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Abstract
When meteorological stations are quite unevenly distributed, a simple regional arithmetic mean of observation data may assign
an excessive weight to one region with dense stations, which affects the representativeness of the regional mean. In this study, we
used the homogenized monthly maximum (Tmax), mean (Tm), and minimum (Tmin) temperature dataset at more than 2400
national surface meteorological stations in China. Based on a thin plate spline (TPS) interpolation method, we selected a
three-dimensional (longitude, latitude, and elevation above sea level) interpolation model that is suitable for the temperature
curve surface fitting in China, and constructed a gridded temperature dataset with a horizontal resolution of 0.5° during 1961 to
2015. Cross-validation indicates that the annual average of generalized cross-validation (GCV) is relatively small, and the ratio of
GCV to the observed temperature is relatively low. Both the root of GCV and the root-mean-square error of temperature are
smaller than those of the previous temperature gridded products. A comparison between our dataset and the Climate Research
Unit (CRU) TS4.02 dataset indicates that the CRU’s data overestimate the warming trend in China during 1961–1984, whereas
underestimate the warming trend during 1985–2015.

1 Introduction

When researchers study climate changes on a global or region-
al scale, they often use a regional average to analyze the char-
acteristics of variations (Jones and Briffa 1992). The global
temperature trend presented in all previous reports of the
Intergovernmental Panel on Climate Change (IPCC) is also
based on a gridded dataset of global surface temperature. For
the regions where the horizontal distribution ofmeteorological
stations is very non-uniform, a simple regional arithmetic

mean of observation data often assigns an excessive weight
to one area with denser stations, which may reduce the repre-
sentativeness of the regional mean. Therefore, performing
spatial interpolation from irregularly meteorological station
data to regularly gridded data can effectively reduce the influ-
ence of the unevenly distributed stations on the regional aver-
age (Cao et al. 2013). In addition, using the regularly gridded
data is more convenient for the evaluation of numerical
models compared with the irregularly station data.
Therefore, it is essential to interpolate station data onto regular
grid points.

Temperature is one of the most important meteorological
elements for studying regional and global climate changes,
and numerous studies on the gridding of temperature have
been performed. The US National Climate Data Center
(NCDC) developed a global gridded monthly historical tem-
perature dataset (GHCN) with a 5° × 5° spatial resolution
(Vose et al. 1992; Peterson and Vose 1997). The UK Climate
Research Unit (CRU) of the University of East Anglia,
Norwich, published multiple global historical climatic gridded
datasets with various resolutions (Harris et al. 2014; Brohan
et al. 2006; Jones et al. 2012). In addition, the US National
Aeronautics and Space Administration (Goddard Institute for
Space Studies, GISS) developed a global gridded temperature
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dataset with a spatial resolution of 2° × 2° (Hansen et al.
2010). Robert et al. (2005) constructed a gridded dataset of
global land surface air temperature (SAT) with a high horizon-
tal resolution using an interpolation method of the thin plate
spline (TPS). Nynke et al. (2009) also constructed a gridded
dataset of SATwith a high resolution across Europe using the
TPS interpolation method. However, these gridded datasets
contain limited observational station data in China. For exam-
ple, the CRU only used data at approximately 400 meteoro-
logical stations. Therefore, the resolution of the previous
gridded datasets is relatively low, and it is difficult to objec-
tively characterize temperature variations at a high horizontal
resolution in China.

In recent years, some scholars have used observation data
at dense meteorological stations to establish gridded surface
temperature datasets for China. For example, Li and Li (2007)
and Zhang et al. (2009) used observation data at approximate-
ly 700-1000 stations and the Kriging interpolation method to
develop a gridded temperature dataset with a resolution of
2.5° × 2.5° during 1951–2004 and with a 1° × 1° gridded tem-
perature dataset during 1951–2007, respectively. Yan et al.
(2005) also used observation data at 752 stations to develop
a monthly average gridded temperature dataset with a high
resolution of 0.01° × 0.01° during 1971–2000, but they did
not utilize more observation stations. Xu et al. (2009) further
constructed a gridded dataset of SATwith a horizontal resolu-
tion of 0.5° using approximately 700 station data and the TPS
method. Recently, Wu and Gao (2013) used temperature data
at about 2400 stations in China to develop a 0.25° × 0.25°
gridded temperature dataset.

Observation data in China are affected by the relocation of
meteorological stations, instrument changes, differences in
observation times and calculation methods, and urbanization,
which will probably cause inhomogeneities in long-term ob-
servation data series, particularly in temperature. This hetero-
geneity can cause deviations in the estimated long-term trends
in China, resulting in an uncertainty in the trends (Li 2011).
The temperature dataset developed by Wu and Gao (2013) is
based on the inhomogeneous dense station data in China.
Therefore, we constructed a gridded temperature dataset using
a homogenized SAT dataset at more than 2400 stations in
China that was recently developed by the National
Meteorological Information Center (NMIC) of China
Meteorological Administration. This homogenized tempera-
ture dataset is currently the best available dataset in China, and
it remarkably improves the integrity, quality, and temporal
heterogeneity of observation datasets (Ren et al. 2012; Cao
et al. 2016). As temperature is considerably affected by lati-
tude and elevation above sea level, we utilized the three-
dimensional (longitude, latitude, and elevation) TPS interpo-
lation method to develop a gridded monthly temperature
dataset with a horizontal spatial resolution of 0.5° in China
during 1961–2015 (hereafter China Homogenized Gridded

Temperature (CHGT) Dataset). In addition, we performed
cross-validation and error statistics to diagnose and analyze
interpolation errors and evaluated the uncertainty of the
gridded data. Finally, using the CHGT gridded temperature
dataset, we compared differences in climatic trends between
the CHGT and previous gridded datasets.

2 Data and methods

2.1 Data

We adopted the NMIC homogenized SAT dataset at more than
2400 surface meteorological stations in China (Cao et al.
2016). This dataset, including maximum (Tmax), mean (Tm),
and minimum (Tmin) temperatures, makes great improvement
in the integrity, heterogeneity, and quality of temperatures
through the following three steps. (1) By comparing the dig-
itized temperature data with the original paper-based records,
missing data at some stations due to the digitization of the
paper reports were supplemented, which increased the integ-
rity of the data. (2) By comparing the different versions of the
archived digitized data, the erroneous data in the original
dataset (including the metadata information) were corrected,
which improved the quality of the data (Ren et al. 2012). (3)
By the RHtest homogenization method (Wang and Feng
2010), the heterogeneity in SAT was assessed based on de-
tailed historical information at stations, and the heterogeneity
caused by non-natural factors was corrected at 55% stations,
in which the station relocation remains the primary cause of
the inhomogeneity. The varying trend in the homogenized
temperature is more reliable. For example, the original tem-
perature dataset shows an exceptionally large decreasing trend
in northeastern China that is incoherently nested in a large-
scale warming pattern. The homogenized dataset remarkably
improves the inconsistency (Cao et al. 2016).

The number of surface meteorological stations in China
rapidly increased from fewer than 200 stations in the early
1950s to approximately 2000 stations in the 1960s. After the
1960s, the number of stations increased, and the integrity of
the data is significantly improved (Fig. 1). Our statistical anal-
ysis indicates that from 1961 to 2015, there were 2484 nation-
al stations in China, with mean data missing rate of 5.5%. In
addition, there were no missing records at approximately 70%
stations, which implies the high integrity of the observation
data. Furthermore, the terrain varies considerably in China,
most of which is characterized by mountains and hills. The
observation stations are relatively dense in the middle and
lower reaches of the Yangtze River and northern China where
the terrain is relatively flat. There are fewer stations in moun-
tainous northeast China and in hilly southern China. There are
scarce stations in western China where there exists a large
topographical undulation and there are almost no observation
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stations in certain areas (Fig. 2). For example, in 2015, there
were 2207 surface meteorological stations in eastern China
(east of 100° E), while there were only 217 stations in western
China (west of 100° E). It is evident that the number of sta-
tions in the eastern area is ten times that in the western area.
Sinha (2006) found that the selection of a horizontal resolution
of a gridded product should fully consider the spatial density
of the observation station. Because this great difference in the
density of observation stations between the eastern and west-
ern areas may affect the representativeness of a regional aver-
age value, we took into account the spatial density of stations
and the coverage of grid points. Our analysis shows the dis-
tance between stations ranges from 5 to 70 km, with a mean
distance of 33.4 km. Therefore, we select a horizontal resolu-
tion of 0.5° for the gridded product. Based on the monthly
temperature data at surface meteorological stations during
1961–2015 and the TPS interpolation method with the terrain
features, we produced a gridded temperature data at a spatial
resolution of 0.5°. Specifically, using a global digital elevation

dataset with a resolution of 30 s (Global 30 Arc Second
Elevation Dataset, GTOPO30) and the bilinear method, we
generated a digital elevation model (DEM) with a resolution
of 0.5° over the mainland of China (Fig. 3), in which the DEM
was inputted into the interpolation model.

2.2 Interpolation method

2.2.1 Principles of the interpolation model

We used the ANUSPLIN software package version 4.4
(Hutchinson and Xu 2013) which implements the thin plate
spline (TPS) procedure described by Hutchinson (1995). The
TPS interpolation was developed primarily by Wahba and
Wendelberger (1980) and was applied to a climate analysis
by Hutchinson (1991). This method can provide better climat-
ic estimates by allowing for spatially varying dependence on
topography, directly estimating interpolation errors, and effi-
ciently diagnosing data errors (Hutchinson and Gessler 1994).

Fig. 2 Spatial distribution of the
missing rate of observation data at
surface meteorological stations in
China from 1961 to 2015

Fig. 1 Temporal curve of the
monthly number of surface
meteorological stations in China
from 1951 to 2015
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An underlying statistical model for a partial TPS with three
independent position variables (latitude, longitude, elevation)
is given as follows.

Zi ¼ f xið Þ þ bTyi þ ei i ¼ 1;…;Nð Þ; ð1Þ
where each xi is a three-dimensional vector of spline independent
variables, f is an unknown smooth function of the xi, each yi is a
three-dimensional vector of independent covariates, b is an un-
known three-dimensional vector of coefficients of the yi, and
each ei is an independent, zero mean error term with variance
wiσ2, where wi is termed the relative error variance (known) and
σ2 is the error variance which is constant across all data points,
but normally unknown (Hutchinson 1991). Themodel reduces to
an ordinary TPS model when there are no covariates (p= 0).

The function f and the coefficient vector b are determined
by minimizing

∑
N

i¼1

zi− f xið Þ−bTyi
wi

� �2

þ ρJm fð Þ; ð2Þ

where Jm( f ) is a measure of the complexity of f, the “roughness
penalty” defined in terms of an integral of mth-order partial de-
rivatives of f, and ρ is a positive number called the smoothing
parameter. As ρ approaches zero, the fitted function approaches
an exact interpolant. As ρ approaches infinity, the function f
approaches a least squares polynomial, with order depending
on the orderm of the roughness penalty. The value of the smooth-
ing parameter is normally determined by minimizing a measure
of predictive error of the fitted surface given by the generalized
cross-validation (GCV). The GCV also provides a predictive
error estimate of interpolation directly by removing each data
point in turn and summing the square of deviation between each
omitted value and the corresponding interpolation value.

The ANUSPLIN interpolation model has been extentively
applied in global studies (Hutchinson 1991; New et al. 1999;
Price et al. 2004; Hijmans et al. 2005; Yan et al. 2005; Xu et al.
2009), performed well compared with multiple interpolation
techniques (Hartkamp et al. 1999; Jarvis and Stuart 2001), and
is computationally efficient and easy to run.

2.2.2 Setting of model parameters

Themandatory input parameters in theANUSPLIN interpolation
model mainly include independent variables and the order of
spline, and the main optional parameter is the covariate. These
parameters are used to improve the weighting of variables, var-
ious variable transformations, or normalization (such as multiple,
square root, and natural logarithm transformations) (Hutchinson
and Xu 2013). Because temperature is considerably affected by
the elevation above sea level, following Willmott and Matsuura
(1995), the elevation along with longitude and latitude is treated
as an independent variable or covariate in themodel.Meanwhile,
in the ANUSPLIN interpolation model, we performed a trans-
formation of the elevation variable (that is, divided by 1000),
which thereby increased the role of the elevation relative to the
longitude and latitude independent variables (Hutchinson 1995;
Hutchinson 1998). Using the observed monthly mean tempera-
ture data in 1 year, we tested effects of different parameter com-
binations on interpolated results by treating the elevation as an
independent variable or a covariate and by selecting the order of
the spline (from two to four) and a transformation of the elevation
variable. By minimizing the GCV value or the root of GCV
(RGCV) and the signal-to-noise ratio (SNR) in the model, the
optimum parameters were determined (Liu 2008). Table 1 lists
the 12 parameter combinations of the interpolationmodel and the
interpolation error. A comparison indicates that the RGCVs and

Fig. 3 Digital elevation model
(DEM; unit: m) with a resolution
of 0.5° in China
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SNRs of parameter combinations 11 and 12 are the smallest.
Considering the influence of the spline order on the computation-
al efficiency, we selected three independent variables (longitude,
latitude, and elevation) and the cubic spline interpolation as the
optimum choice in the TPS model.

2.3 Data quality and evaluation criterion

The ANUSPLIN software package provides a set of statistical
parameters for measuring the interpolation error and accuracy. In
this study, RGCV, mean bias error (MBE), mean absolute error
(MAE), and root-mean-square error (RMSE) were used to

evaluate the errors of the gridded product. In particular, cross-
validation was conducted via a three-step process, that is, (1)
removing the observational temperature value at an observation
station, (2) interpolating the missing temperature at this station
from the remaining surrounding data based on the TPS method,
and (3) assessing the error between the observed and the inter-
polated values. The formulas of three error indices are as follows.

MBE ¼ 1

N
∑
N

i¼1
Pi−Oið Þ; ð3Þ

MAE ¼ 1

N
∑
N

i¼1
Pi−Oið Þj j; ð4Þ

Table 1 Combinations of different parameters in the interpolation model and the statistic errors

Sequence number Model parameters Interpolation error

Independent variables Covariate Transform of elevation Spline order RGCV (°C) SNR

1 Longitude and latitude No No 2 1.30 0.34

2 Longitude and latitude No No 3 1.31 0.33

3 Longitude and latitude No No 4 1.31 0.33

4 Longitude and latitude Elevation No 2 0.61 0.32

5 Longitude and latitude Elevation No 3 0.61 0.33

6 Longitude and latitude Elevation No 4 0.61 0.32

7 Longitude, latitude, and elevation No No 2 1.09 0.35

8 Longitude, latitude, and elevation No No 3 1.00 0.38

9 Longitude, latitude, and elevation No No 4 0.98 0.39

10 Longitude, latitude, and elevation No Yes 2 0.58 0.34

11 Longitude, latitude, and elevation No Yes 3 0.57 0.33

12 Longitude, latitude, and elevation No Yes 4 0.57 0.33
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
Pi−Oið Þ2;

s
ð5Þ

where Pi and Oi are the interpolated and original values, re-
spectively, and N is the number of samples in the statistical
analysis.

3 Evaluation of gridding performance

Figure 4 a shows the changes in the annual mean RGCVs
of Tm, Tmax, and Tmin from 1961 to 2015. These RGCVs
generally decreased in the 1960s and remained stable

since the 1970s. The RGCVs of Tm mainly vary in the
range of 0.5–0.6 °C, the RGCVs of Tmax are approximate-
ly 0.5 °C, and the range of RGCVs of Tm is 0.8–0.9 °C.
The annual mean RGCVs of Tm, Tmax, and Tmin are
0.57 °C, 0.51 °C, and 0.83 °C, respectively. Tmin shows
the largest variance in RGCVs, followed by Tm and Tmax,
which is associated with their mean square deviations
(SD) (figures not shown). We also calculated the annual
variation in the RGCV relative to the observed annual
mean temperature (hereafter MEAN). The ratios of the
Tm, Tmax, and Tmin RGCVs to the MEAN are generally
low, with the range of 4–5%, below 3%, and in the range
of 9–12%, respectively (Fig. 4b). These results suggest
that the RGCVs of Tm and Tmax are very small compared
with their temperatures, whereas Tmin has a relatively
large RGCV. Moreover, the Tm and Tmin RGCVs show
remarkable seasonal variations (Fig. 5), with the largest
value in winter, the moderate value in spring and fall, and
the smallest value in summer. The seasonal variation in
the Tmax RGCV is not distinct.

Figure 6 a, c, and e show the MBEs of Tm, Tmax,
and Tmin at more than 2400 stations from 1961 to 2015.
It is seen that the MBE is relatively low in general. On
the average, the MBE is ± 0.4 °C, ± 0.2 °C, and ±
0.6 °C for Tm, Tmax, and Tmin, respectively, and their
frequencies are 87.5%, 81.7%, and 82.8%, respectively.
Moreover, the MBE is not significant at most stations,
with significant MBEs at the 95% level only 1.8%,
2.0%, and 7.3% of the total number of stations for
Tm, Tmax, and Tmin, respectively. For Tm and Tmax, the
significant MBEs are mainly located in transition re-
gions with complex terrain, such as in the eastern and
southern parts of the Tibetan Plateau and the Yunnan-
Guizhou Plateau, and large MBEs are beyond 1 °C. For
Tmin, large MBEs are located in the Tianshan and
Taihang mountainous areas. Although the MBEs in
these mountainous regions are large, the differences be-
tween the fitted and observed values are generally
small, which implies a good performance of the inter-
polation model. Figure 6 b, d, and f show the spatial
distributions of Tm, Tmax, and Tmin RMSEs, respectively.
In general, the spatial distributions of the Tm and Tmax

RMSEs are similar and their RMSEs are generally be-
low 0.6 °C, with the frequencies of 88.2% and 94.0%,
respectively. The RMSE of Tmin is slightly higher than
those of Tm and Tmax, mainly ranging from 0.2 to
0.8 °C, with a frequency of 79%. Similar to the MBE,
relatively large RMSE between the fitted and observed
values is also mainly located in the mountainous re-
gions. This pattern is likely related to the relatively poor
spatial representativeness of the observation stations in
these regions. Thus, the interpolation model should be
further improved in these regions.
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We compared the interpolation error of the CHGT data
with the errors of the previous temperature gridded products.
For example, Yan et al. (2005) applied the TPS method to
interpolate temperature data at 752 stations in China onto reg-
ular grid points with a resolution 0.01° × 0.01° from 1971 to
2000 (hereinafter referred to as the Yan data). Our statistical
analysis shows that the SD difference in Tmax and Tmin be-
tween the CHGT (from 1961 to 2015) and Yan (from 1971
to 2000) datasets is between 0.8 and 1.5 °C (Fig. 7). The ratios
of the CHGT Tmax and Tmin RGCVs and RMSEs to the SD
values are clearly less than those of the Yan data. These results
indicate that the interpolation errors of the CHGT Tmax and
Tmin data are lower compared with the Yan results, suggesting
a higher quality of our gridded product. The higher quality is
attributed to the following reasons. (1) In the TPS interpola-
tion model of Yan et al. (2005), longitude and latitude are
treated as independent variables and the elevation is treated
as a covariate. In our interpolation model, the elevation is
treated as the independent variable rather than the covariate,
which can remarkably improve the quality of the interpolated
data. (2) Yan et al. (2005) used the observation data at fewer
stations to interpolate a high-resolution gridded data, while we
considered the station density in selecting the gridded data
resolution. Denser station data are used to interpolate the

gridded data at an appropriate resolution, which could also
have caused a better interpolation result.

4 Climatic warming in China according
to CHGT data

Based on the CHGT grid data, we calculated the linear trend of
the annual mean temperature series in China and also made a
comparison with the linear trend derived from the CRU TS4.02
data during the low-temperature period (1961–1984), the rapidly
warming period (1985–1997), and the slowly warming period
(1998–2015) (Fig. 8). In general, the regional mean CHGT tem-
perature over China shows a mean warming rate of 0.22 °C/
10 years for Tmax, 0.27 °C/10 years for Tm, and 0.38 °C/10 years
for Tmin during 1961–2015, while the CRU TS4.02 temperature
shows the warming trends as 0.17 °C/10 years for Tmax, 0.24 °C/
10 years for Tm, and 0.33 °C/10 years for Tmin. It is evident that
the CHGT data shows larger warming trends from 1961 to 2015.
Specifically, the CRU TS4.02 data overestimates the trend of
temperature in China during the low-temperature period and un-
derestimates the trend during the rapidly and slowly warming
periods. Moreover, during the slowly warming period, the ratio
of the difference (between the CRU and CHGT trends) to the

Fig. 9 Trends (unit: °C/10 years) of annual mean Tm (a, d, g), Tmax (b, e, h), and Tmin (c, f, i) in China, in which the left, middle, and right panels are
during 1961–1984 (a–c), 1985–1998 (d–f), and 1999–2015 (g–i)
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CHGT temperature was the greatest, especially for Tmax, with a
ratio of 333%. During the rapidly warming period, the ratio was
the smallest. During the slowly warming period, the CHGT
warming trend is 0.04 °C/10 years in China. After 1998, the
CHGT Tmax is showing a trend of − 0.03 °C/10 years while the
CHGT Tmin continued to increase (but with a small rate of
0.15 °C/10 years).

Figure 9 shows the distribution of the annual mean tendency
for Tm, Tmax, and Tmin. A warming trend generally occurred
across the most parts of China from 1985 to 1998, with a larger
warming trend in eastern China than in western China.
Moreover, temperature exhibited downward trends in northern
China, the middle and lower reaches of the Yangtze River, and
some of southern China from 1961 to 1984. The warming trend
is clearly lower in eastern China than in western China from
1999 to 2015 (Li et al. 2009; Zhao et al. 2014; Sun et al.
2018). Thus, owing to the unevenly distributed stations in
China, the simple regional arithmetic average of the station data
is biased to the feature in eastern China, and thewarming trend in
China based on the gridded data appears to be more reasonable.

Our results are further compared with those of the gridded
data based on a small number of observation stations.
Figure 10 shows the trends in seasonal and annual mean temper-
atures obtained by Li et al. (2015). They used 545 stations in
China (referred to as the Li data) and the CRU TS4.02 data.
Except for Tm and Tmax in spring and Tmin in winter, the
CHGT warming trends in seasonal and annual mean tempera-
tures in China generally exceed those from the Li and CRU
datasets. This difference is particularly high in summer and fall,
in which Tmax and Tmin in summer are higher by more than 20%
for Li data. In fall, the difference is even higher by more than
40% for the CRU data, which may be due to more stations used
in our product, especially in the northern and western parts of
China. Additionally, to reduce the influence of urbanization on
observation environments, many stations were moved from ur-
ban to rural areas. Therefore, the relocation of observation sites
usually causes a non-climatic, decreasing trend bias in the unad-
justed temperature series (Trewin 2013; Cao et al. 2016).

Finally, we compared the warming trend in China with that of
the globe estimated by the CRUTEM4 dataset (Morice et al.
2012). The changes in Chinese and global mean temperatures
are generally consistent, but the warming trend is larger in China
than in the globe (Fig. 11). In particular, from 1985 to 1997, the
global warming rate was 0.24 °C/10 years, while the warming
rate was 0.4 °C/10 years in China. However, after 1998, the
global warming rate (0.16 °C/10 years) exceeded that in China
(0.04 °C/10 years).

5 Conclusions

In this study, using the homogenized temperature data at more
than 2400 surface meteorological stations in China, we

constructed a gridded temperature dataset with a horizontal
resolution of 0.5° from 1961 to 2015. By testing different
combinations of parameters in the interpolation model, we
selected the optimum three-dimensional parameters (longi-
tude, latitude, and elevation), developing a fitting curve sur-
face for temperature in China, which considerably reduced the
uncertainty and error caused by the interpolation. Our evalu-
ation shows that the annual mean GCV values of Tm, Tmax,
and Tmin are 0.57 °C, 0.51 °C, and 0.83 °C, respectively, and
are small relative to the observations. Comparing our results
with those of Yan et al. (2005), we found that our error is
smaller, with a higher reliability. This improvement could be
attributed to the optimum setting of our interpolation parame-
ters, the increase of the station data, and the selection of an
appropriate spatial resolution.

We used the CHGT data to further analyze the warming trend
in China from 1961 to 2015. Since 1961, temperature has expe-
rienced a three-stage variation, that is, a low-temperature period
(1961–1984), a rapidly warming period (1985–1997), and a
slowly warming period (1998–2015). The CHGT temperature
in China shows a mean warming rate of 0.22 °C/10 years for
Tmax, 0.27 °C/10 years for Tm, and 0.38 °C/10 years for Tmin
from 1961 to 2015. Generally, the CHGT temperature shows
larger warming trends compared with the CRU TS4.02 data.
Specifically, the CRUTS4.02 data overestimated the temperature
trend in China during the low-temperature period and
underestimated the temperature trend during the rapidly and
slowly warming periods. These differences are due to the usage
of both the homogenized high-density station data and the TPS
interpolation method in this study.

Compared with previous temperature trends based on few
observation stations in China, our trends are generally higher,
particularly in fall. Compared with the global warming trend
from 1961 to 2015, the overall warming rate in China is great-
er. After 1998, the warming trend suspended in China
(0.04 °C/10 years). Meanwhile, Tmax in China also suspended
(− 0.03 °C/10 years), while Tmin continued to increase (but
with a slower rate of 0.15 °C/10 years).
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