
(MEVSS) can be called de-trended SDEV and is hence the
measure of choice. After de-trending, only during the first
three CLNPs the variability of annual mean temperatures stays
somewhat higher (around 0.9 °C) than after 1870 with roughly
0.6 °C. It is interesting to note that the station location of the
Zentralanstalt fiir Meteorologie und Geodynamik in Vienna
has changed in 1872 to its present location (Hammerl 2001).
Could there be a discontinuity in the interannual temperature
variation before and after the change of the station location,
although the temperature series itself was carefully homoge-
nized (Auer et al. 2001)? Climatic temperature time series and
trends of the nineteenth century and earlier should be treated
carefully in any case, because instrumental biases were in the
order of 0.5 to 1°C (Middleton 1966; Bernhard 2004; Winkler
2009).

When we use statistics of past CLNPs to relate it to actual
observations—what is normally done—measures of disper-
sion may become meaningless. Table 2 shows an enormous
increase of RMSD (prev CLNP) above RMSD (MEVSS) in
the period 1990-2018 by a factor of more than two (from 0.66
to 1.48). Now it becomes clear, why the 2018 mean temper-
ature of 13°C, related to the statistics of the previous CLNP
1961-1990 is an outlier with more than four times the SDEV
above the mean whereas it stays below two times the RMSD
(MEVSS), which is still rather normal.

We can conclude, that not the 2018 mean temperature was
so extreme according to the present climate but the increase of
the trend of the climatological mean, which has reached al-
most 0.06 °C per year (or 1.8 °C per 30 years!), a value never

1775 1805 1835 1865

Fig.4 Time series of annual mean temperatures for Vienna, Hohe Warte,
from 1775 to 2018. Mean values are plotted for the periods 1775-2018,
1901-2000, 1961-1990, and for 1981-2010 (continuous lines). Dashed

1895

1925 1955 1985 2015

YEAR

lines are the corresponding positive 3o levels for the different periods,
each extended until 2018
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Fig. 5 Annual mean temperature at Vienna, Hohe Warte, smoothed with 30-year MEVSS (top, continuous) and 51-year LOWESS (top, dashed).
Deviation from the MEVSS-smoothed temperature (bottom) with + 1 SDEV (dashed), + 2 SDEV (short dashed), and = 3 SDEV (dotted) lines

observed before in the 244-year temperature series of Vienna.
The 1.8°C increase of the trend of 1988-2018 was more than
3 times the SDEV of all 215 30-year trends between 1776 and
2018.

A problem with the determination of the actual climatic
mean temperature is, that we just know the observations of
the last 15 years but we do not know the observations of the
next 15 to come of the 30-year period centered to the actual
year. How can we proof, that the determination of actual cli-
mate statistics by the endpoint of an actual smoothed temper-
ature series is better than taking the mean from past periods?
We can do at least a hindcast. For all years from 1875 to 2003,
the end values of the MEVSS, LOESS, and LOWESS curves
(Tvievsss Trogss, Trowess) based on a 100-year period have
been computed; i.c., for 1875, the years 1776 to 1875 have
been used to predict the climatic mean temperature for 1875
by the above smoothing methods. For 1876, the years 1777—
1876 have been used and so forth. The values have then been

Table 2 Mean temperatures and measures of dispersion for climate
normal periods (CLNP) in Vienna. For the last period, only the 28 years
between 1991 and 2018 have been used. Besides the SDEV of the annual
mean temperatures within the CLNP, the root mean square differences

compared with the 30-year mean temperature, e.g.,

_ 1 /Tisco + 1889
1860 1890 ST, 9)

Thg75 = 5=

30 2 =1861

which would not have been known in 1875. Furthermore, a
comparison with the last available CLNP in the respective
year (for 1875 this would have been 1841-1870) has been
carried out. Finally, a comparison with the corresponding

MEVSS temperature 7 derived of the whole series from
1875 to 2018 was carried out. The results are shown in
Table 3. On average, the endpoint-temperature of the
smoothed MEVSS, LOESS, and LOWESS temperatures fit
very well to the centered 30-year mean temperatures. The
maximum differences, however, all dating from the last few
years with the strong positive temperature trend, is with 0.48
for MEVSS and LOESS and with 0.65 °C for LOWESS not
really satisfying. If we take the standard methodology, to use
the last available CLNP statistics, the result becomes much

between the observed annual temperatures and the respective 30-year
MEVSS temperatures (RMSD (MEVSS)) and the root mean square dif-
ferences between the observed annual temperatures and the mean tem-
perature of the previous CLNP (RMSD (prev CLNP)) are shown

CLNP 1781-1810 1811-1840 1841-1870 1871-1900 1901-1930 1931-1960 1961-1990 19912018
°C

Mean 9.5 9.1 9.1 8.9 9.1 9.4 9.7 10.9

SDEV 0.84 1.00 0.81 0.63 0.52 0.77 0.63 0.83

RMSD (MEVSS) 0.83 0.99 0.80 0.64 0.51 0.76 0.57 0.66

RMSD (prev CLNP) 1.09 0.81 0.68 0.57 0.82 0.71 1.48
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Table 3  Basic statistics (mean difference, root mean square difference,
and maximum absolute difference) of the differences between the
endpoints of the MEVSS, LOESS, and LOWESS temperatures
(Trevsss Troess, Trowess) and the observed 30-year mean temperatures
T (according to Eq. 9) centered at the endpoint for all 100-year periods

between 17761875 and 1904-2003. Ty np is the last completed climate
normal period (1781-1810, 1811-1840, ..., 1961-1990) before the cor-
responding year, T is the MEVSS temperature for the corresponding year
based on the whole temperature series from 1775 to 2018

Trvgvss—T Troess—T Trowess—T Tene=T Tyvivss—T
°C
Mean 0.0 0.0 0.0 -0.2 0.0
RMSD 0.22 0.22 0.23 0.29 0.18
Max abs 0.48 0.48 0.65 1.11 0.40
diff

worse. Now even the mean difference is —0.2°C and the max-
imum, again dating from one of the last few years, gives an
intolerable 1.11 °C difference. It is important to see that the
difference between the MEVSS endpoint value and the tem-
perature of the complete MEVSS series gives the best result.
No mean difference and a 0.18 °C RMSD with a maximum
difference of 0.4 °C is not perfect, but it is probably the best
what we can do, to estimate the actual climate statistics.

The steep ascent of the climatological mean temperature
has also consequences with respect to the judgment of month-
ly or daily temperature series. Often, the deviations of these
temperatures are discussed in the public, using mean values of
the last climatological normal period. In Fig. 6, besides the
mean, maximum, and minimum daily mean temperatures and
their MEVSS-smoothed curves also 1, 2, and 3 times SDEV
of the maximum daily temperature with respect to the
smoothed values are plotted above the maximum and below
the minimum curves. It is important to note, that the smoothed
curves are not pure sine functions, albeit they are based on
only 4 (three-monthly) mean values. The mean time distance
between the annual minimum (on January 12) and the maxi-
mum (on July 19) is 188 days, the cooling period is only
lasting 177 days. Hence, also the maximum smoothed
interdiurnal cooling rate in autumn (—0.187°C/day) is some-
what larger than the smoothed maximum warming rate
(+0.169°C/day) in spring. If the distribution function is
Gaussian, the mean equals the median and the smooth
maxima/minima curves can be used to indicate quantiles and
to derive return periods. An extended Wilk-Shapiro test
(Shapiro and Wilk 1965; Royston 1982) has been applied to
the daily extreme temperature distribution and a proof for a
Gaussian distribution was found. Hence, the smooth curve of
the maximum temperature indicates the 60-year return period,
because on average each second day of the 30-year series lies
above/below this curve. This means that for each individual
day the probability of being higher/lower than the mean
smoothed maximum/minimum curve is 1/60. Statistically
there should be one day within a 2-month period and roughly
6 days within a single year above/below the curves. Due to the

nearly Gaussian distribution, the maximum/minimum curves
plus/minus 1, 2, and 3 SDEV can also be used to indicate other
return periods. The 1/2/3 SDEV curves indicate the 189/1316/
and 23,095-year return periods. For the 1/2/3 SDEV curves
there should be statistically 2/0.3/0.02 days within a year
above/below the respective curves. For the 30 years of a cli-
mate normal period, the statistical numbers are 60/8/0.5 days
for the 1/2/3 SDEV lines. The observed values for the period
1961-1990 are 51/15/0 days for the maximum and 53/15/1 for
the minimum, which are quite close to the expectation.

As has been shown by the annual mean temperature time
series with a 2 °C increase of the mean over the last 40 years,
the statement “above” or “below average” for a concrete cur-
rent year should not be made with historic averages, unless we
want to compare apples and oranges. They must be made with
averages according to the actual climate. Let us take the daily
mean temperature series of Vienna for 2018. If we take the
MEVSS-smoothed annual curve, based on the last climate nor-
mal period (1961-1990, see Fig. 7), we come to the conclusion,
that the 284 out of 365 days, having temperatures above the
climatological mean 19611990, represent an exceptional high
number of “warmer than average” days. The number of “colder
than average” days (81 out of 365) is exceptional low. In Fig. 7,
only the 1 in 100 years lines for the minimum and maximum
are indicated, which equal the 1st and 99th percentile. The 1 in
100 years line is equal to the smoothed maximum/minimum
line £ 0.476 SDEV according to a Gaussian distribution. In a
whole year the statistically expected number of days, exceeding
the 1 in 100 years maximum and minimum curves should be
roughly 4 (0.01%365). The observed number of days for the
maximum in Fig. 7, however, was 39, nearly 10 times as much
as expected, an exceptional value. The observed number of
days exceeding the 1 in 100 minimum line was 4. But this
comparison is not adequate, we are comparing temperatures
of the present climate with past climate data.

What can we do, to seriously compare the daily tempera-
ture series of 2018 with the actual climate? To get the smooth
mean climatological temperature for 2018 we can first com-
pute the three-monthly (Jan—Mar, Feb—Apr, ..., Dec—Feb)
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Fig. 6 Mean (bold), maximum, and minimum daily mean temperatures
of the climate normal period 1961-1990 with 3-month MEVSS (smooth
continuous) in Vienna, Hohe Warte. The dashed lines show the smoothed

smooth temperature time series from 1863-2018, averaging
the time series e.g. for the periods 1863—1880, 1881-1910,
..., 20012018, the periods 1863-1890, 1891-1920, ...,
19812018, and the periods 1863-1900, 1901-1930, ...,
1991-2018 with MEVSS. Then, we can further average the
MEVSS-smoothed daily temperature series of 2018 for the
periods Jan—-Mar, Apr—June, ..., Oct-Dec, for the periods
Feb—Apr, May—Jul, ..., Nov—-Jan, and for the periods Mar—
May, June—Aug, ..., Dec—Feb. The so generated smooth daily
average temperature for the year 2018 (“climate of 2018”) is
plotted in Fig. 8. Now, the number of days warmer than the
2018-climate daily average is reduced to 241 and colder than
average is increased to 124. The still much larger number of
positive anomalies is due to the fact, that the year 2018 was
warmer by 1.5 °C than the climatological mean of 2018
(compare Fig. 4). The smooth 1 in 100 years curves for the

60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345 360
DAY OF THE YEAR

maximum/minimum + 1 STDV, the short dashed lines the smoothed
maximum/minimum + 2 STDV, and the dotted lines the smoothed
maximum/minimum + 3 STDV

2018 climate cannot be computed in the same manner as for
the smooth mean daily temperatures, because the values of the
maximum and minimum time series depend on the length of
the time series. Therefore, in Fig. 7, the 1 in 100 years curves
of the smooth daily maxima and daily minima have been
taken with the same distance from the smooth mean curve like
for the 30-year time series 1989—2018. This can be justified by
the fact that the smoothed mean amplitude between the min-
imum and maximum curves and the STDEV of the minima
and maxima did not change very much between the last cli-
mate normal period 1961-1990 and 1989-2018. Now, the
number of days above the 1 in 100 years maximum curve
(99th percentile) in 2018 reduces to 3 and the number of days
below the 1 in 100 years minimum curve (Ist percentile) in
2018 is 5, both very close to the statistical expectation of 4
days. One interesting finding of the 2018 time series with the
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Fig.7 Daily mean temperatures of the year 2018 in Vienna, Hohe Warte,
and the 3-month smoothed MEVSS curve for the climate normal period
1961-1990. The dashed lines represent the 1 in 100 years curves for the
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Fig. 8 Same as Fig. 7 but with mean and 1 in 100 years curves for the “climate of 2018”

smooth curves adjusted to the “climate of 2018” is that the
most extreme event of the daily mean temperatures was not in
the summer half year with the many warmer than average
periods, but in winter, when the temperature at the end of
February fell way below the 1 in 100 years curve. Again, the
single days of 2018 were not exceptional compared to the
actual climate but the increase of the mean values between
the climate of 1961-1990 and 2018 was extreme, especially
in summer by more than 2.5 °C. Whereas in the period 1961—
1990, the climatological number of days with a mean temper-
ature of 20°C or greater was 35; in the present climate (2018),
this number has increased to 87 days. With a further temper-
ature increase, the number of days with high temperatures will
rise further sharply, because the probability to exceed a thresh-
old will increase and the seasonal extent, when this can occur
will also increase. With respect to future heat waves, this
means an exponential rather than a linear increase.

4 Conclusion and outlook

In times of significant climate change, what we just experi-
ence, the comparative statistical climatology has to take into
account trends of meteorological parameters. Considering
trends means, that events, which would have been character-
ized as extreme events under a past climate, can be rather
“normal” under present climatic conditions. Heatwaves,
which have been experienced more often in the past summers,
should not be called extreme events anymore, because they
become more “normal” under present conditions. This would
also improve the communication with the public, because the
term “extreme events” is intuitively related to rare events. We
must communicate that some extreme events of the past are
becoming “normal events” nowadays. It is more than ques-
tionable, if the traditional way of using 30-year average values
as “climate normals” should be continued. If the trend within

30 years is in the order of the STDEV or even higher, which is
the case for the 1991-2020 CLNP, the climate of a year at the
beginning and the end of this CLNP cannot be set equal. There
is nothing like the “climate of 1991 to 2020”. The 30-year
smoothing allows to define “climate normals” virtually for
each year. In this paper, it was shown that in the frame of rapid
global change this makes sense.

The methodology of MEVSS smoothing is seemingly the
best way how to produce smooth climatological time series,
because it smooths the short term (random) variations to a
high degree, whereas the long-term variations are kept nearly
undisturbed and better than with other smoothing methods.
This is especially true for periodic time series like annual or
daily variations. This methodology seems to allow also a wide
application to other climate elements. An application to non-
Gaussian distributed variables should be checked in the future.

Another concrete application of the MEVSS method,
which by no other existing method may be achieved alike, is
the refinement of the annual variation of an element, when
only monthly mean- or extreme values are given. For many
stations worldwide such information is easily available online
(e.g., Weather-Online 2019). Instead of plotting an 11-month
pseudo-annual temperature-“curve” by connecting the 12
monthly mean values by straight lines, the MEVSS smoothing
gives a much better estimate for daily time series of the whole
annual curve, including “true” minima and maxima.
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