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Abstract This study investigates the ability of the regional
climate model Weather Research and Forecasting (WRF) in
simulating the seasonal and interannual variability of hydro-
meteorological variables in the Tana River basin (TRB) in
Kenya, East Africa. The impact of two different land use clas-
sifications, i.e., the Moderate Resolution Imaging
Spectroradiometer (MODIS) and the US Geological Survey
(USGS) at two horizontal resolutions (50 and 25 km) is inves-
tigated. Simulated precipitation and temperature for the period
2011–2014 are compared with Tropical Rainfall Measuring
Mission (TRMM), Climate Research Unit (CRU), and station
data. The ability of Tropical Rainfall Measuring Mission
(TRMM) and Climate Research Unit (CRU) data in reproduc-
ing in situ observation in the TRB is analyzed. All considered
WRF simulations capture well the annual as well as the inter-
annual and spatial distribution of precipitation in the TRB
according to station data and the TRMM estimates. Our re-
sults demonstrate that the increase of horizontal resolution
from 50 to 25 km, together with the use of the MODIS land
use classification, significantly improves the precipitation

results. In the case of temperature, spatial patterns and season-
al cycle are well reproduced, although there is a systematic
cold bias with respect to both station and CRU data. Our
results contribute to the identification of suitable and region-
ally adapted regional climate models (RCMs) for East Africa.

1 Introduction

Understanding the variability of hydrometeorological vari-
ables in water-stressed environments like in East Africa is
fundamental in addressing water challenges, especially in
the context of climate and land use change. The prediction
of climate variability in such a tropical region remains chal-
lenging (e.g., Vera et al. 2013).

The understanding of hydrometeorological variability re-
quires improved knowledge of the interaction between the
atmospheric and terrestrial branches of the hydrological cycle.
Regional climate modeling allows investigating the depen-
dency of hydrometeorological variables to land use and land
surface properties (Ge et al. 2007). The validation of regional
climate model (RCM) modeling approaches requires observa-
tional data of several components of the water cycle, e.g.,
precipitation, evapotranspiration, runoff, and soil moisture,
which are difficult to obtain in a data-scarce region like
Kenya, East Africa.

Precipitation is considered to be the crucial hydrometeoro-
logical variable in East Africa and is characterized by large
spatio-temporal variability (Endris et al. 2013; Gitau et al.
2013). Zhang (2007) used the Weather Research and
Forecasting (WRF) model (Skamarock et al. 2008) at 60 km
horizontal resolution to investigate the hydrological cycle in
East Africa, with emphasis on model result sensitivity to dif-
ferent radiation schemes, for the period 1994 to 1998. He
found the WRF model to be suitable in reproducing the
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average East African climate and its interannual variability.
Pohl et al. (2011) tested a number of WRF model settings
(i.e., physical parameterization, land use categories, domain
size and number of vertical levels) in simulating the seasonal
water cycle over the Equatorial East Africa for 1999. In their
study, they found WRF simulations of a spatial resolution of
12 km were closest to that from the Global Precipitation
Climatology Project daily (GPCP-1dd) gridded rainfall prod-
uct, when combining the Kain Fritsch (KF) cumulus scheme
with theWRF Single-Moment 6-class (WSM6)microphysics,
Asymmetric Convective Model (ACM2) planetary boundary
layer, Dudhia short wave radiation, and the Rapid Radiative
Transfer Model (RRTM) long wave radiation scheme. Most
recently, the WRF model was used as one of the ten partici-
pating RCMs at 50 km horizontal resolution in the
Coordinated Regional Climate Downscaling Experiment
(CORDEX) to simulate the characteristics of rainfall patterns
over East Africa (Endris et al. 2013). The CORDEX experi-
ment results indicated that the WRF based on KF cumulus
convection, WRF Single-Moment 5-class (WSM5) micro-
physics, Yonsei University (YSU) planetary boundary,
Dudhia short wave radiation, and RRTM long wave
radiation schemes overestimated rainfall far above all the
other RCMs that were assessed. Accordingly, there is a large
sensitivity of WRF model results to the choice of physics
parameterizations for East Africa. Little attempt was made in
previous studies to investigate the impact of variation of the
horizontal resolution of the RCM. Pohl et al. (2011) stated that
the horizontal resolution of the RCM could influence the re-
sults of simulations in this region; moreover, they particularly
highlighted the need to study the intraseasonal variability in
this region and to conduct further sensitivity experiments with
models like WRF due to the relatively high uncertainties as-
sociated with the model physics and domain geometry. Our
study contributes to fill this gap.

RCM studies for this region are scarce, and there is no
consensus on a suitable configuration and horizontal resolu-
tion that will be accurate in successfully reproducing observed
regional climate characteristics (e.g., Pohl et al. 2011; Endris
et al. 2013). The present study focuses on the Tana River basin
(TRB) of Kenya (Fig. 1). This study region was chosen due to
the availability of station data and for its crucial role in the
Kenyan economy. TRB is an extensive agricultural area and
contributes to about 57 % of the country’s hydropower (e.g.,
Oludhe et al. 2013). Extending the work of Pohl et al. (2011),
we further test the performance of the WRF model in repro-
ducing observed precipitation and temperature in the TRB for
the period 2011 to 2014, based on gridded observations as
well as station data. The impact of the horizontal resolution
and land use classification is specifically addressed.

Section 2 provides a brief description of the study area, the
observational datasets, the model, and experimental setup.
Section 3 documents the sensitivity of simulated monthly

precipitation and mean temperature to the horizontal resolu-
tion and land use classifications. A summary and conclusion is
given in Section 4.

2 Study area, observational datasets, model,
and experimental details

2.1 Study area

The TRB lies between the latitudes 0° 0′ 53″ S and 3° 0′ 00″ S
and between the longitudes 37° 00′ 00″ E and 41° 00′ 00″ E
(Fig. 1) with a total catchment area of about 126,000 km2

(Knoop et al. 2012). It hosts the longest river in Kenya, the
Tana River which is appriximately 1000 km long. The climate
of the TRB is typical of East Africa and varies from arid in the
lowlands to semi-humid in the highlands and coastal areas
(Dinku et al. 2011). In this study, the TRB is divided into three
parts: the upper, middle, and lower TRB, with precipitation
characteristics primarily influenced by topography (Knoop
et al. 2012). Averaged annual rainfall and temperature in each
of these three parts of the TRB are investigated using station
datasets recognized by the World Meteorological
Organization (WMO) and operated by the Kenya
Meteorological Department (KMD; Table 1). Nyeri, Meru,
Embu, and Thika stations are grouped under upper TRB,
Garissa and Makindu stations are associated with middle
TRB, and Lamu station is in the lower TRB (Fig. 1). The areas
around the upper TRB, middle TRB, and lower TRB are
marked and labeled as UT, MT, and LT, respectively, in
Fig. 1 for further spatially averaged analyses.

The upper TRB lies between 400 m.a.s.l. on the eastern
part of the catchment and 5199 m.a.s.l. on Mount Kenya
(Geertsema et al. 2009). It receives the highest annual rainfall,
between 900 and 1300 mm on average (see Table 1). The
middle part of the TRB is semi-arid to arid with an altitude
of less than 1300 m.a.s.l. (Knoop et al. 2012). This area re-
ceives the smallest amount of annual rainfall on average (less
than 550 mm). The lower part of the TRB is at an altitude of
less than 500 m.a.s.l. and is bordered on the southeast with a
coastal strip (the Indian Ocean). Averaged annual rainfall in
this part is about 960 mm. Precipitation observed at the sta-
tions and in the TRB region described above depends on the
location and proximity toMount Kenya (0° 9′ 0″ S and 37° 18′
36″ E), the Aberdares (0° 37′ 48″ S and 36° 4′ 36″ E), and the
Indian Ocean. The montainous regions are influenced by the
leeward-windward phenomena where stations such as Nyeri
and Thika west of Mount Kenya are considered to be to on its
leeward side, compared with Meru, which is on the windward
side. In this situation, Meru station record a higher annual
precipitation thanNyeri, which is at a higher altitude (Table 1).

Like most areas in East Africa, the TRB experiences a
bimodal rainfall seasonal pattern (Oludhe et al. 2013;
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Kitheka 2014). The first season, locally known as the Blong
rains,^ falls during the months of March to May (MAM);
while the second season, locally known as Bshort rains,^ falls
during the months of October to December (OND). The Blong
rains^ are thought to produce greater rainfall amounts than the
Bshort rains^ and be characterized by a lower interannual var-
iability (Camberlin and Okoola 2003). As the Equator disects
Kenya, these seasons result from the north-south oscillation of
the Intertropical Convergence Zone (ITCZ) twice in a year
(e.g., Ogallo 1988; King’uyu et al. 2000; Nicholson 1996;

Indeje et al. 2000; McSweeney et al. 2010; Kitheka 2014)
although it is suggested that the OND season may be associ-
ated with either the Congo air boundary or the convergence of
trade winds over the western Indian Ocean (Nicholson 2014).

The precipitation over the TRB has generally been decreas-
ing since the 1997/1998 El Niño rains in Kenya, with the 2011
to 2014 recording below normal mean annual precipitation
80 % of the time (see purple box in Fig. 2). It is seen that
the middle and lower TRB (which are in low altitude areas)
were dry during the whole period of 2011 to 2014, possibly

Fig. 1 Map of the study area and
location of the meteorological
stations (Nyeri, Embu, Meru,
Thika, Garissa, Makindu, and
Lamu) marked as red dots (see
Table 1 for the exact locations),
with the inset boundary showing
the Tana River basin (TRB),
Kenya. The dotted rectangular
boundaries mark the
representative portion or whole
portion of upper Tana (UT),
middle Tana (MT), and lower
Tana (LT). The map of Africa
(top) is processed from Natural
Earth data (www.
naturalearthdata.com)

Table 1 List of selected
meteorological stations in the
Tana River basin (TRB), mean
annual precipitation amount
(1970 to2014) and annual mean
temperature (2000 to2014)

Section of
TRB

Station
name

WMO
Id.

Lat.
(deg)

Lon.
(deg)

Altitude
(m)

Annual
rainfall
(mm)

Annual mean
temp.
(°C)

Upper TRB

1 Nyeri 63,717 −0.44 36.98 1798 950.2 17.7

2 Meru 63,695 0.05 37.65 1554 1275.5 18.5

3 Embu 63,720 −0.49 37.46 1508 1278.1 19.7

4 Thika 63,772 −1.03 37.07 1549 921.5 20.2

Middle TRB

5 Makindu 63,766 −2.28 37.83 1000 550.7 23.3

6 Garissa 63,723 −0.47 39.63 147 338.8 29.1

Lower TRB

7 Lamu 63,772 −2.25 40.91 6 982.0 27.7
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related to a failure of influx of moisture from the Indian Ocean
and a weakening of theMascarene High (Ogwang et al. 2015).
This is consistent with earlier studies in this region (e.g.,
Williams and Funk 2011) showing a precipitation decrease
from 1980 to 2009. This situation is projected to continue.
This calls for proper management of the available TRB water
resources if this trend is likely to persist.

The temperature over the study region strongly depends on
altitude. The upper part temperatures associated with the cen-
tral highlands are much colder than those at the middle or
lower parts, which are associated with the coastal regions. In
particular, the annual mean temperature over Nyeri, Meru, and
Thika (upper TRB) are 17.7, 18.5, and 20.2 °C, respectively,
while over Lamu (lower TRB), it is 27.7 °C (Table 1). This is
consistent with earlier studies that found that the upper and
middle/lower TRB are characterized with annual temperatures
of 15 and 29 °C, respectively (e.g., McSweeney et al. 2010).
However, monthly temperature in the middle and lower parts
of the TRB can be up to 33 °C (Omambia et al. 2014).

2.2 Observational datasets

This section presents the observational datasets that are used
in Sect. 3 to validate WRF simulation results.

2.2.1 Precipitation observations

The satellite estimates of Tropical Rainfall MeasuringMission
(TRMM; 3B42 v7 derived daily at 0.25° horizontal resolution,
1998 to 2015; Huffman et al. 2007), the gridded Climate
Research Unit (CRU v3.23, monthly at 0.5° horizontal reso-
lution, 1901 to 2014; Harris et al. 2014) and station data for
2011 to 2014 are used. The accuracy of TRMM- and CRU-
gridded products for our study region is assessed in terms of
its suitability as a proxy for in situ observation data. This is
because the region is characterized by a coarse network of
meteorological stations.

Some studies investigated the suitability of both satellite
and gridded precipitation datasets compared with interpolated

station data for the East African region (e.g., Anyah et al.
2006; Anyah and Semazzi 2007; Dinku et al. 2011;
Nicholson 2014), and their results suggest that these datasets
mimic the rainfall climatology of the region reasonably.

TRMM and station derived monthly precipitation time se-
ries have a correlation coefficient (r) of 0.9 and root mean
square error (RMSE) of 1.4 mm/day. On the other hand,
CRU- and station-derived monthly precipitation time series
have an r of 0.7 and RMSE of 2.2 mm/day. The two global
products capture the in situ observed seasonal and annual
evolution of precipitation quite well (Fig. 3a–c). The bimodal
regime of precipitation is well depicted in the upper and mid-
dle TRB, but weakly in the lower TRB in both CRU and
TRMM. During the MAM, both CRU and TRMM indicate
the peak month as April in the upper and middle TRB, but as
May for the lower TRB. Both CRU and TRMM agree well
with station-based precipitation in indicating the OND peak
month as November for the upper and middle TRB. However,
during the study period, the two datasets underestimate OND
rains in the lower TRB. In the upper and middle TRB (Fig. 3a,
b), the driest season falls during June to September. However,
CRU does not agree with station data in the monthly mean
amount for the upper TRB during the dry seasons. This is
unusual as it is expected that there should be good agreement
during the dry season between global datasets. In the lower
TRB, both CRU and TRMM agree well with station data in
depicting the driest season to occur during January and
February. In general, CRU overestimates the station precipi-
tation rates in some seasons (e.g., Fig. 3; Riddle and Cook
2008).

The precipitation regime in the TRB can therefore be cat-
egorized into two groups: (i) the traditional bimodal, MAM
and OND seasons for inland stations (upper and middle TRB)
and (ii) bimodal, April, May, and June (AMJ) and OND for
coastal stations (lower TRB). However, in this study, we con-
sider the two traditional seasons to apply for the whole TRB
(i.e., the first group).

In general, TRMM exhibits higher performance compared
with CRU and mimics station rainfall more closely; therefore,

Fig. 2 Annual mean rainfall
anomalies for stations located in
TRB (see Fig. 1) based on the
1970 to 2014 average. The purple
box shows the period 2011 to
2014 characterized with mostly
below normal rainfall
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TRMM is considered in subsequent assessment of the spatial
and temporal analysis of the simulated area- and time-
averaged precipitation in this study.

2.2.2 Temperature observations

The Climate Research University (CRU v3.23, monthly at
0.5 °C horizontal resolution, 1901 to 2014; Harris et al.
2014) and station data for the period 2011 to 2014 are used.
Only four of the meteorological stations named in Sect. 2.2.1,
i.e., Nyeri, Meru, Thika, and Lamu had complete records of
temperature data.

CRU and station monthly mean temperatures are in close
correspondence (r = 0.9) but show relatively high deviations
in terms of their magnitudes (RMSE = 2.2 °C) for 2011 to
2014 (see the corresponding scatterplot Fig. 4). CRU temper-
ature is slightly colder compared with station temperature,
with a percent bias (Pbias) of about −0.3 % (pooling all four
stations together). CRU captures well the annual cycle of tem-
perature over all the stations considered (r > 0.8). At selected
sites, the CRU temperatures are warmer at Meru
(Pbias = 13.5 %) and Thika (Pbias = 4.3 %) but colder at
Nyeri (Pbias = −15.6 %). At Lamu, there is a good agreement
between CRU and station temperatures (Pbias = −0.2 %).

The shortcoming observed in CRU versus station data
may be attributed to very few station data records that are

assimilated in the global datasets (Christy et al. 2009).
Furthermore, CRU has a tendency to overestimate temper-
ature in regions with complex topography, which are char-
acterized by an uneven network of stations (e.g., Laux
et al. 2012). In this study, however, CRU is used to assess
the simulated spatial and temporal area- and time-
averaged temperature.

Fig. 3 Annual cycle of monthly
precipitation averaged for the
period 2011 to 2014 at location of
the stations over the a upper
(Nyeri, Meru, Embu, Thika), b
middle (Garissa, Makindu), and c
lower (Lamu) Tana, derived from
station data, TRMM and CRU

Fig. 4 Monthly gridded mean temperature from CRU compared with
monthly mean temperature at selected stations over the TRB (Nyeri,
Thika, Meru, and Lamu) for 2011 to 2014
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2.3 Model

TheWRFmodel is a mesoscale numerical model designed for
operational forecasting and atmospheric research needs with
several physical parameterization schemes available. In this
study, WRF v3.5 is used. Details about WRF physics param-
eterizations (i.e., cumulus convection, microphysics, surface
layer, planetary boundary layer atmospheric radiation, and
land surface model schemes) can be found in Skamarock
et al. (2008). The model also offers an option of selecting
between two land use categories or classifications: the US
Geological Survey (USGS; 24 classes; Anderson et al. 1976)
and the Moderate Resolution Imaging Spectroradiometer
(MODIS; 20 classes; Friedl et al. 2002). The USGS-based
land use dataset was developed using the global 1-km resolu-
tion Advanced Very High Resolution Radiometer (AVHRR)
satellite sensor from April 1992 to March 1993 (e.g.,
Anderson et al. 1976; Liang et al. 2005). The MODIS-based
land use dataset is also at 1-km resolution but uses the
International Geosphere-Biosphere Program (IGBP) classifi-
cation and was defined in 2001–2002 (Friedl et al. 2002). The
experimental details and choice of our parameterization is
explained in the following section.

2.3.1 Experimental setup

The model domain for all our experiments covers the region
12° S–13° N; 22–53° E, which encompasses most of East
Africa (Fig. 5). The white box in Fig. 5 delineates the study
region (3° S–1 N; 36–41° E) shown in Fig. 1, and the associ-
ated details are described in Sect. 2.1. Note that it circum-
scribes the TRB (see purple contour line in Fig. 5). The do-
main size was chosen in order to reduce computational costs.
It is also considered to resolve the mesoscale forcings associ-
ated with mountains, coastlines, lakes, and vegetation charac-
teristics that influence the region’s local climate (Giorgi and
Mearns 1999).

Two different horizontal resolutions are considered here
(50 and 25 km; see Fig. 5a, b, respectively). Two different
land use representations (USGS and MODIS) are also consid-
ered. This provides a total of four WRF experiments here
referred to as: MODIS25, MODIS50, USGS25, and USGS50.

In MODIS50 and USGS50, the model domain (Fig. 5b)
consists of 70 × 60 grid points in the west-east and south-
north directions. The MODIS25 and USGS25 model domain
(Fig. 5a) have 140 × 120 grid points in the west-east and
north-south directions. Figure 5 shows the elevation from
the WRF preprocessing in which most of the TRB (middle
and lower part) have an elevation of less than 750 m.a.s.l.

All simulations are initialized on 1 November 2010, includ-
ing a spin-up period of 2 months and cover a 4-year period
from 2011 to 2014. According to Giorgi and Mearns (1999), a
2-month spin-up period should be long enough for the model
to bring the atmospheric fields into dynamic equilibrium.

The physical and dynamical options are similar for all exper-
iments. The chosen physical parameterizations are based on ear-
lier studies (e.g., Riddle andCook 2008; Pohl et al. 2011; Endris
etal.2013).TheKainFritsch(KF)cumulusscheme(Kain2004),
theWRFSingle-Moment v6 (WSM6), andmicrophysics (Hong
and Lim 2006) are selected. TheWSM6, for instance, is consid-
ered suitable for high-resolution simulations and is able to repre-
sent ice, snow, andgraupel. In the caseof theplanetaryboundary
layer scheme, the v2 of the Asymmetric Convective Model
(ACM2), which is characterized by nonlocal upward and local
downward mixing (Pleim 2007), is considered a good compro-
mise.For radiation schemes, theNewGoddard radiation scheme
(Chou and Suarez 1999) is selected for both long- and short-
wave options. The Noah land surface model option is used for
the land surface processes (Chen and Dudhia 2001).

All experiments use 40 vertical levels up to 20 hPa
(approximately 26 km vertical height above the surface).
The model integration for MODIS50 and USGS50 is
200 s while that of the MODIS25 and USGS25 is
100 s. The ERA-Interim (Uppala et al. 2008) reanalyses

Fig. 5 WRFmodel domains at a 50-km (left) and b 25-km (right) horizontal resolution showing the elevation from the WRF preprocessing. The white
box (3° S–1° N; 36–41° E) delineates the study region encompassing the TRB (purple contour line)
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from the European Centre for Medium-Range Weather
Forecasts (ECMWF) provide the initial and lateral
boundary conditions for the WRF simulations which are
updated every six hours.

2.3.2 Land use distribution in the TRB

Figure 6 illustrates thedistributionof thedominantmean landuse
category in each model grid over the TRB from the four WRF

Fig. 6 The dominant land use category in each grid point over the TRB a inMODIS25 and b inMODIS50, cUSGS25, and dUSGS50 during the period
2011 to 2014

Fig. 7 Monthly precipitation
(mm/day) averaged over the
respective stations over the TRB a
upper Tana, b middle Tana, and c
lower Tana (see Table 1) for the
period 2011 to 2014, derived from
the station data and the four WRF
simulations with MODIS and
USGS land use datasets at 50 km
and 25 km horizontal resolution,
respectively
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experiments as depicted in the land use classifications. MODIS
andUSGSlandusedatasets classify the regions slightlydifferent-
ly but show reasonable agreement in theportions of the savannas.

Note that within each model grid, the most dominant land
use category from the land use map (24 categories for USGS
and 20 for MODIS) in terms of contributing area is chosen for
that grid (Liang et al. 2005). Accordingly, there are 9 out of the
20 for MODIS25 and only 5 out of 20 land use categories for
MODIS50 over the TRB (Fig. 6a, b). Both the MODIS-driven
experiments classify the TRB to be covered by 70% savannas
and grasslands. According to the global land cover character-
istics (GLCC) classification these two categories are of

herbaceous type with forest canopy cover between 10 and
30 %. As an example, MODIS25 classifies regions around
Nyeri, Embu, Meru, and Thika to be dominated by evergreen
broadleaf forestland and woody savanna. In the case of the
USGS WRF-driven experiments, USGS25 and USGS50 dis-
play 7 out of 24 and 5 out of 24 land use categories, respec-
tively (Fig. 6c, d). The dominant land use categories for TRB
based on USGS classification are the shrublands and
croplands/woodland mosaic constituting about 80 % of the
total area. The GLCC classifies shrublands as lands character-
ized by xerophytic vegetative types with woody systems and
desert-like features. USGS25 describes the area around Nyeri,

Fig. 8 Total seasonal (MAM,OND) precipitation for individual years: a averaged over stations in upper Tana, b averaged over stations in middle Tana, c
averaged over the station in lower Tana, and d spatially averaged over the study region
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Embu, Meru, and Thika to be savanna and deciduous broad-
leaf forest, which is in contrast with the MODIS classification.

Compared with USGS25, MODIS25 provides a more het-
erogeneous spatial pattern (Fig. 6a), which is attributed to
enhanced sensitivity of MODIS land use to horizontal resolu-
tion in comparison with USGS land use (Pohl et al. 2011).

2.4 Validation

Thesimulationresultsarecomparedwithstation,satellite rainfall
(TRMM), and gridded temperature (CRU) datasets. The four
WRFmodelconfigurationsareevaluatedbasedonmonthly time
series from which the correlation coefficient, RMSE, and Pbias
are computed. To investigate which of the WRF configurations
better represents thespatio-temporal rainfalldistributionover the
studyarea, spatial correlationbetweenmonthly sumsof simulat-
ed and observed precipitation are computed. Apart from the
monthly time series, we also use time-averaged spatial distribu-
tion maps and the Taylor diagram (Taylor 2001) to analyze fur-
ther thelevelofcorrespondencebetweensimulatedandobserved
precipitation and temperature. Each point in this diagram is de-
scribed by the standard deviation (radial distance of the point
from the origin),which is ameasure of the intensity andvariabil-
ity of the patterns, the RMSE error (distance from the

observation), and the correlation coefficient (the angle between
the x-axis and the point). Our analysis focuses on the statistics of
(i) both theMAM andOND seasons averaged for 2011 to 2014
and (ii) the individual years for every season. Each modeled
variable is normalized by dividing both its RMSE and the stan-
dard deviation by the standard deviation of the corresponding

Fig. 9 Annual cycle of monthly averaged precipitation (mm/day) over
the study area averaged for the period 2011 to 2014, derived from TRMM
and the four WRF simulations

Fig. 10 Monthly precipitation (mm/day) spatially averaged over the
study region (see Fig. 1) for the period 2011 to 2014, derived from
TRMM and the four WRF simulations

Fig. 11 Normalized pattern statistics based on comparison of monthly
mean precipitation for MAM and OND grid points for the four WRF
experiments to TRMM estimates, averaged for the period 2011 to 2014

Table 2 Spatial correlation coefficients between monthly sums of
precipitation derived by TRMM and the four WRF experiments for the
months of March to May (MAM) and October to December (OND)
during 2011 to 2014 over the study area

Period Experiment MAM OND

Mar Apr May Oct Nov Dec

2011 USGS50 0.01 0.05 0.48 0.24 0.36 0.35

USGS25 0.08 0.02 0.48 0.20 0.29 0.29

MODIS50 0.15 0.03 0.50 0.26 0.11 0.28

MODIS25 0.42 0.10 0.55 0.28 0.34 0.28

2012 USGS50 −0.00 0.35 0.54 0.40 0.36 −0.03
USGS25 −0.07 0.51 0.53 0.48 0.37 0.20

MODIS50 0.02 0.44 0.60 0.43 0.34 0.10

MODIS25 0.06 0.45 0.61 0.67 0.47 0.37

2013 USGS50 0.30 0.13 0.86 0.44 0.15 0.61

USGS25 0.36 0.36 0.91 0.51 0.37 0.45

MODIS50 0.15 0.14 0.86 0.46 0.23 064

MODIS25 0.32 0.65 0.84 0.59 0.43 0.46

2014 USGS50 0.27 −0.31 0.86 0.61 0.22 0.55

USGS25 0.31 −0.28 0.89 0.60 0.27 0.60

MODIS50 0.31 −0.29 0.88 0.60 0.35 0.55

MODIS25 0.30 −0.16 0.89 0.61 0.16 0.51

The correlation coefficients equal to or greater than 0.5 are set in italics
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observations (given as a reference and plotted at a unit distance
from the origin on the x-axis).

3 Results of performance analysis and discussion

In this section, the four modeled WRF simulations are com-
pared with the in situ measurements and gridded datasets.
Precipitation is considered with a focus on both MAM and

OND seasons, together with its interannual evolution. A dis-
cussion on temperature follows thereafter.

3.1 Precipitation

3.1.1 Model results versus station data

Allconfigurationsof theWRFmodelcapture the interannualand
seasonal cycle of precipitation as recorded at the stations during
thesimulationperiod,butdonotsimulate theabsolutevalues.All

Fig. 12 Precipitation maps of the study area averaged for MAM season for the period 2011 to 2014, derived from a TRMM and the four WRF
simulations: b MODIS25, c MODIS50, d USGS25, and e USGS50. The red contour line delineates the TRB
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configurations capture well both MAM and OND rain seasons
andthedryseasonsfor therespectiveregionsof thecatchment. In
particular, precipitation in the upper andmiddle part of the TRB
isgenerallyunderestimated,whereas in the lowerpart it is clearly
overestimated (Fig. 7), as in Pohl et al. (2011).

In the upper TRB (UT), the total precipitation derived from
the stations for the 4 years (2011 to 2014; Fig. 7a) was
4242 mm. Against this estimation, MODIS50 simulated
2216 mm while USGS50 provided a value of 1885 mm. On
the other hand, MODIS25 produced 3639 mm compared with
2272 mm yielded by USGS25. Thus, the MODIS-driven

experiments produced more precipitation than their counter-
parts. Based on these cumulative totals, the impact of increas-
ing the horizontal resolution in this section of the study area is
seen. This behavior is replicated in the annual totals.

In the middle TRB (MT), which is represented by Garissa
and Makindu meteorological stations, a comparable perfor-
mance to that seen at the UT is noted, except in term of hor-
izontal resolution. The derived cumulated station rainfall for
the entire period (Fig. 7b) is 1425 mm. MODIS50 (USGS50)
simulated approximately 843 mm (766 mm) and MODIS25
(USGS25) at the same time recorded 803 mm (568 mm). In

Fig. 13 Same as Fig. 12 but averaged for OND season
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terms of the annual totals, the MODIS-driven experiments are
closest that of the station especially for 2011 and 2012 while
all experiments seriously underestimated the 2013 and 2014
station rainfall.

In the lower TRB (LT), which is represented by Lamu
meteorological station, there is significant overestimation of
precipitation (Fig. 7c). The MODIS50 and USGS50 yield the
highest total amounts. In terms of the annual totals, all the
experiments simulated approximately equal amounts in 2011
and 2012. In general, over this region, MODIS50 had the
highest total amount of 2500 mm in 2013 while MODIS25
simulated 2000 mm in 2014.

Figure 8a shows the total seasonal amounts over the UT.
During the MAM season, the scenario described above is

replicated while the situation is different during the OND sea-
son. For the OND rains, MODIS25 overestimated the station
rainfall for the years 2011 and 2012 by 56 and 25 mm, respec-
tively. In 2013 and 2014, only MODIS25 showed a good
correspondence to station-derived precipitation.

Figure 8b shows the seasonal amounts for the MT region.
During theMAM season, there was mixed performance for all
the four experiments. For instance, MODIS50 simulated more
precipitation than MODIS25 during 2011, 2013, and 2014,
while USGS50 simulated more precipitation than USGS25.
During the OND season, the MODIS-driven experiments re-
cord more or less equal amounts. There is thus little impact of
model resolution in this case.

The overestimation seen over the LT arises primarily from
the MAM season and less from the OND season (Fig. 8c).
During OND, most of the experiments produced more or less
equal amounts with exception of MODIS25.

From the aforementioned analysis, we note that the impact
of increasing the horizontal resolution is more pronounced in
the mountainous UT region than either the arid and semi-arid
middle or the plain coastal LT. This can be attributed to the
local forcings of the topography in the UT region leading to
more realistically simulated orographically induced convec-
tive precipitation (e.g., Lee et al. 2004; Xue et al. 2007).
MODIS25 is able to resolve the orographic precipitation better
than USGS25 though they are all at the same horizontal reso-
lution. In theMT, a significant orographic lifting of air mass in
not expected. The area is an arid region meaning that the air
above this region is mostly dry. Any other processes, such as
convectional lifting, can still be weak. The overestimation in
the LT may be attributed to the impact of the Indian Ocean
wind regimes, which may cause more precipitation at the
coast.

3.1.2 Model results versus gridded data

Annual cycle and interannual variability Simulated annual
cycle of monthly averaged precipitation (2011 to 2014) in the
study region (Fig. 1; see white box in Fig. 5) is reasonably
close to that from TRMM for all considered WRF configura-
tions (r > 0.9 with 95 % confidence interval and p value
<0.001; Fig. 9). The climatological seasonal peaks in April
and November are well captured as well as the two dry sea-
sons of January–February and June–September also men-
tioned in Sect. 3.1.1. All four configurations equally underes-
timate the monthly mean precipitation, as seen in Sect. 3.1.1.
This can be attributed to the diverse land surface characteris-
tics and elevation over the catchment which is not factored
into the spatial averaging. However, it is not uncommon for
most RCMs to underestimate precipitation in tropical regions.
It is known that precipitation in a complex terrain area like that
of TRB varies within short distances and thus taking an aver-
age for the whole region overshadows the local effects.

Fig. 14 Normalized pattern statistics summarizing the seasonal
precipitation spatial maps a for MAM and b for OND
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Figure 10 shows the monthly time series of precipitation in the
study region estimated from TRMM and simulated in the four
configurations for the period 2011 to 2014. The WRF model
in all considered configurations generally captures the inter-
annual and seasonal evolution of precipitation in a good cor-
respondence to TRMM. The two known rainfall seasons of
MAM and OND are generally well depicted. It is only during
the MAM season of 2014 in which all the WRF model simu-
lations lag the rain peak by 1 month.

Spatial correlation The spatial correlation coefficients be-
tween the fourWRF configurations and TRMMare calculated
over the study area (Table 2).

The results show diverse representation of the spatial distri-
butionofrainfallduringbothrainyseasons.DuringMAM,all the
fourWRFconfigurations exhibit high consistencies at the endof
the season, reaching correlation coefficients up to 0.9 during
2013and2014.ForMarch andApril, the correlationcoefficients
are consistently smaller and in most cases less than 0.5.

There is diverse level of consistency during OND. The
highest level of inconsistencies by all the four WRF configu-
rations is in 2011. MODIS25 is consistent in representing the
October rainfall distribution (r > 0.6). The other configura-
tions have lower performance than MODIS25.

In general, all the four WRF configurations show signifi-
cant limitations in representing the peak months of April and
November rainfall distribution over the study area during the
individual years.

Seasonal totals and averages The seasonal total amount of
spatially averaged precipitation, derived from the monthly
time series are shown in Fig. 8d. There is diverse performance
by the four WRF experiments during the MAM season over
the individual years. The total seasonal amounts for the period
2011 to 2014 for the four WRF experiments are: MODIS50
simulated 571 mm while USGS50 simulated 520 mm.
MODIS25 simulated 544 mm while USGS25 simulated
534 mm. The corresponding total derived TRMM precipita-
tion is 882 mm. The four WRF configurations simulated al-
most equal seasonal amounts over the individual years.

During OND season, MODIS50 simulated 683 mm, while
USGS50 simulated 559 mm. MODIS25 simulated 817 mm,
while USGS25 had 567 mm. These simulated seasonal
amounts are compared to that derived from TRMM for the
same period (2011–2014). MODIS25 consistently simulates
more seasonal amounts than MODIS50, USGS50, and
USGS25 and simulates amounts that are closer to TRMM.

With spatial averaging, over the area covering the region
UTand LT, the results found are similar to those highlighted in
Sect. 3.1.1 for both MAM and OND. We apply a Taylor
diagram-based performance analysis (Taylor 2001) for an in-
depth study of differences between modeled and observed
precipitation. Figure 11 shows normalized statistics (i.e., the
pattern correlation (r), RMSE, and the standard deviation (σ))
of the seasonal mean rainfall of the four WRF experiments
with respect to TRMM estimates for the period 2011 to 2014.
During MAM season, all the four experiments overestimated

Fig. 15 Difference in mean
seasonal latent heat (LH) over the
study area, averaged for the
period 2011 to 2014 a MODIS25
minus USGS25 for MAM, b
MODIS25 minus USGS25 for
OND, c MODIS50 minus
USGS50 for MAM, and d
MODIS50 minus USGS50 for
OND
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the magnitude of the interannual variation relative to TRMM
with normalized standard deviations of approximately 1.5 and
RMSE values of between 1 and 1.5. MODIS25 show a rela-
tively high pattern of correlation (r > 0.6) and a lower normal-
ized RMSE compared with the other experiments, consistent
with the monthly correlation coefficients given in Table 2.

In the case of OND, USGS50 showed the highest spatial
variability and the lowest pattern correlation compared with

USGS25, MODIS50, and MODIS25. The latter three experi-
ments have similar equal normalized RMSE values. MODIS25
shows a slightly higher pattern correlation (Fig. 11).

Time-averaged precipitation Considering the time-averaged
precipitation for individual years, during the MAM season
(Fig. 12), the WRF model in all configurations is generally
wetter along the lower parts south-west of the catchment

Fig. 16 Monthly mean
temperature (°C) at a Nyeri, b
Meru, c Thika, and d Lamu for
the period 2011 to 2014, derived
from station data and the four
WRF simulations

Table 3 Difference between the
model grid point and actual
station terrain height and the
corresponding decrease in
temperature of selected stations in
TRB

Station Actual height (m) ΔH (actual station height − model
terrain height; m)

ΔT = ΔH × 0.0065 (temperature
decrease with height; °C)

50 km 25 km 50 km 25 km

Nyeri 1798 304.9 173.4 −1.98 1.13

Meru 1554 234.1 173.4 1.58 1.10

Thika 1549 −189.8 32.6 −1.23 0.21

Lamu 6 −4.1 −16.4 −0.03 −0.11

The temperature decrease with height is taken as a constant lapse rate of 6.5 °C/km
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(coastal strip) compared with TRMM. On the other hand, in
the north-west (in the vicinity of Mt. Kenya, upper TRB) and
middle of TRB, the WRF model is relatively drier than
TRMM, which is consistent with the monthly series of
Fig. 7. The interannual and seasonal variability of precipita-
tion is evident from the seasonal spatial maps (Fig. 12). In
2011, all the WRF configurations were very dry compared
with TRMM in general, and more specifically in the MT.
During 2012 and 2013, all WRF experiments captured well
the precipitation maximum (related to TRMM), with
MODIS25 displaying the closest patterns to that of TRMM.
In 2014, however, MODIS25 shows the lowest performance
in the MT.

During OND season (Fig. 13), we notice a closer spatial
patterns compared with that observed in TRMM. All WRF
experiments capture the precipitation maximum (north-west
of the TRB) while being wetter along the lower TRB (coastal
strip). It is seen that the MODIS configurations (MODIS25
and MODIS50) are consistently wetter than USGS configura-
tions (USGS25 and USGS50), which is in line with the results
presented in Sect. 3.1.2. In general, the simulated and ob-
served precipitation show a decline over the years, with
2011 being the wettest while 2013 and 2014 are drier among
the four considered years (Fig. 13). The OND season thus
depicts more interannual variability which is in agreement
with earlier studies like Camberlin and Okoola (2003).

Normalized statistical comparison of the time-averaged
precipitation to the corresponding TRMM estimates summa-
rizes the MAM spatial maps (Fig. 14a). In 2011, all the four
WRF experiments had weak pattern correlations (r < 0.2). In
2012, there were fairly reasonable spatial pattern correlations
(r ≈ 0.4). The pattern correlations of the four WRF

experiments were higher in 2013 and 2014, ranging from ap-
proximately 0.5 to 0.8, but showing diverse standard deviation
(1.8 ≤ σ ≤ 3.3). MODIS25, in general, displayed the highest
pattern correlations for the 2 years.

In the case of OND, all four experiments show similar
performance in terms of spatial variability with standard devi-
ations (1 ≤ σ ≤ 2) and pattern correlation (r < 0.6) (Fig. 14b).
Unlike for MAM, no clear inferences can be drawn for the
different years.

In general, the WRF experiments are underestimate precip-
itation across the whole study region. The dry bias is less in
MODIS25, followed by MODIS50, USGS25, and USGS50.
This is in agreement with Pohl et al. (2011) who also found
MODIS comparatively wetter than USGS. Increasing the hor-
izontal resolution improved the simulated precipitation, ex-
cept for the MT, as was also deduced in Sect. 3.1.1.
MODIS25 can be considered to provide reasonable precipita-
tion simulations as it shows best pattern correlations and
smallest RMSE values.

3.1.3 Simulated latent heat and sensible heat

Figure 15 shows the differences in the simulated latent heat
between theMODIS and USGS simulations for theMAM and
OND seasons, averaged over 2011 to 2014. There are similar
spatial patterns in the simulated differences for the MAM and
OND season. MODIS25 simulates more latent heat than
USGS25 in most of the upper TRB, but less in the middle
TRB. The same applies for MODIS50; however, it simulates
more latent heat than USG50 in the middle TRB.

Since all experiments have common parameterizations, it is
speculated that the increased latent heat in the MODIS

Fig. 17 Monthly mean
temperature spatially averaged
over the study area (see Fig. 1) for
the period 2011 to 2014, derived
from CRU and the four WRF
simulations: a minimum, b
maximum, and c mean of
maximum and minimum
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experiments leads to increased precipitation in comparison
with the USGS experiments. In particular, MODIS25 pro-
duces more precipitation, especially over regions with com-
plex topography. As expected, a close relationship of sensible
heat with temperature was found (not shown).

3.2 Temperature

3.2.1 Model results versus station data

The WRF model in all configurations captures well the inter-
annual evolution of temperature compared with that observed

at the respective stations (Fig. 16) (r > 0.6). However, the
monthly mean temperatures simulated in the four configura-
tions are colder compared with station temperatures with a
MAE values between 1 and 5 °C.

The WRF simulations accounted for the air temperature
decrease with altitude. All the WRF configurations simulated
the lowest temperatures over Nyeri, which is located at the
highest altitude of all stations. The highest temperatures are
simulated at Lamu, which is at the lowest altitude. The differ-
ence between the simulated height and the actual station alti-
tude (i.e., the station terrain heights minus model terrain
heights) are shown in Table 3 with the corresponding de-
creases in surface air temperature. There is little impact of
the model horizontal resolution on the simulated temperatures.
The biases of all WRF experiments are high, on average about
9 °C at Nyeri, about 6 °C at Thika, 3 °C at Lamu, and 2 °C at
Meru. There is no clear relation tendency of the biases based
on altitude of the stations.

Resolutions of 50 and 25 km are not sufficient to capture
differences in temperature between the stations related to
orography and land surface. This is in agreement with
Sheridan et al. (2010). The results shown as time series can
also be confirmed in the seasonal average maps (Online
resources 1 & 2).

3.2.2 Model results versus gridded data

Annual cycle and interannual variability The spatially av-
eraged monthly mean temperature over the study region ex-
hibit correlation coefficients of r > 0.7 for all four WRF con-
figurations, compared with CRU.

All the WRF configurations capture reasonably well the
seasonality of monthly mean, maximum and minimum tem-
perature. In line with the results for the stations, WRF simu-
lates similar values for the spatially averaged temperature
(Fig. 17). There is a relatively good agreement between
CRU and the minimum temperature, but a significant (cold)
bias can be found for maximum and mean temperature. This
cold bias in the WRF simulations was noted in previous stud-
ies (Abdallah et al. 2015). All the WRF configurations show
similar spatial variability and amplitudes (1 < σ < 1.2,
0.2 < RMSE < 0.4) over the studied years, as well as having
high correlation patterns (r > 0.9) (Fig. 18).

4 Summary and conclusion

In the present study, the ability of the WRF model driven by
the ERA-Interim lateral boundary conditions to reproduce the
seasonal and interannual variability of hydrometeorological
variables in the TRB is assessed. We performed four WRF
simulations experiments for the period 2011 to 2014 in order
to assess the impact of two different land use classifications

Fig. 18 Normalized statistical comparison of seasonally spatially
averaged mean temperature over TRB for the period 2011 to 2014,
derived from CRU and the four WRF simulations, a for MAM season
and b for OND season
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(MODIS and USGS) and two horizontal resolutions (50 and
25 km) on simulated precipitation and temperature. The per-
formance of the model was investigated with respect to station
and gridded (TRMM, CRU) data over the TRB.

All the four WRF model configurations reasonably
reproduced the spatial patterns and temporal evolution
(seasonality) of both TRMM-derived precipitation and CRU-
derived temperature over the study region. Significant cold
model biases were found when compared with observation
stations as well as the CRU data, independently of the WRF
configuration. The limited accuracy in simulating temperature
might not only be due to deficiencies of the WRF, but also due
to deficiencies of the CRU dataset (interpolation limitations) in
representing the actual temperature in such a mountainous re-
gion with a low density of observation stations. In terms of
precipitation, the MODIS25 revealed the closest correspon-
dence to the observations in relation to more latent heat.

Supported by the results of this study, we draw the follow-
ing conclusions: (i) the choice of the land use data (i.e.,
MODIS or USGS) as well as the resolution (50 or 25 km)
may significantly impact on simulated precipitation, but not
so much on simulated temperature; and (ii) TRMM is a good
surrogate for observation data in East Africa, where the obser-
vation network is sparse.

Based on our study, a qualified guess on a suited WRF
model configuration for the region of Kenya is suggested.
This is the prerequisite for CPU-demanding long-term region-
al climate simulations, which are important for climate change
impact research, and particularly for water availability and
agricultural studies.
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