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Abstract A new approach for rigorous spatial analysis of
the downscaling performance of regional climate model
(RCM) simulations is introduced. It is based on a multi-
ple comparison of the local tests at the grid cells and is
also known as ‘field’ or ‘global’ significance. The block
length for the local resampling tests is precisely determined
to adequately account for the time series structure. New
performance measures for estimating the added value of
downscaled data relative to the large-scale forcing fields
are developed. The methodology is exemplarily applied to
a standard EURO-CORDEX hindcast simulation with the
Weather Research and Forecasting (WRF) model coupled
with the land surface model NOAH at 0.11◦ grid resolution.
Daily precipitation climatology for the 1990–2009 period is
analysed for Germany for winter and summer in comparison
with high-resolution gridded observations from the German
Weather Service. The field significance test controls the
proportion of falsely rejected local tests in a meaningful
way and is robust to spatial dependence. Hence, the spa-
tial patterns of the statistically significant local tests are also
meaningful. We interpret them from a process-oriented per-
spective. While the downscaled precipitation distributions
are statistically indistinguishable from the observed ones
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in most regions in summer, the biases of some distribu-
tion characteristics are significant over large areas in winter.
WRF-NOAH generates appropriate stationary fine-scale cli-
mate features in the daily precipitation field over regions of
complex topography in both seasons and appropriate tran-
sient fine-scale features almost everywhere in summer. As
the added value of global climate model (GCM)-driven sim-
ulations cannot be smaller than this perfect-boundary esti-
mate, this work demonstrates in a rigorous manner the clear
additional value of dynamical downscaling over global cli-
mate simulations. The evaluation methodology has a broad
spectrum of applicability as it is distribution-free, robust to
spatial dependence, and accounts for time series structure.

1 Introduction

Climate change not only affects temperature statistics but
also the hydrological cycle. It is expected to have a strong
influence on ecosystems and human activities (Trenberth
et al. 2003; Schär et al. 2004; O’Gorman and Schneider
2009; Hartmann et al. 2013). Therefore, climate projections
and their uncertainty estimates need to be characterised and
improved. Global climate models (GCMs) are the primary
source of climate change information, but have a limited
resolution due to computational constraints. At the same
time, impact assessment requires information on much finer
scales. Downscaling methods serve the purpose of translat-
ing the coarse GCM information to regional or local spatial
and correspondingly finer temporal scales. Downscaling
with nested regional climate models (RCMs) is the com-
putationally most parsimonious physically based approach,
which has been shown to perform equally well (Laprise
2008; Rummukainen 2010). RCMs showing skill at region-
alising past climate are considered to be applicable also
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under different climate conditions in the future. Therefore,
evaluating hindcast simulations against observation-based
products is essential. Systematic biases caused by internal
RCM physics or the nesting procedure can only be isolated
by reanalysis-driven simulations. These so called perfect-
boundary experiments have minimum large-scale biases and
hence perform better than GCM-driven simulations (e.g.,
Christensen et al. 1997; Pan et al. 2001). In this sense, they
yield upper bounds for the RCM skill. Particularly relevant
is the ability of an RCM to generate appropriate fine-scale
climatological features. It is quantified by the relative skill
against the large-scale forcing and is known as added value
(Laprise 2008; Di Luca et al. 2012). Due to the data assim-
ilation, reanalyses excel GCM runs and hence are harder to
outperform. Therefore, perfect-boundary evaluation yields
a lower bound of the added value that the same RCM can
have in a GCM-driven setting (Prömmel et al. 2010).

Within the recent EU-funded projects PRUDENCE
(Christensen and Christensen 2007) and ENSEMBLES (van
der Linden and Mitchell 2009), RCMs with grid resolu-
tions of 20–50 km were evaluated for the European region.
A systematic evaluation of perfect-boundary RCM simu-
lations driven by the ERA-Interim reanalysis is a priority
of the Coordinated Regional climate Downscaling EXperi-
ment (CORDEX) (Giorgi et al. 2009). Its European branch,
EURO-CORDEX, focusses on hindcast simulations at hor-
izontal grid resolutions of 0.44◦ (∼ 50 km) and 0.11◦
(∼ 12 km) (e.g. Kotlarski et al. 2014; Katragkou et al. 2015).

RCM performance is quantified by statistical measures
also known as performance metrics. Relative versions of
these metrics allow comparison of RCM skill against that
of the large-scale forcing data. Despite being direct objec-
tive measures of added value, relative performance metrics
are still underapplied. Most previous works estimate the
relative skill by comparing domain-aggregated scalar evalu-
ation statistics and/or by visually inspecting the fields of the
evaluation statistics for the downscaled and the larger-scale
driving data (e.g. Duffy et al. 2006; Feser 2006; Sotillo et
al. 2006; Buonomo et al. 2007; Sanchez-Gomez et al. 2009;
Prömmel et al. 2010; Di Luca et al. 2012; Kendon et al.
2012; Cardoso et al. 2013; Chan et al. 2013; Pearson et al.
2015 Torma et al. 2015), which affects the fidelity of spatial
analysis of added value or wholly precludes it. Winterfeldt
and Weisse (2009) and Vautard et al. (2013) apply few rel-
ative metrics only for individual locations, and Winterfeldt
et al. (2011) and Dosio et al. (2015) on a gridpoint basis.

As performance measures are subject to sampling vari-
ability, they should be physically interpreted only after
the accompanying sampling uncertainty has been quanti-
fied. Within the frequentist approach to statistical inference
(Jolliffe 2007), this can be done via confidence intervals,
which is the popular approach (e.g. Elmore et al. 2006;
Buonomo et al. 2007; Sanchez-Gomez et al. 2009; Kendon

et al. 2012; Chan et al. 2013) or more directly via hypoth-
esis testing as in, e.g. Duffy et al. (2006) and Cardoso
et al. (2013). Most evaluation studies estimate statistical
significance for domain-aggregated scalar measures (e.g.
Feser 2006; Sanchez-Gomez et al. 2009; Kendon et al.
2012; Cardoso et al. 2013; Pearson et al. 2015), thus avoid-
ing spatial analysis of the statistical significance. Others
estimate statistical significance (grid)point-wise, but take
neither multiplicity nor spatial autocorrelation of test statis-
tics into account (e.g. Duffy et al. 2006; Buonomo et al.
2007; Winterfeldt and Weisse 2009; Winterfeldt et al. 2011;
Chan et al. 2013; Katragkou et al. 2015).

The purpose of this study is to introduce a new approach
for rigorous spatial analysis of downscaling performance
and extend the arsenal of relative performance metrics. The
methodology is exemplarily applied to a standard EURO-
CORDEX run at 0.11◦ grid resolution with the WRF-
NOAH model system (Warrach-Sagi et al. 2013a) over
the territory of Germany, where high-resolution gridded
observation data products are available.

More specifically, we employ distribution-based evalu-
ation statistics and their relative versions to quantify the
downscaling skill against the driving reanalysis. Our prior-
ity is to study in more detail the spatial structure of model
performance as represented by the spatial patterns of grid
cell statistics. We propose general formulae for deriving
relative versions of performance metrics. Many of the rel-
ative measures are new or applied for the first time in the
context of RCM added value analysis. Following the more
direct hypothesis testing approach, at each grid cell we esti-
mate the p value for each test statistic in a Monte Carlo
framework. The problem of multiplicity is solved by deter-
mining the ‘field’ significance (e.g. Livezey and Chen 1983;
Ventura et al. 2004; Wilks 2006a) as implemented by the
false discovery rate (FDR) approach of Benjamini and
Hochberg (1995). As FDR is generally more powerful and
robust to spatial correlations than alternative multiple com-
parison methods (Wilks 2006a), it provides a more mean-
ingful spatial pattern of local rejections. We refer to the lat-
ter as the spatial pattern of statistical significance. It includes
the locations at which the values of evaluation statistics are
in breach with the null hypothesis, that is, which are highly
unlikely to have occurred by chance. The analysis focusses
on these patterns rather than on the magnitudes of the eval-
uation statistics as is conventionally the case. Finally, we
suggest a process-oriented interpretation of the spatial and
seasonal patterns of model skills and deficiencies. To the
best of our knowledge, this is the first application of the con-
cept of field significance in the context of RCM evaluation.

The first part of this paper (Ivanov et al. 2017; hence-
forth referred to as Part I) analyses monthly temperature
fields. It demonstrates that in most cases, the downscaled
distributions are statistically indistinguishable from the
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observed ones and that the fine-scale features generated
in the monthly temperature field over regions of complex
topography are appropriate. This study is devoted to daily
precipitation in essentially the same evaluation set-up. The
selection of an appropriate blocklength for the local resam-
pling tests for daily data is nontrivial and based on an
exploratory analysis of the observed autocorrelation struc-
ture. Also, there are additional evaluation statistics for the
distribution of precipitation on wet days. Section 2 reviews
the methodology. In Section 3, for the reader’s convenience,
we again review the landscape, then discuss the precipita-
tion climate of Germany and finally, introduce the data sets.
Results are discussed in Section 4. Section 5 summarises the
main findings of the study.

2 Evaluation methodology

We review the evaluation methodology with emphasis on
the new aspects for daily precipitation. For more general
details, the reader is referred to Part I.

2.1 Evaluation statistics

The overall similarity between the modelled and observed
distributions is quantified by the Perkins score (Perkins et al.
2007). As it measures the common area below the two prob-
ability density functions (PDFs), its perfect value is 1. The
bin width of 2 mm/day is based on the Sturges algorithm
(Sturges 1926). Dry days constitute a separate bin, formally
0–1 mm/day.

We consider differences between characteristics of simu-
lated and observed distributions, which we refer to as addi-
tive biases. More specifically, these are the bias of the mean
seasonal precipitation and biases of characteristics of the
wet-day precipitation distribution. The latter are commonly
also referred to as measures of conditional precipitation
intensities as they are conditional on the occurrence of a
wet day. In particular, the mean, 10th, 50th, and 90th per-
centiles on wet days are used to quantify the conditional
intensities of mean, light, moderate, and heavy precipitation,
respectively. Conditional intensities depend not only on the
respective absolute intensities but also on the frequency of
wet days: for fixed absolute intensities, more wet days entail
lower conditional intensities and vice versa (Schär et al.
2016). Of course, the perfect value of additive biases is 0.

The frequency bias score for a precipitation intensity cat-
egory is the ratio between the number of events belonging
to the category in the downscaling and in the observations.
The thresholds for the categories are defined by observed
percentiles of the 1980–2009 wet-day precipitation clima-
tology. In the following, X% stands for the Xth observed
climatological percentile. We use the quartiles as thresholds

to define the ‘moderate’ (25–75%) category, the median
for the ‘stronger-than-moderate’ (>50%) category, and the
deciles for the ‘light’ (<10%) and ‘heavy’ (>90%) cate-
gories. We also consider a wet-day frequency bias, where
the threshold of 1 mm/day separates the ‘dry-day’ from the
‘wet-day’ category. The perfect value of these scores is 1.
As the event frequencies are calculated from the whole sam-
ple (not just from the wet days), they only depend on the
absolute precipitation intensity (Schär et al. 2016). There-
fore, when interpreting the spatial patterns on the maps,
it is instructive to compare biases of wet-day percentiles
to biases of the wet-day frequency and of the correspond-
ing event frequency. The categories of the <10, >50, and
>90% events correspond to the 10th, 50th, and 90th wet-
day percentile, respectively. If a wet-day intensity bias does
not spatially coincide with a favourable wet-day frequency
bias, then it cannot be an artefact of misrepresented wet-day
frequency, and is hence caused by misrepresented absolute
intensities. For example, if the 90th wet-day percentile is
overestimated but the wet-day frequency is not underesti-
mated, it can be concluded that the overestimation of the
90th wet-day percentile is due to an increase of the abso-
lute intensity of heavy precipitation. Vice versa, if a wet-day
percentile bias does not spatially coincide with a favourable
bias of the corresponding event frequency, then it is linked
to a misrepresented wet-day frequency. For example, if the
90th wet-day percentile is overestimated, but the frequency
of the >90% category is not, then the overestimation of
the 90th wet-day percentile should be an artefact of an
underestimated wet-day frequency.

For each of these measures of absolute performance (i.e.
against the observations), we calculate the corresponding
relative performance metric that quantifies the added value
against the driving large-scale data. The relative versions of
the dimensionless metrics (Perkins score, frequency biases)
are defined as follows:

Mrel = |Mref − Mperf| − |M − Mperf|, (1)

and of the dimensional (the wet-day percentile biases) as

Mrel = 1 − |M − Mperf|
|Mref − Mperf| , (2)

where Mrel is the relative measure, M is the value of the
measure for the downscaling, Mperf is the perfect value of
the measure, and Mref is the value for the large-scale driving
data. The relative metrics are dimensionless and have a no-
skill value of 0; their positive values indicate positive added
value and vice versa.

2.2 Estimating statistical significance

Local tests The null distributions of the evaluation statis-
tics are estimated non-parametrically at each grid cell by
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means of permutation tests that are distinct for the abso-
lute and the relative metrics. The null hypothesis is that
two samples are identically distributed: the observations and
downscaling for the absolute tests and the downscaling and
driving reanalysis for the relative tests. For example, in the
case of a relative test, the downscaled and ERA-Interim data
are pooled together and two samples are randomly drawn
out of the pool without replacement employing the efficient
permutation algorithm suggested in Wilks (2006b). One of
the synthetic data batches thus drawn is labelled ‘WRF-
NOAH sample’ and the other ‘ERA-Interim sample’. From
these two samples and the observations, an artificial value
for the respective relative test statistic is calculated. The pro-
cess is repeated 1999 times to generate the null distribution
of the statistic. The nominal value of the statistic, which
is computed from the original data samples, is compared
against its null distribution to obtain the respective p value.
For the Perkins score, which can be maximum 1, we test
against the one-tailed alternative of smaller values. The rest
of the tests are implemented two-tailed using the equal-tail
bootstrap p value (e.g. Davidson and MacKinnon 2007).

This would be a complete description of the resampling
if the data were independent. As we work with time series,
this is not the case. The distribution of statistical estimators
based on dependent data heavily depends on the joint dis-
tribution of the observations (Léger et al. 1992). In effect,
this means that each bootstrap resample of the original data
must be a sample from that joint distribution. However, clas-
sical bootstrap shuffles the original data and destroys this
structure, which can distort the bootstrap distribution of the
statistic. The idea of block resampling methods is to shuffle
blocks of contiguous data values instead of individual val-
ues, so that the dependence structure of the original series is
preserved. The problem of selecting the appropriate block-
length L is nontrivial. It must be large enough to ensure that
the temporal autocorrelation structure in the original series
is retained and also that data values separated by a time
period of length L or more are essentially independent. As
Léger et al. (1992) point out, the choice ‘requires an edu-
cated guess based on studying the data more deeply’. Tests
are oversized, i.e. liberal, if the blocklength L is too small,
and lose power, i.e. are conservative, if L is too large (Wilks
2006b). In the Appendix, we show that the blocklength of
L = 28 days preserves the intraseasonal lag autocorrela-
tions in observed daily precipitation. This choice warrants
relatively conservative tests, which is consistent with our
leitmotif of only isolating the strongest effects.

Field significance Assume that each of the local tests is
performed at a significance level of α% and that in reality
all tests are insignificant. If the map consisted of an infinite
number of grid cells, the test results at which were unre-
lated, then the proportion of tests that would come up as

significant by chance would tend to exactly α%. In prac-
tice, however, the number of tests is finite and the tests are
dependent because of spatial autocorrelations. Each of these
effects renders the proportion of local tests erroneously
detected as significant substantially larger than α% (Livezey
and Chen 1983). As we need interpretable spatial patterns,
this is not tolerable. To ensure that no more than α% of the
tests are significant by chance, we have to impose a smaller
significance level to them. This is known as the problem of
multiplicity (e.g. Katz and Brown 1991), which is solved
by the so called multiple comparison or field/global signif-
icance tests. The null hypothesis of the latter, also called
global null hypothesis, is that all local tests are true. Here,
we determine field significance after the false discovery
rate (FDR) approach of Benjamini and Hochberg (1995),
which is one of the most powerful multiple comparison
tests. It controls the FDR, which is the expected proportion
of the rejected local tests that are actually insignificant. The
robustness of this test to spatial dependence (Ventura et al.
2004) renders it directly applicable to spatial fields. The spa-
tial pattern of local rejections it yields is meaningful. We
work at the 5% level of global significance.

Subregional analyses Testing field significance in German
subregions (see Section 3.1) is expected to reveal more
regional detail. This is because the global test tends to
become more permissive when the number of local tests
decreases (see Part I). To make the results for the different
subregions comparable, we use the same blocklength L = 28
for all of them. This also ensures that the tests are rather
conservative. We only mention subregional testing in case it
reveals new features and qualitatively modifies results.

3 Climatology of Germany and data sets

3.1 Landscape and climatology of Germany

Landscape Figure 1 shows a topographical 2′ × 2′ map
of Germany with the major landforms and cities labelled.
The landscape of Germany can be divided into three dis-
tinct parts, from north to south namely North German
Lowlands, Central German Uplands, and South Germany.
The terrain in the North German Lowlands is flat and
mostly below 100 m above mean sea level. The East and
North Frisian Islands as well as Germany’s largest island
of Rügen are also part of the Lowlands. The Central Ger-
man Uplands consist of plateaus and low mountain ranges
separated by river valleys. Some of the most conspicu-
ous elevations are the Eifel (747 m), Hunsrück (816 m),
Rothaar (843 m), Taunus (879 m), Rhön (950 m), Harz
(1142 m), Fichtel (1051 m), and Ore Mountains (1215 m)
as well as the Thuringian (982 m), Bavarian (1121 m), and
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Fig. 1 Topographical map of Germany. The 2′ gridded relief (ETOPO
2v2g, http://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html) as well
as the rivers, shore-, and borderlines (GSHHG: the Global Self-
consistent, Hierarchical, High-resolution Geography Database, http://
www.ngdc.noaa.gov/mgg/shorelines/shorelines.html) data are avail-
able on the web site of the US National Oceanic and Atmospheric

Administration. Height in metres above mean sea level is plotted
in colour scale; cities are displayed as red dots; rivers, shore-, and
borderlines—as blue, black, and red curves, respectively. Some major
forms of relief are labelled in black, water bodies in blue, and cities
in red. The grey lines define the NW, NE, SW, SE German subregions
(see text), which are labelled in white

Bohemian (1456 m) Forests. South Germany has complex
terrain with middle and high mountain ranges separated by
river valleys and plateaus. Here belong the Black Forest
(1493 m), the Swabian Jura (1015 m), and the Bavarian
Alps (2962 m).

An idea about the dominant soil types in Germany can
be obtained from the right panel of Fig. 2. It displays
the most recent soil texture data base for Europe covering

all soil textures of WRF based on the Harmonised World
Soil Database and the German soil survey for Germany
(Milovac et al. 2014); the original 1-km resolving data set
was upscaled to the WRF-NOAH grid using the default
nearest-neighbour interpolation scheme of the WRF Pre-
processing System (WPS). Sandy soils predominate in the
North German Lowlands, clays in South Germany along
river valleys, and loamy soils in the rest of the country.
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Fig. 2 Dominant soil category in WRF-NOAH, based on the 5-km
resolution FAO data (left panel) and in the most recent 1-km resolving
soil texture data base for Europe developed at the Institute of Physics

and Meteorology (IPM) of UHOH (right panel). Black contour lines
display the WRF-NOAH orography; rivers, shore-, and borderlines are
shown as blue, black, and red lines, respectively

Climatology Precipitation in Germany develops in a pre-
dominantly westerly flow, associated with frontal systems
in winter and convective processes in summer (Wulfmeyer
et al. 2011). The North is subject to marine influence
from the North and Baltic Seas. The climatology of mean
seasonal precipitation for the 1989–2009 period is shown
in Fig. 3. In winter, mean precipitation decreases gener-
ally from west (2–3 mm/day) to east (1–2 mm/day); west
slopes and tops of mountains are isolated wetter areas
(3–6.5 mm/day), while east slopes and river valleys are
affected by rain shadows (∼1 mm/day). In summer, precip-
itation tightly follows the topography, lowlands and river
valleys being drier (1.5–2.5 mm/day) and elevated areas
wetter (2.5–5 mm/day); particularly strong is the orographic
enhancement of precipitation over the Fore-Alps and the
west slopes of the Black Forest (5–10.5 mm/day); the North
Sea influence makes the North Coast relatively wetter (2.5–
3.5 mm/day). As seen, precipitation is larger in summer than
in winter. Correspondingly, its temporal variability, as quan-

tified by the spread of the wet-day distribution, is from 1–2
to about 5–6 mm/day larger in summer (not shown).

Subregions To get into more detail, we divide Germany’s
projection on the WRF-NOAH grid into four semi-equal
rectangular parts by means of the 4.89◦W meridian and
0.55◦N parallel, visualised on the geographic projection of
Fig. 1 as grey lines. The resulting subregions are labelled
north-west (NW), north-east (NE), south-west (SW), and
south-east (SE) Germany.

3.2 Data

Observations The observation-based daily precipitation
data are a rasterised product of the German Weather Ser-
vice (Deutscher Wetterdienst, DWD). They are derived after
the REGNIE (REGionalisierung der NIEderschlagshöhen)
methodology from data at weather stations (DWD 2009)
and have a spatial resolution of approximately 1 km over
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Fig. 3 Mean precipitation in winter (left panel) and summer (right panel) for the 1989–2009 period. Black contour lines display the WRF-NOAH
orography; rivers, shore-, and borderlines are shown as blue, black, and red lines, respectively

Germany. The temporal resolution is daily, from 06 to
06 GMT. The climatological (1961–1990) monthly mean
undercatch of the German precipitation gauges used in the
REGNIE data ranges from 5.6% in July in very protected
locations below 1000 m in South Germany up to 33.5%
in February below 700 m at non-protected gauges in East
Germany (Richter 1995).

Reanalysis The ERA-Interim reanalysis (Dee et al. 2011)
of the European Centre for Medium-Range Weather Fore-
casts (ECMWF) is used to drive the RCM simulation. For
the evaluation, we use 6-hourly total precipitation, projected
on a grid of 0.6◦×0.6◦ from the original Gaussian reduced grid.

WRF-NOAH simulation The object of this study is a stan-
dard EURO-CORDEX evaluation simulation with WRF-
NOAH, provided by the University of Hohenheim (UHOH)
(Warrach-Sagi et al. 2013a). The WRF model version 3.3.1
is run with the land surface model NOAH (Chen and Dudhia
2001a, b) for a hindcast evaluation over the period 1987–
2009. The model operates one-way nested over the standard
EURO-CORDEX domain on a rotated longitude-latitude

grid with horizontal resolution of 0.11◦ × 0.11◦ (EUR-11).
The vertical is described by 50 layers up to 20 hPa. The
simulation is driven by the 6-hourly ERA-Interim reanalysis
at the lateral boundaries and daily sea surface temperature
data also from the reanalysis. The relaxation zone around
the model domain is 30 grid cells wide and the model
time step is 60 s. The physical package includes the Mor-
rison two-moment microphysics scheme (Morrison et al.
2009), the Yonsei University atmospheric boundary layer
parameterisation (Hong et al. 2006), the Kain-Fritsch-Eta
Model convection scheme (Kain 2004), and the Community
Atmosphere Model (CAM) shortwave and longwave radia-
tion schemes (Collins et al. 2004). Soil moisture and tem-
perature profiles were initialised on 1st January 1987 from
ERA-Interim after interpolation to the NOAH model. The
WPS uses the 30′′ land-cover data form the Moderate Reso-
lution Spectroradiometer (MODIS), classified according to
the International Geosphere-Biosphere Programme (IGBP).
The soil textures are from the 5′ data of the Food and Agri-
culture Organization of the United Nations (UN/FAO). To
reduce at least some spin-up effects that may distort the
model results, the analysis starts in the winter of 1989/1990.
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We use 3-hourly model output fields of total precipitation.
We note that Vautard et al. (2013) and Kotlarski et al. (2014)
evaluated this simulation as a part of the EURO-CORDEX
RCM ensemble for Europe on a 25-km scale.

3.3 Data processing

The DWD observations and ERA-Interim reanalysis were
transformed by quadratic inverse-distance-weighted inter-
polation to the WRF-NOAH grid with an interpolation
radius of 11 and 50 km, respectively. After the spatial regrid-
ding, from the WRF-NOAH and ERA-Interim outputs we
built data sets for daily precipitation sums, from 06 to 06
GMT on the next day. To ensure equal numbers of years
for all seasons and to avoid putting months belonging to the
same winter season into different years, we investigate the
20-year period 1st December 1989–30th November 2009.
To avoid the drizzling effect, we define days with precipita-
tion below 1 mm/day as dry days, setting the corresponding
precipitation values to 0 in all data sets after the interpola-
tion to the WRF-NOAH grid. The 1-mm/day threshold has
been shown to remove drizzle discrepancies between obser-
vations and models and is standard in climate impact-related
research (e.g. Kjellström et al. 2010).

Note that we estimate the added value of the downscaling
relative to the large-scale driving reanalysis interpolated on
the RCM grid. This preserves the high-resolution climate fea-
tures, which are our primary interest. The same approach is
followed, e.g. in Sotillo et al. (2006) and Winterfeldt et al.
(2011).

4 Results and discussion

In the following, we generalise evaluation results as a (sys-
tematic) dry/wet bias when most of the considered pre-
cipitation intensity and frequency characteristics are under-
/overestimated. The terms under-/overprediction refer to
the frequency bias. Also, precipitation intensities are meant
absolute (rather than conditional) unless stated otherwise.
Therefore, biases of conditional precipitation intensities are
discussed only if they are indicative of biases of the respective
absolute intensities and are not merely an artefact of wet-
day frequency biases. For brevity, we only show results for
winter (DJF) and summer (JJA). We note that due to the
higher local temporal variability of daily precipitation in
summer, the bootstrap sampling variability of the test statis-
tics is also larger in summer. Therefore, in summer, the devia-
tion of a statistic from its expected value under the null must
be correspondingly larger than in winter to be significant.

4.1 Basic diagnostics

Prior to the spatial analysis, to get an overall impres-
sion of the model performance, we pool the gridpoint data
together and visually compare the empirical probability
density (PDFs) and wet-day cumulative distribution (CDFs)
functions of the observations and the model data.

The PDFs are shown in Fig. 4. The probability axes
are logarithmic to facilitate the visualisation of the very
small probabilities for heavy precipitation events. Results
for whole Germany are shown in Fig. 4a. In both sea-
sons, WRF-NOAH is generally closer to reality than ERA-
Interim. The Perkins score indicates that while in winter
WRF-NOAH has no general skill over ERA-Interim in
terms of reproducing the daily precipitation PDFs (both
models have a score of 92%), in summer the downscal-
ing excels (99% for WRF-NOAH against 88% for ERA-
Interim). However, the Perkins score is not sensitive to
heavy precipitation events, because they occur more rarely
and contribute less to the PDFs. For this purpose, the log-
arithmic PDF representation comes in handy: WRF-NOAH
clearly better reproduces the probability densities of precip-
itation events above about 21 mm/day (heavy precipitation)
in both seasons. ERA-Interim performs overall better in
winter than in summer, whereas the opposite is true for
WRF-NOAH. The reanalysis overforecasts wet days and
precipitation amounts up to 11 mm/day (light-to-moderate
precipitation), more pronounced in summer, and underpre-
dicts heavy precipitation. In winter, WRF-NOAH also over-
forecasts wet days and light-to-moderate precipitation and
underforecasts heavy precipitation. In summer, it closely
follows the observations.

Similar conclusions can be drawn for the four subregions
from their PDFs shown in Fig. 4b, c for winter and summer,
respectively. Some new aspects are revealed about WRF-
NOAH. In winter, the overprediction of light-to-moderate
precipitation amounts is most pronounced in NE Germany,
and the underprediction of heavy precipitation in SE Ger-
many. In summer, contrary to the general tendency, wet
days are underpredicted in the North, particularly in NW
Germany; heavy precipitation tends to be overpredicted
in the West, particularly in the SW, and underpredicted
in the East.

The corresponding wet-day cumulative distribution func-
tions displayed in Fig. 5 shed light on the overall representa-
tion of the conditional precipitation intensity. ERA-Interim
strongly underestimates all precipitation quantiles. WRF-
NOAH largely solves this problem in summer, but in winter,
the improvement is negligible. However, in summer, pre-
cipitation quantiles are still underestimated in SE Germany.

246



Field significance of performance measures. Part2: precipitation

Precipitation (mm/day)

P
ro

ba
bi

lit
y 

D
en

si
ty

 (
%

/(
m

m
/d

ay
))

0.0001

0.01

1

100

0 20 40 60 80 100

S=92%

S=92%

Winter

0 20 40 60 80 100

S=88%

S=99%

Summer

Obs ERA−Interim WRF−NOAH

(a)

Winter

Precipitation (mm/day)

P
ro

ba
bi

lit
y 

D
en

si
ty

 (
%

/(
m

m
/d

ay
))

0.0001

0.01

1

100

0 20 40 60 80 100

S=91%

S=93%

SW

0 20 40 60 80 100

S=91%

S=93%

SE

0.0001

0.01

1

100

S=94%

S=91%

NW

S=92%

S=90%

NE

Obs ERA−Interim WRF−NOAH

(b) Summer

Precipitation (mm/day)

P
ro

ba
bi

lit
y 

D
en

si
ty

 (
%

/(
m

m
/d

ay
))

0.0001

0.01

1

100

0 20 40 60 80 100

S=88%

S=97%

SW

0 20 40 60 80 100

S=87%

S=96%

SE

0.0001

0.01

1

100

S=88%

S=97%

NW

S=89%

S=99%

NE

Obs ERA−Interim WRF−NOAH

(c)

Fig. 4 Probability density functions and Perkins score S of daily pre-
cipitation for Germany (left panel: winter, right panel: summer) (a),
the German subregions (see text) for winter and summer, respectively

(b) and (c), from the DWD observations (black), ERA-Interim reanal-
ysis (green), and WRF-NOAH simulation (red). Dry days formally fall
into the 0–1-mm/day category, the bin size is otherwise 2 mm/day

Because of the underprediction of wet days, the lowermost
nonzero absolute percentiles in NW Germany in summer
are underestimated; hence, the lowermost conditional per-
centiles are also underestimated.

4.2 Absolute performance

Figure 6a shows the quality of representation of the local
PDFs as measured by the Perkins score, Fig. 6b the bias

of mean seasonal precipitation, and Fig. 6c the biases of
selected characteristics of the wet-day distribution. Figure 7a
displays the frequency biases of wet days and Fig. 7b of
light, moderate, stronger-than-moderate, and heavy precipi-
tation events. As seen, the significant grid cells are usually a
small number and concentrated in specific regions (coastal
areas, windward/lee sides, mountain tops, river valleys, ket-
tles, etc). Thus, they form clear spatial patterns, which can
be linked to physical processes known to have the same
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Fig. 5 Cumulative distribution functions of daily precipitation on wet
days for Germany (left panel: winter, right panel: summer) (a), the
German subregions (see text) for winter and summer, respectively (b)

and (c), from the DWD observations (black), ERA-Interim reanalysis
(green), and WRF-NOAH simulation (red). The bin size is 2 mm/day

geographic and seasonal fingerprint for the respective dis-
tribution characteristic. Generally, the downscaling has a
systematic and significant dry bias over tops and lee sides
of mountains and hills as well as in the Bavarian Alps,
and a wet bias over windward sides, in deep river valleys,
some areas in NE Germany, and over the plateau of Upper
Swabia. The north coast has a dry summer and wet winter
bias.

As noted in Section 2.1, a comparison of the signifi-
cance patterns of biases of conditional intensities (Fig. 6c)

with the frequency bias of the wet-days (Fig. 7a) and of
the corresponding precipitation categories (Fig. 7b) should
reveal whether biases of conditional intensities are caused
by biases of the respective absolute intensities or are an arte-
fact of wet-day frequency biases. In most areas, biases of
wet-day percentiles are indeed consistent with biases of the
corresponding precipitation categories. Notable exceptions
are the underestimated conditional intensities of moderate
and heavy precipitation over the Lowlands and the north-
east coast in winter (Fig. 6c, third and fourth panel on the
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Fig. 6 Selected distribution-based performance measures of daily pre-
cipitation simulated by WRF-NOAH in comparison to high-resolution
observations from the DWD: Perkins score (left panel: winter, right
panel: summer) (a), mean bias (left panel: winter, right panel: sum-
mer) (b), and biases of some wet-day distribution characteristics

(upper panels: winter, lower panels: summer) (c). A grid cell is plotted
only if the respective test is locally significant at the 5% level of field
significance. Black contour lines display the WRF-NOAH orography;
rivers, shore-, and borderlines are shown as blue, black, and red lines,
respectively
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Fig. 7 Frequency biases of daily precipitation categories defined by
observed wet-day percentiles (X% stands for the Xth percentile) for the
1980–2009 climatological period: ‘wet-day’ category (left panel: win-
ter, right panel: summer) (a), and ‘light’, ‘moderate’, ‘stronger-than-
moderate’, and ‘heavy’ (from left to right) precipitation categories in
winter (upper panels) and summer (lower panels) (b), simulated with

WRF-NOAH in comparison to high-resolution observations from the
DWD. A grid cell is plotted only if the respective test is locally signif-
icant at the 5% level of field significance. Black contour lines display
the WRF-NOAH orography; rivers, shore-, and borderlines are shown
as blue, black, and red lines, respectively
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upper row), which are caused by the strong overprediction
of wet days (Fig. 7a, left panel).

The dominant patterns of local significance are consis-
tent with the analysis of the overall distributions in Section 4.1:
in winter the overprediction of wet days (Fig. 7a, left panel)
and light (Fig. 7b, first panel on the upper row) at the
expense of heavy precipitation (Fig. 7b, fourth panel on
the upper row) and the underestimation of conditional pre-
cipitation intensities (Fig. 6c, upper panels), in summer
the underestimation of lowermost conditional percentiles in
NW Germany (Fig. 6c, second panel on the lower row), the
overestimation of heavy precipitation characteristics in the
West, particularly SW, and underestimation in the East, par-
ticularly SE (Figs. 6c and 7b, fourth panel on the lower row).
For most evaluation measures, the non-rejecting area is con-
siderably larger in summer than that in winter, which is also
consistent with the better overall performance in summer as
inferred in Section 4.1. Only for the biases of mean seasonal
precipitation (Fig. 6b) and the conditional intensity of light
precipitation (Fig. 6c, second column), the non-rejecting
area is almost equal in the two seasons.

4.2.1 Discussion

The major spatial and seasonal patterns of absolute down-
scaling performance are now discussed in detail.

(1) In winter, wet days and light precipitation events are
significantly overpredicted over almost whole Ger-
many, while in summer, mainly over regions of com-
plex topography (Fig. 7a and first column of Fig. 7b).

Overprediction of wet days and light precipitation
is a common problem of state-of-the-art mesoscale cli-
mate models and is known to be more pronounced
in winter (Frei et al. 2003; Feldmann et al. 2008;
Kjellström et al. 2010; Heikkilä et al. 2011; Warrach-
Sagi et al. 2013b; Marteau et al. 2014). In winter, it
occurs virtually everywhere, which points to a link
to the large-scale scheme. Its significance in summer
mainly over complex topography indicates a link to
the representation of convection. Indeed, Kendon et al.
(2012) compared a very high-resolution (1.5 km) and
a state-of-the-art (12 km) RCM simulations over a
region of the United Kingdom and showed that the
overprediction of wet days and light precipitation is
considerably reduced in the 1.5-km simulation. They
attributed the issue to the convection parameterisation
scheme, but, like Marteau et al. (2014), recognised that
the large-scale scheme also has a significant contri-
bution. Over flat areas, in summer, large-scale biases
do not leave a significant footprint on the simulated
distributions because they should be masked by the
larger variability.

(2) Certain areas in NE Germany and the plateau of Upper
Swabia tend to have a wet bias. In NE Germany,
in winter, overpredicted occurrence of precipitation
(Fig. 7a, left panel) and of light, moderate as well
as stronger-than-moderate precipitation events (Fig. 7b,
first, second, and third panel on the upper row) leads
to larger seasonal precipitation amounts (Fig. 6b, left
panel) and distorts the PDFs (Fig. 6a, left panel). In
summer, the conditional intensity of moderate precip-
itation is overestimated (Fig. 6c, third panel on the
lower row); a more detailed analysis reveals that it is
indicative of overestimated absolute intensity, as it spa-
tially coincides with overestimated frequency of wet
days and stronger-than-moderate events, both of which
are not statistically significant. In Upper Swabia, pre-
cipitation occurrence (Fig. 7a) and moderate precipita-
tion events (Fig. 7b, second column) are overpredicted
in both seasons; in winter, light (Fig. 7b, first panel on
the upper row) and in summer, moderate and stronger-
than-moderate precipitation events (Fig. 7b, second and
third panels on the lower row) are also overpredicted;
the PDFs are distorted in both seasons (Fig. 6a).

Warrach-Sagi et al. (2013b) have documented the
wet bias of WRF-NOAH in NE Germany and attribute
it to inconsistencies in the FAO soil texture data
(Warrach-Sagi et al. 2008). Indeed, the FAO soil tex-
ture map, shown in the left panel of Fig. 2, contains
loam over a large area, whereas, according to the
most recent UHOH soil data base (Fig. 2, right panel),
NE Germany is dominated by sandy soils. Likewise,
according to the FAO data, the soil texture in Upper
Swabia is loam, while the new data indicates sandy
loam. Loamy soils imply more soil water availability for
evapotranspiration, which is a primary moisture sup-
ply source for the atmospheric boundary layer. This
in turn could account for the enhanced WRF-NOAH
precipitation.

(3) The north coastal areas stand out with specific precipi-
tation biases, which can be summarised as a systematic
wet winter bias, most pronounced over the west coast
of the Jutland Peninsula and the north coast of the
Rügen Island (Figs. 6b and 7a, left panels; Fig. 6c, first
panel on the upper row, and Fig. 7b, upper row), and
a systematic dry summer bias, most pronounced at the
east part of the Jutland Peninsula and the east Frisian
islands (Figs. 6b and 7a, right panels; Figs. 6c and 7b,
second and third panels on the lower rows). Correspond-
ingly, the PDFs are distorted all over the north coast in
winter and over the east part of the Jutland Peninsula
and the East Frisian islands in summer (Fig. 6a).

In Part I, we saw that the winters are too warm
and summers too cold in these areas. Furthermore, the

251



M. Ivanov et al.

wet bias in winter, when the zonal circulation is most
intense, is the strongest at the windward side of the
coast. These consistent patterns point out to potential
problems in the representation of atmospheric pro-
cesses at the sea-land transition zone. For instance,
an exaggerated low-level convergence of the westerly
flow that impinges on the coast, in summer combined
with a too intense sea-breeze circulation, could be
the culprits. However, until further research is done,
these suggestions remain speculative. Note that in
their study of the same simulation, Kotlarski et al.
(2014) detect the German north coast as a part of a
large area in North Europe with a dry summer bias,
which they speculatively attribute to the cloud micro-
physics scheme. Our objective and conservative anal-
ysis methodology spatially confines the significantly
biased area only along the coast and thus suggests a
link to processes at the sea-land transition.

(4) In both seasons, there is a systematic wet bias over
west slopes of mountains and hills, in winter accom-
panied by a systematic dry bias over east slopes;
these biases are most pronounced for characteristics of
stronger-than-moderate and heavy precipitation (Figs. 6b,
c and 7); the PDFs are correspondingly distorted over
windward slopes in winter (Fig. 6a, left panel).

This is the spatial pattern of enhanced orographic
forcing, known as the ‘windward-lee effect’, which
is a common deficiency of state-of-the-art mesoscale
weather and climate models (Feldmann et al. 2008;
Schwitalla et al. 2008; Bauer et al. 2011; Wulfmeyer
et al. 2011; Marteau et al. 2014). As very high-
resolution models that explicitly resolve convection do
not have this deficiency, convection schemes should
be the cause. Parameterising deep convection leads to
misplaced low-level convergence lines and does not
account for moving convective cells and advection of
hydrometeors. This eventually leads to misplaced loca-
tion of deep convection and hence of precipitation
(Schwitalla et al. 2008; Wulfmeyer et al. 2011; Bauer
et al. 2011). Obviously, the drying effect over east
slopes does not appropriately scale in summer and is
masked by the larger variability.

(5) In summer, there is a systematic dry bias over moun-
tains and hills, most pronounced for characteristics of
stronger-than-moderate and heavy precipitation (Figs. 6c
and 7b, second, third, and fourth panels on the lower
rows), and the PDFs are correspondingly distorted
(Fig. 6a, right panel).

The specific spatial pattern of underrepresented
heavy precipitation events points to problems with the
convection scheme. Note that the ERA-Interim-driven
simulations of Chan et al. (2013) and Marteau et al.
(2014) document overestimation in summer. The fact

that other RCM implementations of similar horizon-
tal resolution (the primary differences between which
concern the parameterisation of subgrid processes)
show a reverse effect also supports this interpreta-
tion. Indeed, convection-permitting simulations (e.g.
Schwitalla et al. 2008; Chan et al. 2013; Torma et al.
2015) demonstrate a substantial improvement of heavy
and peak precipitation intensities in the summer season.

(6) The Bavarian Alps stand out with a systematic dry, and
deep river valleys and kettles with a systematic wet
bias in both seasons (Fig. 6b, c; Fig. 7a, b, second,
third, and fourth columns). The biases mostly concern
characteristics of moderate, stronger-than-moderate,
and heavy precipitation. Note that the overprediction
of moderate precipitation events in the Bavarian Alps
in summer (Fig. 7b, second panel on the lower row)
is at the expense of stronger-than-moderate and heavy
events (Fig. 7b, third and fourth panels on the lower
row). These biases lead to a significant misrepresenta-
tion of the PDFs (Fig. 6a).

The elevation of the Bavarian Alps in WRF-NOAH
is generally underestimated, while the elevations of
deep river valleys and kettles, including such in the
Bavarian Alps, are overestimated (see e.g. Fig. 9a in
Part I). An underestimated orographic forcing due to
the still too coarse spatial resolution of orography
might at least partially account for the observed biases
in these regions: weaker upslope flows in the Bavarian
Alps and weaker rain shadowing in the deep valleys.

(7) The larger non-rejecting area in summer for most mea-
sures indicates that the performance of WRF-NOAH is
overall better in summer than in winter. The biases of
mean seasonal precipitation (Fig. 6b) and the intensity
of light precipitation (Fig. 6c, second column) do not
exhibit seasonal dependence.

In winter, the daily precipitation field is predomi-
nantly determined by synoptic-scale processes, so that
the biases over spatially homogeneous regions can
only be due to misrepresentation of the large scales. In
summer, biases are found exclusively over regions of
complex topography, so they are due to misrepresented
fine-scale surface forcings; over spatially homoge-
neous regions, the generated small-scale variability
masks potential weak large-scale biases.

The fact that the downscaling performance with
respect to mean seasonal precipitation is comparable
in winter and summer, despite the large-scale biases
in winter, suggests existence of compensating large-
scale biases in winter. Which these are, is already
clear: too frequent light precipitation events, but with
underestimated intensity.

Although the intensity of light precipitation in sum-
mer is underestimated only over areas with localised
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Fig. 8 As Fig. 6 but for the respective relative measures, quantifying the added value of WRF-NOAH against ERA-Interim

253



M. Ivanov et al.

surface forcings, the total significant area is compara-
ble to that in winter, when underestimation is observed
over spatially homogeneous regions as well. This indi-
cates more widespread underestimation of light pre-
cipitation in regions with localised surface forcings in
summer, which suggests a link to the parameterisa-
tion of deep convection. The latter is indeed known to
produce too widespread precipitation with underesti-
mated intensity (e.g. Schwitalla et al. 2008; Kendon
et al. 2012).

The better overall performance of the downscaling
in summer is in line with the results for the 10-km
GCM-driven simulation of Feldmann et al. (2008) for
South-West Gemany. Note that Marteau et al. (2014)
draw the opposite conclusion from their 8-km ERA-
Interim-driven simulation for a region in East France.
However, their analysis focusses on seasonal averages,
for which we not find seasonality of the downscaling
performance.

(8) The wet winter bias (Fig. 6b, left panel; 6c, first panel
on the upper row; Fig. 7a, left panel; and Fig. 7b,
upper row) is a well-recognised problem of RCM sim-
ulations for Central Europe, the causes of which are
still an object of discussion (e.g. Feldmann et al. 2008;
Kotlarski et al. 2014 Katragkou et al. 2015).

In these studies, the areas of model biases are large
and therefore often not directly interpretable. Kot-
larski et al. (2014) and Feldmann et al. (2008) only
plot biases exceeding in absolute value 10% of the
observed seasonal mean precipitation. Such bound-
aries alleviate the problem but are still subjective and
therefore do not necessarily lead to meaningful spatial
patterns. Katragkou et al. (2015) calculate statistical
significance locally by means of a t test, implicitly
assuming normally distributed independent monthly
means. Furthermore, they do not account for test multi-
plicitly, which entails that an intolerably large propor-
tion of the significant tests could be due to chance and
hence not interpretable. In turn, the methodology we
demonstrate is distribution-free, accounts for the time
series structure and test multiplicity, and is robust to
spatial autocorrelations. Thus, it objectively picks out
the grid cells to interpret, of which only 5% on average
are mistaken. The specific spatial patterns immediately
point to issues like processes at the sea-land transi-
tion zone, the windward-lee effect, large-scale biases
of precipitation occurrence, and misrepresented soil
textures behind the wet winter bias.

4.3 Relative performance

Figure 8 shows the relative versions of (a) the Perkins
score (1), (b) the mean seasonal precipitation (2), and (c)

biases of selected characteristics of the wet-day distribu-
tion (2). Figure 9 displays the relative frequency biases
of (a) wet days (1) and (b) light, moderate, stronger-than-
moderate, and heavy precipitation events (1). These results
reveal the spatial patterns of the significant added value
with respect to the different distribution characteristics.
Again, these patterns comprise specific geographical areas,
which allows us to link the added value to the respective
improved/deteriorated physical processes that have the same
geographic and seasonal fingerprint on the respective dis-
tribution characteristic. Generally, in winter, positive added
value is concentrated in regions of complex topography,
whereas in summer, it is detectable over considerably larger
areas, for many performance metrics also over flat terrain.
Negative added value with respect to some of the metrics
occurs in winter over the west part of the Jutland Penin-
sula, lee sides of mountains and hills, as well as some areas
in NE Germany, and in summer over the north coast, the
Bavarian Alps, in deep river valleys, and some areas in
NE Germany.

Like the absolute biases, in most cases, the relative
biases of conditional intensities are predominated by rela-
tive biases of the respective absolute intensities (compare
Fig. 8c, second, third and fourth columns, against Fig. 9a
and b, first, third and fourth columns, respectively). A
notable exception is the improved conditional intensity of
heavy precipitation over most of the north coast and the
Lowlands (without the region to the west of the Lüneburg
Heath) in summer (Fig. 8c, fourth panel on the lower row),
which is rather caused by the improved wet-day frequency
(Fig. 9a, right panel) than absolute precipitation intensity
(Fig. 9b, fourth panel on the lower row).

For most measures, the area of significant improvement
is larger in summer than in winter, which is in line with
the impression from Section 4.1 for a higher relative skill
in summer. Notable exceptions are again the mean seasonal
precipitation (Fig. 8b) and the conditional intensity of light
precipitation (Fig. 8c, second column).

4.3.1 Discussion

Before we turn to a detailed analysis of relative perfor-
mance, we briefly review the current state of knowledge
about the potential and limitations of regional climate mod-
elling with focus on daily precipitation.

As discussed in Part I, an RCM can potentially add value
only with respect to physical variables, climate statistics,
regions, and seasons, for which there is fine-scale variabil-
ity. The latter consists of a stationary component, induced
by small-scale stationary surface forcings, and a transient
component that is physically linked to small-scale tran-
sient processes. The stationary component is present only
over regions with localised stationary surface forcings, no
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Fig. 9 As Fig. 7 but for the respective relative measures, quantifying the added value of WRF-NOAH against ERA-Interim

matter of the season or temporal scale considered. The tran-
sient component can potentially be present anywhere in all
seasons, but is only detectable at fine temporal scales.

In winter, the control exerted by the driving lateral
boundary fields over midlatitude domains like ours is
strong because of the intense zonal flow that ‘flushes’ the
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model domain, sweeping away any internally generated
transient processes; precipitation is generated by synoptic-
scale processes, and mesoscale phenomena, except over
regions with local-scale surface forcings, are also infre-
quent. Consequently, fine-scale variability in winter is pre-
dominantly stationary, and hence, only found over regions
with localised surface forcings. Contrariwise, in summer,
the slower atmospheric circulation entails a reduced lat-
eral boundary forcing, which means more freedom for the
RCM to spontaneously generate transient fine-scale fea-
tures (e.g. Caya and Biner 2004; Feldmann et al. 2008;
Lucas-Picher et al. 2008); daily precipitation is largely gen-
erated by small-scale transient processes like convection.
Consequently, transient fine-scale variability in summer is
considerable, which entails that fine-scale variability exists
even over regions without localised surface forcings, that is,
virtually everywhere (e.g. Di Luca et al. 2012).

Fine-scale surface forcings for daily precipitation are all
factors that directly or indirectly affect moisture sources and
vertical velocities in the boundary layer, e.g. complex orog-
raphy, strong horizontal gradients of surface roughness and
of sensible and latent heat fluxes due to sea-land transi-
tion or change of land-use type, mountain and sea-breeze
circulations in summer.

Now, we can proceed to a detailed discussion of the
spatial and seasonal patterns of relative performance.

(1) Over complex orography like mountains and hills as
well as deep river valleys and kettles, most precipita-
tion statistics are improved (Fig. 8a, b, left panel, c,
first, third and fourth columns, Fig. 9).

Stationary surface forcings for precipitation are localised
in such regions, so there is fine-scale variability, and
hence, added value can be expected throughout the
year. WRF-NOAH obviously develops appropriate
fine-scale climatological features in response to such
forcings. More detailed analysis (not shown) reveals
that the improvement consists mainly in compensat-
ing ERA-Interim’s dry bias in convex and wet bias in
concave topography forms.

(2) In some areas in NE Germany, there is deterioration in
winter with respect to the mean precipitation (Fig. 8b, left
panel), the frequency of wet days (Fig. 9a, left panel), and
stronger-than-moderate precipitation events (Fig. 9b,
third panel on the upper row) as well as the overall
PDFs (Fig. 8a, left panel).

A comparison with the spatial patterns of absolute
performance reveals that these are the regions with wet
bias, which we attributed to misrepresented soil tex-
tures. Although evapotranspiration is more intense in

summer, the biases related to it are insignificant as they
are partly masked by the larger variability.

(3) In winter, over the parts of the north coast exposed to
the westerlies (the west coast of the Jutland Peninsula
and the north-east coast), most precipitation statistics
are deteriorated (Fig. 8a, b, left panels and c, first
panel on the upper row; Fig. 9a, left panel and b,
third and fourth panels on the upper row); improve-
ment is detectable over the coastal lee regions (Fig. 8c,
first, third and fourth panels on the upper row and Fig. 9b,
fourth panel on the upper row). In summer, many pre-
cipitation statistics are improved nearly everywhere
along the north coast (Fig. 8a, right panel, c, first and
fourth panels on the lower row, Fig. 9a, right panel
and b, second panel on the lower row); still, there is
deterioration almost all over the coast with respect to
the frequency of stronger-than-moderate events (Fig. 9b,
third panel on the lower row), over the east part of the
Jutland Peninsula with respect to the mean seasonal
precipitation (subregionally significant, not shown),
and over the north-west coast with respect to the inten-
sity (Fig. 8c, second panel on the lower row) and
frequency (Fig. 9b, first panel on the lower row) of
light precipitation.

A more detailed analysis reveals that the added
value in both seasons is due to the alleviated ERA-
Interim systematic dry bias and reduced overprediction
of wet days in the respective areas. The improve-
ment can be explained by the better description of the
induced quasi-stationary fine-scale processes. The pat-
tern of negative added value coincides with that of
the WRF-NOAH absolute biases. This further empha-
sises the importance of an improved description of
processes at the sea-land transition zone.

(4) In winter, over lee sides of mountains and hills, the
downscaling deteriorates characteristics of moderate,
stronger-than-moderate, and particularly heavy precip-
itation (Fig. 8c first, third, and fourth panels on the
upper row; Fig. 9b, fourth panel on the upper row).
This is obviously related to the windward-lee effect.
The latter does not lead to deterioration over wind-
ward slopes because there it is weaker than the dry
ERA-Interim bias (not shown).

(5) Outside of regions with fine-scale stationary surface
forcings, such as flat areas far from coastal zones,
added value is present in summer, but not in winter.
The improvement is with respect to the overall PDFs
(Fig. 8a) and the frequencies of wet days (Fig. 9a),
light, moderate, and stronger-than-moderate precipita-
tion (Fig. 9b, first, second, and third columns). The
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improvement of the 90th wet-day percentile (Fig. 8c,
fourth panel on the lower row) was already attributed
to improved wet-day frequency rather than intensity of
heavy precipitation.

As already discussed, in summer, transient fine-
scale variability, respectively potential added value,
exists everywhere, inclusively over spatially homoge-
neous areas. These results indicate that over spatially
homogeneous areas the WRF-NOAH downscaling
makes a good use of the higher potential to gen-
erate consistent fine-scale climatological features in
summer.

(6) In summer, the frequencies of wet days (Fig. 9a, right
panel), moderate (Fig. 9b, second panel on the lower
row), and heavy precipitation events (Fig. 9b, fourth
panel on the lower row) as well as the intensity of
heavy precipitation (Fig. 8c, fourth panel on the lower
row) are deteriorated over the highest parts of the
Bavarian Alps; the frequency of heavy precipitation is
deteriorated in deep river valleys (Fig. 9b, fourth panel
on the lower row); in the Bavarian Alps also the overall
PDFs are worsened (Fig. 8a, right panel).

These deficiencies are linked to underestimated
orographic forcing, as already discussed.

(7) The area of positive added value is generally larger in
summer than in winter, whereas that of negative added
value tends to be larger in winter (Figs. 8 and 9).

In summer, as already discussed, there is transient
fine-scale variability, which allows for added value
even over areas without localised surface forcings.
In winter, the deteriorations are due mostly to weak
large-scale biases that are easier to detect as the vari-
ability is smaller than in summer. Notable exceptions
are the mean seasonal precipitation (Fig. 8b), which is
locally improved only in winter and only over complex
orography, and the intensity (Fig. 8c, second column)
of light precipitation, which is deteriorated in sum-
mer over the north-west coast. As already discussed
in Part I, monthly averaging eliminates the transient
variability. Hence, added value with respect to mean
seasonal precipitation can be expected in both sea-
sons, but only over regions with localised surface
forcings; in summer, the improvement is masked by
the larger variability. The amplified underestimation of
light precipitation over the north-west coast in summer
is attributable to an exaggerated sea-breeze circulation.

(8) The region to the west of the Lüneburg Heath is spa-
tially homogeneous, but stands out with an improved
intensity of heavy precipitation in summer (Figs. 8c
and 9b, fourth panels on the lower rows).

As discussed in Part I, this is an isolated area of
enhanced marine influence. Its specific topography is
captured by WRF-NOAH but not by ERA-Interim.

5 Conclusions

A new methodology for rigorous spatial analysis of the
downscaling performance of regional climate simulations
is introduced. It is based on a multiple comparison of the
local test results by means of the false discovery rate (FDR)
approach. Controlling the proportion of falsely rejected tests
in a meaningful way and being robust to spatial dependence,
the FDR method reveals an interpretable spatial pattern of
local rejections. The latter is referred to as the spatial pat-
tern of statistical significance. It includes the locations at
which the values of evaluation statistics are highly unlikely
to have occurred by chance. A novelty of the study is that it
focusses on this pattern rather than on the magnitudes of the
evaluation statistics. Indeed, high deviations of the values
of evaluation statistics from their expected values under the
null are not necessarily statistically significant, and small
deviations are not necessarily insignificant, because statis-
tical significance depends also on the variability. A small
deviation at a location with small variability may be sig-
nificant, whereas a high deviation at a location with high
variability might be insignificant. The sampling uncertainty
of the local evaluation statistics is rigorously estimated via
a block permutation procedure, which is free of distribu-
tion assumptions. The block length is precisely determined
so as to adequately account for the time series structure and
yield slightly conservative tests that detect only the strongest
effects. New quantitative metrics for the added value relative
to the driving large-scale field are developed.

The methodology is exemplarily applied to evaluate the
winter and summer climatology of daily precipitation for
the 1990–2009 period from a standard EURO-CORDEX
simulation with WRF-NOAH at 0.11◦ grid resolution over
Germany. It objectively selects the interpretable grid cells,
of which only 5% on average are mistaken. The specific
spatial patterns of statistical significance can be hypotheti-
cally linked to physical processes known to have the same
geographic and seasonal fingerprints for the respective per-
formance measure.

In summer, in most regions, the downscaled distributions
are statistically indistinguishable from the observed ones. In
winter, there are measures that indicate significant biases in
most regions. In particular, the overprediction of wet days
and light precipitation events over almost whole Germany in
winter is related to the large-scale scheme, while in summer,
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it occurs mainly over regions of complex topography and
is attributable to the convection parameterisation. The sys-
tematic wet bias in North-East Germany and the plateau of
Upper Swabia is attributable to a misrepresentation of soil
textures: loamy instead of sandy soils entail a richer mois-
ture supply source for the atmospheric boundary layer. Over
the north coastal areas, biases in winter point to a misrep-
resentation of the low-level convergence of the westerlies at
the sea-land transition zone, in summer possibly superposed
on an exaggerated sea-breeze circulation. The windward-
lee effect due to the parameterisation of deep convection is
found in both seasons. The convection parameterisation in
summer leads to underestimated intensity and occurrence
of heavy precipitation. Underestimated orographic forcing
due to the still too coarse spatial resolution of orography
is at least partially responsible for the systematic dry bias
over the Bavarian Alps and wet bias in concave orogra-
phy. Weak large-scale biases are significant over spatially
homogeneous regions in winter, but in summer, are masked
by the larger variability, which makes the overall perfor-
mance of WRF-NOAH better in summer. Exceptions are the
mean seasonal precipitation, which does not exhibit a sea-
sonal dependence owing to compensating large-scale biases
in winter as well as the intensity of light precipitation due to
the convection parameterisation in summer.

The general wet bias in winter and the dry bias along
the north coast in summer were detected in the analysis of
the same simulation in Kotlarski et al. (2014). However, in
that study, the areas of model biases are large and therefore
often not directly interpretable. Our objective and slightly
conservative evaluation methodology spatially confines the
significantly biased areas to specific geographic regions,
which facilitates their interpretation.

The direct measures for added value, many of which
newly developed, reveal the spatial patterns of significant
improvement/deterioration with respect to different distri-
bution characteristics. Again, these patterns comprise spe-
cific geographic areas, which allows us to link them to the
respective improved/deteriorated physical processes. The
orographic modification of precipitation is improved in both
seasons over regions of complex orography. However, dete-
riorations are detected in North-East Germany in winter due
to the wet bias, probably related to misrepresented soil tex-
tures. In coastal areas, there is performance gain from the
better description of fine-scale surface forcings, but there
are also deteriorations attributable to the misrepresented
processes at the sea-land transition zone. The windward-lee
effect in winter and the underestimated orographic forc-
ing in summer also lead to negative added value locally.
Over spatially homogeneous areas, WRF-NOAH makes a
good use of the higher potential to generate consistent fine-
scale transient processes in summer. The area of positive
added value is larger in summer than in winter, because

in summer, there is transient fine-scale variability, which
allows for improvements even over areas without localised
surface forcings. Exceptions are again mean seasonal pre-
cipitation and the characteristics of light precipitation. In
summer, the former is not improved even over complex
orography because it is masked by the larger variability, and
the latter is deteriorated over the north-west coast due to the
misrepresented processes at the sea-land transition zone.

This ‘perfect-boundary’ evaluation suggests that the
WRF-NOAH downscaling system generates appropriate
stationary fine-scale climate features in the daily precip-
itation field over regions of complex topography in both
seasons and appropriate transient fine-scale features vir-
tually everywhere in summer. As the added value in a
climate projection context cannot be smaller than this
perfect-boundary estimate, our analysis demonstrates in
a rigorous manner the clear additional value of dynami-
cal downscaling over global climate simulations. The new
evaluation methodology has a broad spectrum of applicabil-
ity to future climate simulations, including ensemble runs,
owing to the fact that it is distribution-free, robust to spatial
dependence, and accounts for time series structure.
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Appendix: Choice of the blocklength L

We are only interested in intraseasonal autocorrelations.
Assuming that the maximum time lag, at which an intrasea-
sonal autocorrelation can be reliably estimated, is equal to
about 20% of the season length, we consider the set K of
eligible time lags from k = 1 to k = 18 days. What is the
minimum blocklength that preserves the 18 lagged autocor-
relations over the spatial domain? Figure 10 schematises
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Fig. 10 Determining lmin(i, k), the bootstrap blocklength that pre-
serves the lag-k autocorrelation r(k) at grid cell i, as the minimum
resampling blocklength for which the resulting 95% confidence inter-
val of r(k) contains the nominal value of r0(k)

our implementation of Elmore et al.’s (2006) idea. At each
grid cell i ∈ I and for each time lag k ∈ K, we calculate
the 95% bootstrap percentile confidence intervals (Wilks
2006b) for increasing values of the bootstrap blocklength
l, until the blocklength lmin(i, k), for which the corre-
sponding bootstrap confidence interval contains the nominal
autocorrelation value ro(k). In order to mimic real weather
situations, the randomisation at all grid cells must be syn-
chronised. At each blocklength the bootstrap distribution
consists of 1999 replications. Tests confirmed that this sam-
ple size ensures stable final estimates of L. The permutation
blocklength is determined as L = max

i∈I,k∈K
lmin(i, k). Note

that the procedure takes twice the maximum, once over the
spatial domain I and once over the eligible autocorrelation
lags K. This choice ensures that at all grid cells the tempo-
ral autocorrelation structure represented by the first 18 lag
autocorrelations will be maintained by the bootstrap. The
resulting tests are rather conservative, so that the possibility
of incorrectly rejecting the null hypothesis is minimal. This
suits our purpose to isolate only the strongest effects.

We thus determine the permutation blocklength L sepa-
rately for winter and for summer. Note that the seasonal data

series, strictly speaking, are not real time series. Actually,
there is a data gap of 9 months between, e.g. the winters of
two consecutive years. Still, the seasonal data series have
autocorrelation structure that must be accounted for by the
bootstrap. In winter, L = 25 days is the minimum block-
length that keeps the autocorrelations at lags of 15, 16, and
18 days, while in summer L = 28 days and is required by
the lags of 16 and 18 days. It seems counterintuitive that
the blocklength L for summer is larger than that for win-
ter. This is because temporal serial correlations of daily
precipitation are known to be generally higher in winter
than in summer, and stronger serial dependence entails a
larger blocklength that can account for it (e.g. Wilks 2006b).
A more detailed analysis reveals that for 88% of the grid
cells the blocklength lmin that preserves the first 18 lagged
temporal autocorrelations is indeed larger in winter than
in summer. There are, however, few locations, mainly at
the North-West coast and the Weserbergland, that require
larger blocklengths in summer than in winter. Taking the
maximum lmin over all grid cells in Germany results in
an overall blocklength estimate L that is larger is summer
than in winter. Actually, lmin = 28 is required at few grid
cells at the North-West coast in summer. A more in-depth
investigation why in these cases the required blocklength is
so large is beyond the scope of this paper. To enable a direct
comparison between the winter and summer results, we use
the larger value, i.e. L = 28 days for both seasons, so that
the permutation procedures become identical. This is also in
consistence with the leitmotif of only isolating the strongest
effects, which entails adherence to relatively conservative tests.
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Meijgaard E, Nikulin G, Patarčić M, Scinocca J, Sobolowski S,
Suklitsch M, Teichmann C, Warrach-Sagi K, Wulfmeyer V, Yiou P
(2013) The simulation of European heat waves from an ensemble
of regional climate models within the EURO-CORDEX project.
Clim Dyn 41(9-10):2555–2575. doi:10.1007/s00382-013-1714-z

Ventura V, Paciorek CJ, Risbey JS (2004) Controlling the pro-
portion of falsely rejected hypotheses when conducting multi-
ple tests with climatological data. J Clim 17(22):4343–4356.
doi:10.1175/3199.1

Warrach-Sagi K, Wulfmeyer V, Grasselt R, Ament F, Simmer C
(2008) Streamflow simulations reveal the impact of the soil param-
eterization. Meteorol Z 17(6):751–762. doi:10.1127/0941-2948/
2008/0343

Warrach-Sagi K, Schwitalla T, Bauer HS, Volker-Wulfmeyer (2013a)
A regional climate model simulation for EURO-CORDEX
with the WRF model. In: Resch MM, Bez W, Focht E,
Kobayashi H, Kovalenko Y (eds) Sustained simulation perfor-
mance 2013. Springer International Publishing, pp 147–157,
doi:10.1007/978-3-319-01439-5 11

Warrach-Sagi K, Schwitalla T, Wulfmeyer V, Bauer HS (2013b)
Evaluation of a climate simulation in Europe based on the WRF-
NOAH model system: precipitation in Germany. Clim Dyn 41(3-
4):755–774. doi:10.1007/s00382-013-1727-7

Wilks DS (2006a) On “field significance” and the false discovery rate.
J Appl Meteorol 45(9):1181–1189. doi:10.1175/JAM2404.1

Wilks DS (2006b) Statistical methods in the atmospheric sciences,
International Geophysics Series, vol 91, 2nd edn. Elsevier Aca-
demic Press, Cornell University, USA

Winterfeldt J, Weisse R (2009) Assessment of value added for surface
marine wind speed obtained from two regional climate models. Mon
Weather Rev 137(9):2955–2965. doi:10.1175/2009MWR2704.1

Winterfeldt J, Geyer B, Weisse R (2011) Using QuikSCAT in the added
value assessment of dynamically downscaled wind speed. Int J
Climatol 31(7):1028–1039. doi:10.1002/joc.2105

Wulfmeyer V, Behrendt A, Kottmeier C, Corsmeier U, Barthlott C,
Craig GC, Hagen M, Althausen D, Aoshima F, Arpagaus M, Bauer
HS, Bennett L, Blyth A, Brandau C, Champollion C, Crewell S,
Dick G, Girolamo PD, Dorninger M, Dufournet Y, Eigenmann
R, Engelmann R, Flamant C, Foken T, Gorgas T, Grzeschik M,
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