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Abstract An important source of uncertainty, which causes
further uncertainty in numerical simulations, is that residing in
the parameters describing physical processes in numerical
models. Therefore, finding a subset among numerous physical
parameters in numerical models in the atmospheric and oce-
anic sciences, which are relatively more sensitive and impor-
tant parameters, and reducing the errors in the physical param-
eters in this subset would be a far more efficient way to reduce
the uncertainties involved in simulations. In this context, we
present a new approach based on the conditional nonlinear
optimal perturbation related to parameter (CNOP-P) method.
The approach provides a framework to ascertain the subset of
those relatively more sensitive and important parameters
among the physical parameters. The Lund–Potsdam–Jena
(LPJ) dynamical global vegetation model was utilized to test
the validity of the new approach in China. The results imply
that nonlinear interactions among parameters play a key role
in the identification of sensitive parameters in arid and semi-
arid regions of China compared to those in northern, north-
eastern, and southern China. The uncertainties in the numeri-
cal simulations were reduced considerably by reducing the
errors of the subset of relatively more sensitive and important
parameters. The results demonstrate that our approach not
only offers a new route to identify relatively more sensitive

and important physical parameters but also that it is viable to
then apply Btarget observations^ to reduce the uncertainties in
model parameters.

1 Introduction

The predictability and uncertainty of weather and climate are
hot topics in atmospheric and oceanic sciences. The uncer-
tainties involved in numerical simulations and predictions
are rooted not only in the uncertainty of initial error (Morss
and Battisti 2004; Aberson 2011) but also in model error
(Williams et al. 2001; Berthelot et al. 2005; Carrassi and
Vannitsem 2011; Jarvinen et al. 2012; Hally et al. 2013;
Wan et al. 2012) and belong to the Bfirst kind^ and Bsecond
kind^ categories of weather and climate predictability prob-
lems (Mu et al. 2002). The uncertainties in model errors main-
ly arise not only from the mathematical descriptions of earth
system processes (Cramer et al. 2001) but also from the un-
certainties related to physical parameters in the model (Zaehle
et al. 2005). Reducing the uncertainties in physical parameter
errors in numerical models through observations, optimization
methods, or data assimilation is thus a crucial area of research.
Efforts in this area will help to improve the simulation ability
and forecasting skill of such models in atmospheric and oce-
anic science studies (Lu and Hsieh 1997; Janiskova and
Morcrette 2005; Pulido et al. 2012; Smith et al. 2013).

There are many physical parameters included in numerical
models to describe the physical processes of atmosphere–
ocean coupled general circulation models. It would be costly
and impractical to reduce the uncertainties of all the physical
parameter errors through observation and other methods.
Instead, a more effective route is to choose certain key phys-
ical parameters, which are referred to be Bsensitive and
important^ to improve the simulation abilities and forecasting
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skill of models. There has been much discussion about how to
identify the sensitivity and importance of parameters (White
et al. 2000; Knorr and Heimann 2001; Li et al. 2012; Pappas
et al. 2013; Wang et al. 2013). Pitman (1994) analyzed the
percentage change of 18 physical parameters using the
Biosphere Atmosphere Transfer Scheme (BATS), a land sur-
face model, to reveal their relative importance. When the au-
thors analyzed the percentage change of one parameter, the
other 17 parameter values were fixed. The interaction among
parameters was ignored during the process (Jackson et al.
2003; Bastidas et al. 2006). Other methods have also been
employed to explore the sensitivity of certain physical param-
eters, such as the adjoint method, factorial experimentation,
and the Multi-Objective Generalized Sensitivity Analysis
(MOGSA) method (Henderson-Sellers 1992; Wang et al.
2001; Rayner et al. 2005; Bastidas et al. 2006; Rosero et al.
2010). The adjoint method is based on linear approximation,
and while it may be valid for small parameter errors over short
time periods, it is less applicable to large parameter errors and
long integration times. The factorial experimentation, Monte
Carlo, and MOGSA methods could be applied to consider the
impact of interactions among physical parameters through
producing a stratified sample under range of parameters
values, as well as to identify key physical parameters
(Zaehle et al. 2005; Bastidas et al. 2006). Henderson-Sellers
(1992) employed factorial experimentation to show the rank
of parameters using the BATS model. The top five most sen-
sitive parameters are vegetation roughness length, vegetation
albedo <0.7 μm, maximum leaf-area index, vegetation albedo
≥0.7 μm, and saturated soil hydrologic conductivity. Zaehle
et al. (2005) applied a Monte Carlo-type stratified sampling
approach to identify the sensitive and important physical pa-
rameters in a model and provide reasonable estimations of a
model output variable. They used Latin hypercube sampling
method to create random sample of parameter value. Based on
the random sample, the parameters sensitivity and importance
are determined by calculating ranked partial correlation coef-
ficients (RPCC) to estimate the uncertainty contribution of a
particular parameter to the total model output uncertainty.
They reported that the top five most sensitive and important
physical parameters were αC3,αa,θ,gm, and rgrowth for net pri-
mary production (NPP). Bastidas et al. (1999) identified
which of the parameters within a model was sensitive using
the MOGSA method. Their studies showed the number of
sensitive parameters according to significance levels below
1 %, from 1 to 5 %, and above 5 %.

In this work, a new approach was established to ascertain
which subset or combination of relatively more sensitive and
important parameters causes maximum uncertainty in numer-
ical simulation and forecast results because the parameters
combination should be considered to reduce the uncertainty
of numerical simulation, such as the data assimilation method
and the optimal method (Vrugt et al. 2005; De Lannoy et al.

2006). After first providing an overview of the new approach
in Section 2, we then describe its methodology in more detail
in Section 3, as well as the experimental procedures used to
test it. The results from the experiments are reported in
Section 4, and a discussion and summary of the key findings
are presented in Section 5.

2 Overview of the new approach

2.1 The new approach

To ascertain the combination of relatively more sensitive and
important parameters that cause maximum uncertainty in
numerical simulation and forecast results, we propose a new
approach, which consists of the following three steps.

The first step is to choose the physical parameters.
Generally, there are three types of parameters in a numerical
model. Taking the Lund–Potsdam–Jena (LPJ) model as our
example, the normalizing coefficient for the exponential dis-
tribution, which is randomly created and related to computa-
tional stability, and unrelated to observations, belongs to the
first type of parameter. Wood density is obtained through di-
rect observation data and falls into the second type of param-
eter. Finally, the parameters in the allometric equations are
achieved using indirect observations of leaf area index and
tree height and hence pertain to the third type of parameter.
The last two types of parameters describe physical processes
and can be obtained through observations. In this study, we
only consider parameters that can be obtained through direct
or indirect observations.

The second step is to examine the sensitivity of single phys-
ical parameter, of which there are many in numerical models.
Supposing there are n physical parameters obtained by obser-
vation data, some of the less sensitive n parameters first need to
be eliminated through implementing sensitivity tests of every
physical parameter. There are two reasons to implement this
step. Firstly, the cost in terms of human and material resources
needed to identify the combination of relatively more sensitive
and important physical parameters among all parameters would
be enormous. Secondly, not all of the n parameters will cause
large uncertainties in the numerical simulation. In the LPJmod-
el, if n = 24, and the combination approach is applied, we are
able to find the most significant combination of five relatively
more sensitive and important parameters among the total of 24

(Table 1). Those five parameters are identified through C5
24

optimization experiments, and we find that the computational
cost is high. We also find, by implementing simple sensitivity
experiments using the LPJ model, that not all of the 24 param-
eters bring large uncertainty to the numerical simulation. For
example, the extent of uncertainty in simulated NPP is 72.55 g
C m−2 year−1 when the g*m parameter error is 3.05, which is
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added to the standard value, using the LPJ model while the
other parameters remain unchanged (Table 1). However, the
extent of uncertainty in simulated NPP is just 2.48 g C
m−2 year−1 when the est*max parameter error is −0.04, which is
added to the standard value. In a previous study, Zaehle et al.
(2005) first identified 12 more sensitive and important param-
eters among a total of 36. Hence, it is necessary to implement
this step to eliminate some of the less sensitive parameters. To
accomplish the second step, the conditional nonlinear optimal
perturbation related to parameter error approach (CNOP-P; Mu
et al. 2010) is employed. A detailed explanation of the CNOP-P
approach is provided in the following section. The n parameters
are optimized individually using the CNOP-P approach. The
CNOP-Ps and their cost function values for every parameter are
obtained within the range of reasonable parameter error. The
physical explanation of the cost function induced by the
CNOP-P is the maximal extent of uncertainty in numerical
simulations caused by the optimal value. The sensitivity of

every parameter can be identified according to the cost function
value, and the more sensitive parameters can be chosen based
on an appropriate threshold, i.e., we choose m physical param-
eters where n > m. The advantage of using the CNOP-P ap-
proach is to identify the sensitivity of every parameter, which in
theory is the optimal way to ensure the ranking of parameters in
terms of their sensitivity. However, it ignores the impact of
interactions among parameters on the uncertainty of the numer-
ical simulation. Therefore, this step alone does not identify the
key combination of relatively more sensitive and important
parameters.

The third step is to examine the sensitivity and importance
of multiple parameters together, i.e., to reveal the most signif-
icant combination of parameters among all parameters previ-
ously identified in the second step. The aim of this step is to
find the relatively more sensitive and important parameters (k)
among the previously identified m parameters, where m > k.
Continuing with the LPJ model as our example, we suppose
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Table 1 The chosen parameters within the LPJ model

Number Parameter Standard Minimum Maximum Description

1 θ* 0.7 0.2 0.996 Co-limitation shape parameter

2
α*
a

0.5 0.3 0.7 fraction of PAR assimilated at ecosystem level relative to leaf level

3 λmax,C3 0.7 0.6 0.8 Optimal ci = ca for C3 plants (all PFTs except TrH)

4
α*
C3

0.08 0.02 0.125 Intrinsic quantum efficiency of CO2 uptake in C3 plants

5
a*C3

0.015 0.01 0.021 Leaf respiration as a fraction of Rubisco capacity in C3 plants

6 Q10,ko 1.2 1.1 1.3 q10 for temperature-sensitive parameter ko

7 Q10,kc 2.1 1.9 2.3 q10 for temperature-sensitive parameter kc

8 Q10,τ 0.57 0.47 0.67 q10 for temperature-sensitive parameter tau

9
r*growth

0.25 0.15 0.4 Growth respiration per unit NPP

10
g*m

3.26 2.5 18.5 Maximum canopy conductance analog [mm day−1]

11 αm 1.391 1.1 1.5 Evapotranspiration parameter

12 kallom1 100 75 125 Crown area = kallom1*height**krp

13 kallom2 40 30 50 Height = kallom2*diameter**kallom3

14 kallom3 0.67 0.5 0.8 Height = kallom2*diameter**kallom3

15
k*la:sa

6000 2000 8000 Leaf-to-sapwood area ratio

16 krp 1.5 1.37 1.6 Crown area = kallom1*height**krp

17
k*mort1

0.01 0.005 0.1 Asymptotic maximum mortality rate [year−1]

18 kmort2 0.4 0.2 0.5 Growth efficiency mortality scalar

19
est*max

0.24 0.05 0.48 Maximum sapling establishment rate [m2/year]

20 n0 7.15 6.85 7.45 Leaf N concentration (mg/g) not involved in photosynthesis

21 denswood 200 180 220 Specific wood density [kg C/m3]

22
τ*litter

0.35 0.19 0.81 Litter turnover time at 10 °C [year]

23 pt 1.32 1.12 1.52 Priestley-Taylor coefficient

24 β 0.17 0.15 0.19 Global average short-wave albedo



n = 24, m = 10, and k = 5 (i.e., 10 parameters were chosen
following the second step). In the third step, we want to find
the combination of five relatively more sensitive and impor-
tant parameters among those 10 that cause the greatest uncer-

tainty in the numerical simulation. To begin, C5
10 ¼ 252

groups of parameters combinations are built. For these groups,
252 CNOP-Ps and their cost function values are obtained
using the CNOP-P approach within the range of reasonable
parameter error. The parameters combination causing the
maximal cost function value among the 252 cost function
values is regarded as the relatively more sensitive and impor-
tant subset of five parameters among the total of 10. The
experiments in this step are different to those conducted in
the second step (see Fig. 1), and in carrying out this step, the
impact of nonlinear interactions among parameters on the un-
certainty of the numerical simulation can be considered.

2.2 The CNOP-P approach

In the above new approach, the maximal uncertainty in nu-
merical simulations is obtained within the range of reason-
able parameter error in both single-parameter and multi-
parameter experiments using the CNOP-P approach. The
CNOP-P is a type of parameter perturbation that could cause
the maximal cost function with a certain constraint and at an
optimal time. This type of parameter perturbation, which
could lead to the maximal uncertainty in numerical simula-
tion and forecasting results, is a parameter error or parameter
error combination. The advantages of the CNOP-P approach
are not only its ability to obtain the parameter error combi-
nation causing the maximal uncertainty but also that it can
be used to consider the impact of nonlinear interactions
among parameters on the level of uncertainty.

In the work of Mu et al. (2010). the CNOP-P approach was
proposed according to types of predictability, and it has been
applied to study ENSO predictability, estimations of terrestrial
ecosystems, and the Kuroshio large meander (KLM) (Mu
et al. 2010; Duan and Zhang 2010; Sun and Mu 2012a, b;
Wang et al. 2012). Yu et al. (2012) analyzed the roles of initial
error and model error in generating a significant spring pre-
dictability barrier (SPB) for El Nino events using the CNOP-P
approach and noted that initial errors play a more important
role than parameter errors in causing a significant SPB for El
Nino events. In addition, Wang et al. (2012) discussed the
impact of model error on the KLM. They found that not only
did the initial condition errors have greater effects on the pre-
diction of the KLM than errors in model parameters but also
that the latter cannot be ignored. We now review the deriva-
tion of the CNOP-P approach for the readers’ convenience.

Let the nonlinear differential equations be as follows:

∂U
∂t

¼ F U ;Pð Þ U∈Rn; t∈ 0; T½ �
U jt¼0 ¼ U0

(
ð1Þ

where F is a nonlinear operator, P is a parameter vector in
Eq. (1), and U0 is an initial value. Let Mτ be the propagator
of the nonlinear differential equations from the initial time 0 to
τ. uτ is a solution of the nonlinear equations at time τ and
satisfies u(τ)=Mτ(u0,p).

Let U(T;U0,P) and U(T;U0,P)+u(T;U0,p) be the solutions
of the nonlinear differential equations (1) with P and P+p,
respectively, where P and p are parameter vectors. u(T;U0,p)
describes the departure from the reference state U(T;U0,P)
caused by p. The solutions satisfy:

U T ;U 0;Pð Þ ¼ MT U 0;Pð Þ
U T ;U 0;Pð Þ þ u T ;U0; pð Þ ¼ MT U 0;P þ pð Þ

�
: ð2Þ
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Fig. 1 Flowchart depicting the
steps involved in the new method



For a proper norm ‖‖, a parameter perturbation pδ is called a
CNOP if and only if

J pδð Þ ¼ max
p∈Ω

J pð Þ; ð2Þ

where

J pð Þ ¼ MT U 0;P þ pð Þ−MT

�
U 0;P

���� ��� ð3Þ

P is a reference state of the parameters in the Eq. (1), and p
is the perturbation of the reference state. In the second and
third steps, the dimension of the P is 1 and 5. p∈Ω is a con-
straint condition. The CNOP-P is the parameter perturbation
whose nonlinear evolution attains the maximum value of the
cost function J at time T.

3 Experimental procedures and model

3.1 Experimental design

Twenty-four parameters within the LPJ model were chosen
for examination based on the study by Zaehle et al. (2005).
Table 1 shows the physical meanings, standard values, and
minimum and maximum values for all parameters. As we
know, parameter values differ; therefore, for the convenience
of data processing and implementing nonlinear optimization,
the chosen parameters were normalized using linear transfor-
mations. The physical parameters were mapped into the range
of −1 to 1. The simple linear piecewise functionwas applied to
normalize the physical parameters as follows:

y ¼ x−Stavalue
Maxvalue−Stavalue

when x≥Stavalue

y ¼ x−Stavalue
Stavalue−Minvalue

when x < Stavalue

8><
>:
where x and y are the values of front and rear transformation
and Stavalue, Maxvalue, and Minvalue are the standard, max-
imum, and minimum values, respectively, of the physical pa-
rameters. When x = Minvalue, y = −1; when x = Maxvalue,
y = 1. When x = Stavalue, y = 0. The constraint condition in
Eq. (2), p∈Ω, is a box constraint. The constraint condition
parameter is 0.2 for parameters (|p| ≤ δ, δ = 0.2). When δ = 1,
the parameter errors are also reasonable. However, the parameter
errors will cause the terrestrial ecosystem to be unstable using the
CNOP-P approach. Four study regions were chosen in China
(northern, northeastern, southern, and arid/semi-arid); and 24
cases, whose longitude and latitudinal are shown in Table 2,
were chosen as the study region in the below numerical results.

Figure 2 shows the detailed experimental design used
to identify the relatively more sensitive and important
parameters combination. Taking annual NPP as the var-
iable in the cost function, we supposed n = 24, m = 10,

k = 5 and wanted to find the five relatively more sen-
sitive and important parameters among the 10 parame-
ters. First, 10 physical parameters were chosen from the
original 24 according to the second step introduced in

Section 2. Next, we built C5
10 ¼ 252 groups of parame-

ters combinations. For these groups, 252 CNOP-Ps and
their cost function values were obtained using the
CNOP-P approach within the range of reasonable pa-
rameter error. The five-parameter combination causing
the maximal cost function value among the 252 cost
function values was regarded as the most significant
subset of relatively more sensitive and important param-
eters among the total of 10. In the second step, the
sensitivity of single parameter was identified using the
CNOP-P approach, which in theory is the optimal way
to ensure the ranking of every parameter in terms of its
sensitivity. For verification, we compared the CNOP-P
approach with another method, the traditional one-at-a-
time approach, to identify the sensitivity of every pa-
rameter (OAT; Pitman 1994; Saltelli 1999). The OAT
approach supplied the variation due to the representative

Table 2 The sensitivity of single parameter among 10 parameters using
the CNOP-P approach (numbers represent the sequence number of single
parameter as in Table 1, and 125.75 45.75 means 125.75oE 45.75oN.
There are similar for other locations)

Number Location

1 125.75 45.75 10 4 2 9 11 1 8 17 23 5

2 125.75 46.25 10 4 2 9 1 11 17 8 23 19

3 125.75 46.75 10 4 2 9 1 11 8 17 5 24

4 126.25 45.75 4 10 2 9 1 11 8 5 23 17

5 126.25 46.25 4 10 2 9 1 11 15 8 5 17

6 126.25 46.75 4 10 2 9 1 17 8 11 5 23

7 126.75 45.75 4 10 2 9 1 8 11 17 5 15

8 126.75 46.25 4 10 2 9 1 11 8 17 5 15

9 126.75 46.75 4 10 2 9 1 17 8 15 11 5

10 115.75 26.25 4 2 1 9 10 17 5 8 24 19

11 115.75 26.75 4 2 1 17 9 10 5 24 8 19

12 115.75 27.25 4 2 1 17 9 16 15 10 11 5

13 115.75 32.25 4 2 10 1 9 5 24 8 19 15

14 115.75 32.75 4 2 1 9 11 10 5 19 23 8

15 115.75 33.25 4 2 1 9 10 12 16 17 15 23

16 115.75 36.25 11 10 4 9 2 24 16 19 13 14

17 115.75 36.75 11 10 4 2 5 8 1 24 9 16

18 115.75 37.25 11 10 4 2 1 5 24 16 12 9

19 116.25 36.25 4 2 10 11 17 9 1 5 16 14

20 116.25 36.75 11 10 4 2 9 1 24 17 16 19

21 116.25 37.25 11 10 2 9 4 1 16 5 8 14

22 116.75 36.25 4 2 1 10 11 16 5 14 24 19

23 116.75 36.75 16 2 4 5 10 24 9 1 8 11

24 116.75 37.25 10 11 4 9 14 2 8 24 16 19
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parameter perturbation value, such as ±10 % or ±20 %.
The other parameter values were fixed when the sensi-
tivity of a certain parameter was identified. So, it is
convenient to obtain the variation due to the perturbed
parameter, and the computational cost is relatively
small. The identification of the parameter sensitivity
was performed according to the extent of variation in
the numerical simulation. A finite difference method
was employed to calculate the variation due to the
perturbed parameter in the factor space to identify the
sensitivity of the parameter. It was visible that the in-
teraction among the parameters and the optimal settings
of factors are ignored when the sensitivity of parameter
is determined with the OAT approach. The parameter
errors were ±0.2 to run the LPJ model in our study,
which were similar to those in the experiment using
the CNOP-P approach.

In our studies, to obtain the maximum value of Eq. (2),
an evolutionary algorithm (differential evolution (DE);
Storn and Price 1997) was employed, because the cost
function may be non-differentiable about the parameters
as optimal variables. Some studies have applied evolution-
ary algorithms to investigate parameter estimations and un-
certainties in land surface schemes and extreme events with
the MM5 model and other models (Duan et al. 1992;
Kruger, 1993; Zhang et al. 2000). The advantage of the
evolutionary algorithms is that they obtain the optimal val-
ue of Eq. (2) without the gradient. The DE algorithm has
been applied to explore terrestrial ecosystem responses to
climate change, and details on the algorithm have been
provided (Sun and Mu 2012a, b, 2013). In addition, the
validity of the DE algorithm was checked before the it
was applied to search for the optimal value with the LPJ
model (Sun and Mu 2009). The CNOP-P was obtained by
calculating Eq. (2), and an initial estimation value was
given during the optimization process. In our study, to ef-
fectively obtain the CNOP-P, 12 random initial estimation

values were chosen. The final optimal value was repeatedly
verified using the DE algorithm.

3.2 The LPJ model

We used the LPJ model in the present study as an example to
validate the theoretical framework (Sitch et al. 2003). The LPJ
model is process-based and can describe the dynamics of land
processes in atmospheric and oceanic science studies, the car-
bon exchange between land and the atmosphere, and the hy-
drological cycle. The model, which originates from the biome
model family (Prentice et al. 1992). can simulate the distribu-
tion of plant functional types (PFTs), with 10 PFTs used to
distinguish different photosynthetic (C3, C4), phenological
(deciduous, evergreen), and physiognomic (tree, grass) fea-
tures. The parameters will be identified in all PFTs when the
parameter sensitivity analysis is implemented. The LPJ model
explicitly considers photosynthesis, mortality, fire distur-
bance, and soil heterotrophic respiration. Carbon is stored in
seven PFT-associated pools in this model with leaves, sap-
wood, heartwood, fine roots, a fast and a slow decomposing
above-ground litter pool, a below-ground litter pool, and two
soil carbon pools for each grid cell. A detailed description and
evaluation of the model can be found in Sitch et al. (2003).
The LPJ model has been widely employed to discuss the var-
iation in terrestrial ecosystems and the carbon cycle (Werner
et al. 2007; Hickler et al. 2008). and its simulation of PFTs has
been shown to be in agreement with the observations in China.
However, owing to a lack of observational data regarding NPP
in China, the NPP simulated using the LPJmodel relies on this
simulation using other models at similar spatial and temporal
scales. Nevertheless, numerical results indicate that the LPJ
model can be employed to examine variations in terrestrial
ecosystems in response to climate change (Sun 2009).

The LPJ model was run with climate data comprising
monthly precipitation, temperature, wet frequency, and cloud
cover. Furthermore, a dataset of global atmospheric CO2
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concentrations obtained from a carbon cycle model, also in-
cluding ice core measurements and atmospheric observations
(Kicklighter et al. 1999). was used. Soil texture data were
based on the Food and Agriculture Organization (FAO) soil
dataset (Zobler 1986).

To run the LPJ model over a period of 1000 model years,
the equilibrium state was obtained by repeatedly using climate
data from the Climatic Research Unit (CRU) 0.5° global cli-
mate dataset over the period 1901–1930 (Mitchell and Jones
2005). Generally, the equilibrium state will change, and the
model will need to be spun-up over and over again when the
parameters change. Therefore, in our study, the equilibrium
state due to variational parameters was explored. The run time
for the state to attain equilibrium as a result of changing pa-
rameters was not too long. The state attained equilibrium for
100 model years as the optimization time. Previous simulation
results for 1000 model years using unvaried parameters were
considered as the reference state.

4 Numerical results

4.1 The sensitivity and importance of single parameter

The CNOP-P and its cost function value using the CNOP-P
approach were used to examine the sensitivity and importance
of single parameter, and Table 2 shows the results among all
parameters for 24 cases. Only the 10 chosen parameters are
shown for convenience, as the cost functions of the remaining
14 parameters were negligible. We found that the most sensi-
tive and important parameter controlling NPP was intrinsic
quantum efficiency in C3 plants (αC3), and this was the case
in most of northern, northeastern, and southern China. In the
three cases of northeastern China, the most sensitive and im-
portant parameter controlling NPP was the maximum canopy
conductance analog (gm); however, αC3 was still the second
most sensitive and important parameter. In the other six cases
of northeastern China, gm was the second most sensitive and
important parameter. For the six cases of northern and south-
ern China, the second most sensitive and important parameter
was the fraction of photosynthetically active radiation (PAR)
assimilated at the ecosystem level relative to leaf level (αa),
while the co-limitation shape parameter (θ*) was the third
most sensitive and important parameter in these cases. The
αa and rgrowth parameters, representing growth and respiration
per unit NPP, and θ*, were, respectively, the third, fourth, and
fifth most sensitive and important parameters for northeastern
China. The numerical results suggest that photosynthesis and
canopy conductance in the soil hydrology are important phys-
ical processes for NPP in northern China.

Furthermore, in southern and in part of northern China,αC3

and αa are the two important parameters, suggesting that pho-
tosynthesis is an important physical process for NPP in these

two regions and that precipitation is sufficient, while canopy
conductance in soil hydrology may be secondary. However, in
the arid and semi-arid regions, the most sensitive and impor-
tant parameter was found to be different in different cases. In
most cases, the evaporation parameter (αm) was the most sen-
sitive and important parameter. However, the αC3,gm, and αa

parameters were also important parameters in all cases of arid
and semi-arid China. The results showed that the parameter
related to evaporation was the most sensitive and important
for water-limited regions. However, the most sensitive and
important parameter was different for different water-limited
regions, with other important parameters being those that de-
scribe photosynthesis and canopy conductance in soil hydrol-
ogy, providing further indication that these are important
physical processes overall. In summary, the numerical results
showed that the most sensitive and important parameters
might be different for different regions, especially in both
water-limited and non-limited regions.

4.2 The sensitivity and importance of multiple parameters

In the results reported in the previous section, the sensitivity
and importance of single parameter was identified using the
CNOP-P approach. The dimension of p is 1 in Eq. (3).
However, the results do not elucidate which combination or
subset of parameters is the most sensitive and important. This
is because the individual parameter is optimized only to deter-
mine its sensitivity, and the combination of top five ranked
sensitive parameters for the single-parameter sensitive analy-
sis method may not be equivalent to the combination of five
parameters for the multiple parameter sensitive analysis meth-
od. Next, the sensitivity of parameters combination will be
explored when the p is 5 in Eq. (3).

To address this, we first needed to discover, using the
CNOP-P approach, which five parameters among the 10 were
the most sensitive and important when the level of nonlinear
interaction among the 10 parameters is considered. Table 2
shows the maximal cost function values and which five pa-
rameters among the 10 were the most sensitive and important
using the CNOP-P approach for the different study regions.
The results suggest that the five most sensitive and important
parameters are similar in northern, northeastern, and southern
China. For example, for the second and third cases, the five
parameters were θ*, αa, αC3, rgrowth, and gm. However, in the
arid and semi-arid regions of China, the five most sensitive
and important parameters were different. For example, for the
16th, 18th, 20th, and 24th cases, the five most sensitive and
important parameters were αa, αC3, rgrowth, αm, and krp. The
five parameters represent photosynthesis, respiration, hydrol-
ogy, and allocation of annual carbon increment processes. The
uncertainties of these physical process overestimate the GPP
due to αa and αC3 and underestimate the autotrophic respira-
tion in virtue of rgrowth, αm and krp. So, the uncertainties of
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these physical processes lead to the large uncertainty of the
NPP, which is highly sensitive to these parameters.
Meanwhile, for the 19th case, the five most important param-
eters were θ*, αa, αC3, rgrowth and krp. There are similar phys-
ical processes to influence the variation of the NPP.

While the sensitivity and importance of single parameter
were identified in the single-parameter experiments, nonlinear
interactions among all the parameters are neglected using the
CNOP-P approach. Next, we try to answer whether the five
most sensitive and important parameters using the CNOP-P
approach were the same as the ranking of the foremost five
parameters reported in Section 4.1. We found that in northern,
northeastern, and southern China, the five most important pa-
rameters using the CNOP-P approach were similar to the fore-
most five parameters ranked in Section 4.1. For example, the
important five parameters using the CNOP-P approach for the
second case wereαa, αC3, rgrowth, gm, and αm, which was the
same set of parameters as those determined using the single-
parameter experiment. However, the five most sensitive and
important parameters were different when using the CNOP-P
approach for multiple parameters and using it for individual
parameter in the arid and semi-arid regions. For example, for
the 19th region, the five parameters were θ*, αa, αC3, rgrowth,
and krp. However, based on the single-parameter experiments
using the CNOP-P approach, the five parameters were αa,
αC3, gm, αm, and kmort1. The numerical results imply that the
parameter r*growth, representing the respiration process, is very

important when nonlinear interactions are considered during
the plant growth process, although the single-parameter sen-
sitivity regarding rgrowth may not show it to be more sensitive
than other parameters. The results also illustrate that nonlinear
interactions among parameters and complex physical process-
es can be explored using the CNOP-P approach. The CNOP-P
approach may be able to reasonably estimate the carbon cycle
process; however, the single-parameter sensitivity method
may overestimate the respiration process without considering
the rgrowth parameter (Table 3).

4.3 Sensitivity experiment using the OAT approach

In Section 4.1, we reported the results from single-parameter
sensitivity experiments implemented using the CNOP-P ap-
proach. To compare these results with those based on other
methods, the traditional OAT approach was employed to iden-
tify the sensitivity of the single parameter. The cost function
was computed using Eq. (3) when p = ±0.2. The larger the cost
function is, the more sensitive and important the parameter. As
shown in Table 4, parameter sensitivity and importance were
similar to those using the CNOP-P approach. Due to the design
of the CNOP-P approach, the sensitivity and importance of
every parameter are optimal. Zaehle et al. (2005) employed a
Monte Carlo technique and reported a similar conclusion based

on 81 cases. These results reveal that sensitivity and impor-
tance are similar when parameters are considered individually.

4.4 Sensitivity experiment on the five most important
parameters determined for different basic states

To discuss whether the sensitivity of the parameters is depen-
dent on the choice of the parameters values, the parameters are
identified when the reference values of the parameters change.
The random number, which satisfies the normal distribution
with zero average and a standard deviation of 0.1, is
superimposed onto the reference state as the new reference
state. The sensitivity of every parameter is determined with
the CNOP-P approach for the 24 cases. The results showed
that the sensitivity of every parameter given the new reference
state is similar to that for the previous reference state (not
shown). The five most important parameters are identified
according to the sensitivity of every parameter. The numerical
results show that the combinations of important parameters in
21 out of 24 cases given the new reference state are the same
as those for the previous reference state (Table 5). However,

Table 3 The five most sensitive parameters using the CNOP-P
approach (numbers represent the sequence number of single parameter as
in Table 1, and 125.75 45.75 means 125.75oE 45.75oN. There are similar
for other locations)

Number Location Cost function Parameters combination

1 125.75 45.75 200.7070 1,2,4,9,10

2 125.75 46.25 199.3487 1,2,4,9,10

3 125.75 46.75 210.2074 1,2,4,9,10

4 126.25 45.75 189.8998 1,2,4,9,10

5 126.25 46.25 194.8346 1,2,4,9,10

6 126.25 46.75 198.5482 1,2,4,9,10

7 126.75 45.75 199.2951 1,2,4,9,10

8 126.75 46.25 199.9770 1,2,4,9,10

9 126.75 46.75 197.9136 1,2,4,9,10

10 115.75 26.25 168.7977 1,2,4,9,10

11 115.75 26.75 157.9411 1,2,4,9,10

12 115.75 27.25 149.2697 1,2,4,9,17

13 115.75 32.25 162.6690 1,2,4,9,10

14 115.75 32.75 150.9800 1,2,4,9,10

15 115.75 33.25 156.7094 1,2,4,9,10

16 115.75 36.25 276.1842 2,4,9,11,16

17 115.75 36.75 295.5089 2,4,8,9,10

18 115.75 37.25 314.7552 2,4,9,11,16

19 116.25 36.25 270.4804 1,2,4,9,16

20 116.25 36.75 297.9204 2,4,9,11,16

21 116.25 37.25 304.4899 1,2,4,9,11

22 116.75 36.25 244.2345 2,4,10,11,14

23 116.75 36.75 203.4058 4,5,9,16,24

24 116.75 37.25 297.2164 2,4,9,11,16
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the important parameters combinations for three of the cases
are different than those for the previous reference state. In
three of these cases, one parameter in combinations of impor-
tant parameters for the new reference state is different than the
parameters in combination for the precious reference state.
The three cases are located in the arid and semi-arid region
in China. The above numerical results imply that the combi-
nations of identified important parameters are the same for
different reference states in most cases. In the arid and semi-
arid region, there are slight differences in the combinations of
identified important parameters for different reference states.

4.5 Sensitivity experiment on the most important
parameters determined for different sizes
of the optimization set

In the above studies, the size of the optimization set is 5. In
this section, the difference about the sensitivity of the
parameters combination is explored when the size of the
optimization set changes. The sensitive parameters combina-
tions are determined for the three, four, and six parameters

Table 5 Same to Table 3, just for different reference state, and 125.75
45.75 means 125.75oE 45.75oN. There are similar for other locations

Number Location Cost function Parameters combination

1 125.75 45.75 200.6966 1,2,4,9,10

2 125.75 46.25 198.6640 1,2,4,9,10

3 125.75 46.75 210.3192 1,2,4,9,10

4 126.25 45.75 189.2977 1,2,4,9,10

5 126.25 46.25 192.5827 1,2,4,9,10

6 126.25 46.75 199.4382 1,2,4,9,10

7 126.75 45.75 199.7737 1,2,4,9,10

8 126.75 46.25 198.6443 1,2,4,9,10

9 126.75 46.75 198.8266 1,2,4,9,10

10 115.75 26.25 170.9943 1,2,4,9,10

11 115.75 26.75 149.1599 1,2,4,9,10

12 115.75 27.25 149.0830 1,2,4,9,17

13 115.75 32.25 166.0491 1,2,4,9,10

14 115.75 32.75 147.4435 1,2,4,9,10

15 115.75 33.25 159.6410 1,2,4,9,10

16 115.75 36.25 230.7753 2,4,9,11,16

17 115.75 36.75 302.3711 2,4,8,9,10

18 115.75 37.25 311.1083 1,2,4,9,11

19 116.25 36.25 262.5241 1,2,4,9,16

20 116.25 36.75 274.9986 2,4,9,11,16

21 116.25 37.25 249.7583 1,2,4,9,11

22 116.75 36.25 303.4423 1,2,4,10,11

23 116.75 36.75 265.6096 4,5,8,16,24

24 116.75 37.25 243.1687 2,4,9,11,16

Table 4 The sensitivity of single parameter among 10 parameters using
the OAT method (numbers represent the sequence number of single
parameter as in Table 1, and 125.75 45.75 means 125.75oE 45.75oN.
There are similar for other locations)

Number Location

1 125.75 45.75 10 4 2 9 11 1 8 17 23 15

2 125.75 46.25 10 4 2 9 1 11 17 8 23 12

3 125.75 46.75 10 4 2 9 1 11 17 8 5 24

4 126.25 45.75 4 10 2 9 1 11 8 5 23 15

5 126.25 46.25 4 10 2 9 1 11 15 8 5 17

6 126.25 46.75 4 10 2 9 1 17 8 11 5 23

7 126.75 45.75 4 10 2 9 1 11 8 17 5 15

8 126.75 46.25 4 10 2 9 1 17 8 11 5 23

9 126.75 46.75 4 10 2 9 1 8 17 15 11 5

10 115.75 26.25 4 2 1 9 10 17 5 8 24 19

11 115.75 26.75 4 2 1 17 9 10 5 24 8 19

12 115.75 27.25 4 2 1 17 9 16 15 10 11 5

13 115.75 32.25 4 2 1 9 17 5 10 24 8 19

14 115.75 32.75 4 2 10 1 9 5 24 8 19 15

15 115.75 33.25 4 2 10 1 9 11 5 19 23 24

16 115.75 36.25 10 4 9 2 24 11 14 13 17 6

17 115.75 36.75 11 10 4 2 1 17 8 24 13 14

18 115.75 37.25 10 11 4 2 1 8 9 5 14 24

19 116.25 36.25 4 2 17 1 10 11 14 9 5 19

20 116.25 36.75 10 4 2 11 9 19 8 16 3 23

21 116.25 37.25 10 4 11 6 9 2 5 1 16 24

22 116.75 36.25 4 2 1 11 16 5 24 14 12 19

23 116.75 36.75 10 4 9 2 11 24 17 1 8 15

24 116.75 37.25 10 11 4 9 2 8 15 14 5 19
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in the parameters combination (Table 6). It is found that the
sensitive parameters combination with high size parameters
contains that with low size parameters in northern, northeast-
ern, and southern China. For example, for the case
(115.75°E, 33.25°N), the sensitive parameters combinations
with different dimensions are respectively (α*

a, α
*
C3, g

*
m ),

(θ*,α*
a, α

*
C3, g

*
m ), (θ*,α*

a, α
*
C3,r

*
growth,g

*
m ), and (θ*,α*

a, α
*
C3,

r*growth,g
*
m,k

*
mort1 ). It is found that these regions are moisture

or semi-moisture region in China. In the part of arid and
semi-arid regions, there is similar character to the moisture
and semi-moisture regions. For example, for the case
(116.75°E, 37.25°N), the sensitive parameters combinations
with different dimensions are respectively (α*

a, α
*
C3, αm),

(α*
a, α*

C3, r*growth,αm), (α*
a, α*

C3, r*growth,αm,krp), and (α*
a,

α*
C3, r

*
growth,αm,kallom3,krp). However, in the other part of arid

and semi-arid regions, there is a different character. It is
found that the sensitive parameters combination with high
size parameters does not completely contain that with low
size parameters in the other part of the arid and semi-arid
region. For example, for the case (116.25oE, 36.75oN), the
sensitive parameters combinations with different dimensions
are respectively (α*

a, α
*
C3, αm), (α*

a, α
*
C3,αm, est*max ), (α*

a,



α*
C3, r

*
growth,αm,krp), and (α*

a, α
*
C3, r

*
growth,αm,krp, β). The

above numerical results imply that in the strong interaction
region between land and atmosphere, such as arid and semi-
arid region, the parameters combination may be dependent
on the size of the parameters combination. However, in the
weak interaction region between land and atmosphere, such
as moisture region, the parameters combination may not be
dependent on the size of the parameters combination.

4.6 Sensitivity experiment to identify the five most
important parameters

An important aim of this study was to improve the ability
to estimate and predict the carbon cycle in terrestrial eco-
systems using the identified sensitive and important pa-
rameters. Errors in these parameters are reduced through
routine or additional observations. However, to show the
extent to which the simulations were improved when the
most sensitive and important parameters pattern was

destroyed, experiments were designed and carried out as
follows. As reported in Section 4.2, 252 parameters com-
binations were computed to obtain the CNOP-Ps. Among
those CNOP-Ps and their cost functions, the CNOP-P
leading to the maximal cost function is called the
CNOP. Excluding the CNOP-P-max, two CNOP-Ps were
chosen to compare the extent of improvement. Among the
252 CNOP-Ps representing parameters combinations, a
group of parameters, which was the same as the foremost
five parameters identified using the CNOP-P approach for
individual parameter, was named CNOP_single. Another
group of parameters, which was same as the foremost five
parameters identified using the sensitivity analysis method
for single parameter, was simply called the Bsingle^ group.
Finally, a random group of parameters was also chosen.
Referred to Mu et al. (2009). who employed a formula to
show the benefit of reducing the CNOP-type initial errors
compared with another type of initial error, the extent of
improvement in the uncertainty in the numerical simula-
tion is measured as τ:

τ ¼ MT U0;P þ pð Þ−MT

�
U 0;P

���� ���− MT U 0;P þ αpð Þ−MT

�
U 0;P

���� ���
ð4Þ

The parameters in Eq. (4) are similar to those in Eq. (3), and
α represents the decreasing extent of the uncertainty of the
parameters, which is a constant less than 1. In this study, the
four types of parameters including the CNOP were compared
with τ for each case. The larger τ was, the better the extent of
improvement. The 252 parameters combinations must include
the above four types of parameters. The numerical results in
Section 4.2 showed that the most sensitive and important pa-
rameters were similar in most of the study regions, except for
arid and semi-arid regions in China. Therefore, the sensitivity
experiment was implemented for these regions. Figure 3
shows the variation using the four types of parameters com-
binations using three factors (α = 0.2, 0.4, and 0.6) by Eq. (4)
in the arid and semi-arid regions in China. The average re-
duced extents of the uncertainties for nine cases in the simu-
lated NPP due to the CNOP-P-type parameter error were
248.02, 215.35, and 180.43 g C/m2 for α = 0.2, 0.4, and 0.6,
respectively. Meanwhile, for the CNOP_single parameter error,
the results were 168.98, 122.87, and 95.48 g C/m2; for the
Bsingle^ parameter error they were 177.36, 141.60, and
108.74 g C/m2; and for the random errors they were 128.23,
107.48, and 92.30 g C/m2, respectively. The results illustrate that
the gain obtained by the CNOP-P-type parameters combinations
was the best among all the parameters combinations for each
case and each factor. The results also suggest that the uncer-
tainties in the simulations of the carbon cycle due to parameter
errors can be reduced through CNOP-P-type identification of
the most sensitive and important parameters combination.

Table 6 The comparison for three, four, and six sensitive parameters
combinations using the CNOP-P approach (numbers represent the
sequence number of single parameter as in Table 1, and 125.75 45.75
means 125.75oE 45.75oN. There are similar for other locations)

Number Location Parameters
combination
with three
parameters

Parameters
combination
with four
parameters

Parameters
combination
with six
parameters

1 125.75 45.75 2,4,10 2,4,9,10 1,2,4,9,10,11

2 125.75 46.25 2,4,10 2,4,9,10 1,2,4,9,10,11

3 125.75 46.75 2,4,10 2,4,9,10 1,2,4,9,10,11

4 126.25 45.75 2,4,10 2,4,9,10 1,2,4,9,10,11

5 126.25 46.25 2,4,10 2,4,9,10 1,2,4,9,10,11

6 126.25 46.75 2,4,10 2,4,9,10 1,2,4,9,10,11

7 126.75 45.75 2,4,10 2,4,9,10 1,2,4,9,10,11

8 126.75 46.25 2,4,10 2,4,9,10 1,2,4,9,10,11

9 126.75 46.75 2,4,10 2,4,9,10 1,2,4,9,10,11

10 115.75 26.25 2,4,10 1,2,4,10 1,2,4,5,9,10

11 115.75 26.75 2,4,10 1,2,4,10 1,2,4,5,9,10

12 115.75 27.25 1,2,4 1,2,4,9 1,2,4,5,9,17

13 115.75 32.25 2,4,10 1,2,4,10 1,2,4,5,9,10

14 115.75 32.75 1,2,4 1,2,4,10 1,2,4,9,10,11

15 115.75 33.25 2,4,10 1,2,4,10 1,2,4,9,10,17

16 115.75 36.25 4,11,19 2,4,10,11 2,4,9,10,11,16

17 115.75 36.75 4,9,11 2,4,9,11 2,4,5,9,11,16

18 115.75 37.25 4,9,11 2,4,11,16 2,4,9,11,12,16

19 116.25 36.25 2,4,9 1,2,4,10 1,2,4,9,11,17

20 116.25 36.75 2,4,11 2,4,11,19 2,4,9,11,16,24

21 116.25 37.25 2,4,11 2,4,11,16 1,2,4,9,11,16

22 116.75 36.25 1,2,4 2,4,10,11 1,2,4,10,11,24

23 116.75 36.75 4,5,9 4,8,10,24 2,4,8,9,10,11

24 116.75 37.25 2,4,11 2,4,9,11 2,4,9,11,14,16
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Fig. 3 Sensitivity experiments
carried out to compute the gain
from the five most sensitive
parameters using the CNOP-P
approach. CNOP represents the
reduced extent due to the CNOP-
P-type parameter error. CNOP_
single represents the reduced
extent due to the parameter error
by optimizing single parameter.
Single represents the reduced
extent due to the parameter error
by the OAT approach. Random
represents the reduced extent due
to the random parameter error



5 Discussion and summary

The uncertainties in physical parameters of numerical models
are the main source of numerical simulation ability and fore-
cast skill, such as numerical simulation for land process
(Kuczera and Parent 1998; Vrugt et al. 2003). An approach
of reducing uncertainty in numerical simulation is to calibrate
the model parameters or parameters combination to closely
match the input and output behavior to the observation data
for model development. However, it is necessary to choose the
model parameters or parameters combination to be calibrated
because there are many parameters in the numerical model,
such as the number of controlling the model parameters about
from O(10) to O(100) (Li et al. 2013). Besides, to reduce the
uncertainty of numerical modeling, the effects of the parame-
ters combination should be considered, not to just calibrate
parameter one by one. So, it is a key issue to determine which
group of physical parameters should firstly be calibrated.
Although the model parameters could be calibrated through
the above methods, the calibrated model parameters values
may not match with the true values. So, the calibrated model
parameter values may not be applicable to other numerical
simulations or forecast. It is feasible method that the physical
parameter errors are reduced through observational data.
Since the observation of the physical parameters is difficult
and expensive, it is very important which parameter should be
firstly observed to obtain the true values to improve the nu-
merical models.

The physical parameters were ranked using the current pa-
rameter sensitivity analysis methods (Zaehle et al. 2005). For
example, based on probability theory, such as Monte Carlo
techniques, parameter sensitivity can be conducted according
to model output through multiple model simulations. One
method is to identify parameter sensitivity by analyzing the
contribution of single parameter to the overall output uncer-
tainty with variance (Verbeeck et al. 2006). Another is to de-
termine parameter sensitivity by calculating the ranked partial
correlation coefficient between model inputs and outputs
(Zaehle et al. 2005). These methods can determine parameter
sensitivity and show the ranking of the parameters. For
example, Zaehle et al. (2005) determined the five top-most
sensitive parameters for NPP to be αC3, αa, θ

*, gm, and rgrowth
using a Monte Carlo-type stratified sampling approach for 81
cases from the class A data set, in which the regions in China
maybe not included. In our study, the group of physical pa-
rameters among abundant parameters is identified using the
new approach based on the CNOP-P approach. The results in
Zaehle et al. (2005) were similar to those in the present study
using the CNOP-P approach in the northern, northeastern, and
southern regions. In the arid and semi-arid regions of China,
the parameter sensitivity using the CNOP-P approach was
different to that proposed by Zaehle et al. (2005). In the case
(36.75°N, 116.25°E), the top five parameters for NPP using

the CNOP-P approach were αm, gm, αC3, αa, and rgrowth.
Furthermore, we found that the results emphasized water de-
mand in water-limited regions. The sensitivity index was
−0.11 for αm in Zaehle et al. (2005). Their study did note that
the evaporation parameter,αm, is important, but the rank ofαm

was more than 12, which implied that the importance and
sensitivity of αm were weaker than they were in 12 other
parameters. In our study, αm was the most important and sen-
sitive parameter among the 24 parameters in the arid and semi-
arid regions of China.

Owing to the nonlinearity among parameters, the most sen-
sitive and important five parameters are not necessarily the top
five parameters identified using the above methods. One ad-
vantage of the CNOP-P approach is that it can identify which
group of parameters is the most sensitive and important com-
pared with other groups of five parameters according to the
cost function value. Using this approach, our results showed
that for the northern, northeastern, and southern regions of
China, the subsets of the five relatively more sensitive and
important parameters were similar to the top five parameters
proposed by Zaehle et al. (2005). However, for the arid and
semi-arid regions, the combination of the five relatively more
sensitive and important parameters using the CNOP-P ap-
proach was different to the combination proposed by Zaehle
et al. (2005). The numerical results also show that the param-
eters in the arid and semi-arid region need to be carefully
validated for the model validation.

In the arid and semi-arid region, soil water content is the
key factor controlling plant growth and survival. The param-
eter αm, representing evapotranspiration, plays a key role in
vegetation growth in water-limited regions. The identified
combination of parameters using the CNOP-P approach was
able to exhibit the physical characteristics. The parameter gm,
representing the maximum canopy conductance analog, had a
faint sensitivity in water-limited regions when the nonlinear
interaction among parameters was considered. The numerical
results suggest that not all parameters related to vegetation
growth are key parameters and illustrate that the nonlinear
interactions among parameters are crucial to the uncertainty
of numerical simulations in complex regions associated with
nonlinear physical processes. As demonstrated in the present
study, the CNOP-P approach is able to consider nonlinear
physical processes and is recommended for identifying the
most significant subset or combination of relatively more
sensitive and important parameters. It is important to
determine the combination of relatively more sensitive and
important parameters within a given number of parameters.
The number of parameters combinations can be evaluated
according to the practicalities of human and material
resources, such as obtaining observations of the physical
parameters and executing the optimization method. The
relatively more sensitive and important parameters
combination is determined based on the evaluated number of
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parameters. Bastidas et al. (1999) employed the MOGSA
method to identify which of the parameters were sensitive
according to the significance level. They reported that there
were nine sensitive parameters at a significance level below
1 % for sensible heat, latent heat, and ground temperature in
the Tucson semi-arid region. However, our studies could an-
swer which four or five parameters was the most sensitive
among the abundant parameters.

The new approach established in the present study would
be able to determine which subset of parameters was the most
sensitive, as it is able to determine the most significant com-
bination of relatively more sensitive and important parameters
within a given total number of parameters. The core of the
new approach is the CNOP-P method that considers the im-
pact of nonlinear interaction among the parameters on the
uncertainty of the numerical simulation. There are two key
characteristics of the new approach. Firstly, it is able to ex-
plore the response of uncertainty in numerical simulations to
nonlinear interactions among parameters. Secondly, in estab-
lishing the sensitivity of every parameter, it ensures that the
sensitivity of every parameter is optimal, due to the CNOP-P
approach optimizing every parameter. In addition, the most
important combination of parameters is also identified through
the new approach and is therefore optimized as well.
According to current numerical results, for the different refer-
ence states, the top 10 sensitive parameters are similar using
the CNOP-P approach to identify the sensitivity of every pa-
rameter. This will not lead to the determination of the five
sensitive parameters combination using the CNOP-P ap-
proach, especially for the moisture regions. There is a little
difference about the identification of the sensitive parameters
in the arid and semi-arid regions if there is much difference
among the reference states. It is possible and reasonable that
these are different when the parameter values have large dif-
ferences. The key parameters may be different for the different
states due to climate condition or complex physical processes,
or different initial conditions, and so on. However, the group
of parameter, which could lead to the maximum uncertainty of
numerical simulation, is identified using the new method
based on the CNOP-P approach. The findings of the group
of parameter could guide us firstly to calibrate the parameters
to improve the ability of numerical simulation. On the other
hand, because there are two group optimization processes dur-
ing the two-stage sensitive parameter identification method in
our study, the computational cost is more expensive than other
methods, such as the OAT method, and the traditional Latin
Hypercube method (Zaehle et al. 2005). However, the current
dynamical vegetation models are single column models. The
dynamical vegetation models could be run in parallel means.
Based on the models’ feature, the computational cost will be
reduced using the CNOP-P approach to identify the sensitivity
of parameter when the parallel skill is applied using many
central processing units (CPUs) of computers.

The LPJ model was taken as an example to demonstrate
how to implement the new approach. The numerical results
showed that the most important combination of parameters in
the arid and semi-arid regions of China was different than
those in northern, northeastern, and southern China, which
were similar to each other. The numerical results also indicat-
ed that the most important five-parameter combinations in
northern, northeastern, and southern China were the same
with or without consideration of the nonlinear interactions
among the parameters. However, this was not the case in the
arid and semi-arid regions, where the most important combi-
nations were different with and without consideration of the
nonlinear interactions among the parameters.

A specific example was shown in which we identified the
most important combination of parameters. We wanted to de-
termine the most important subset of five relatively more sen-
sitive and important physical parameters among an initial total
of 24. Firstly, 14 physical parameters were eliminated using
the CNOP-P approach. Secondly, the most significant five-
parameter combination from the remaining 10 more sensitive
and important parameters was determined using the CNOP-P
approach and a combination of methods. Whether the identi-
fied subset of five relatively more sensitive and important
parameters is dependent on the number of initially eliminated
parameters will be explored in the future. Moreover, combi-
nations of four or seven parameters will also be identified in
future work. In the strong interaction region between land and
atmosphere, such as arid and semi-arid region, the parameters
combination may be dependent on the number of the param-
eters combination. However, in the weak interaction region
between land and atmosphere, such as moisture region, the
parameters combination may not be dependent on the number
of the parameters combination. These issues will be explored
in the future. Moreover, the constraint condition is chosen as
δ = 0.2 in the current study. It is necessary to explore the
sensitivity of parameters combination related to the constraint
condition.

As we know, there are two types of predictability problems
based on the different factors that lead to them. The first is
related to initial errors (Palmer et al. 1998) and the second
involves model uncertainties in numerical models performing
simulations and forecasts of the Earth system (Williams et al.
2001; Sitch et al. 2003; Jackson et al. 2004; Berthelot et al.
2005; Lin et al. 2011). At present, targeted observations, also
called adaptive observations, determine certain special areas
(called sensitive areas) that cause large uncertainty in forecast
results. These additional observations in these sensitive areas
supply more reliable initial states for the model and thus a
more accurate prediction is expected (Palmer et al. 1998;
Bishop et al. 2001; Wu et al. 2005; Qin and Mu 2011). Mu
(2013) proposed a new idea to address the second predictabil-
ity problem by generalizing targeted observations from geo-
graphical space to phase space for model parameters. The
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essential point is how to determine the more sensitive and
important parameters among all model parameters. The pres-
ent paper provides a concrete approach to realize this goal in a
new way. Whether such types of targeted observations in the
phase space can effectively reduce the uncertainty of physical
processes and model parameters requires more work in the
future.
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