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Abstract The North Sea 10-m wind speed (WS10) climate
is compared and related to circulation patterns based on the
sea level pressure (SLP) extracted from three reanalysis and
one high-resolution model dataset. The mean magnitude
and the trends of WS10 depend considerably on the
selected reanalysis. The variability of WS10 among the
three reanalysis datasets is highly correlated in the recent
period (1980–2000) but less so in the past period (1960–
1980). The WS10 over the North Sea is well represented by
the relatively low reanalysis resolution when compared to
the high-resolution WS10 model data partially owing to the
high spatial correlation of WS10. Exceptions are observed
only at the coastal areas. The dominant mode of WS10
explains coherent variability of WS10 over the North Sea
and is related to a SLP pattern similar to the North Atlantic
oscillation (NAO). The increase of the magnitude of the
dominant WS10 pattern is related to the increase of the
magnitude of the NAO-like SLP pattern from 1960s to mid-
1990s. The second dominant WS10 pattern—a dipole in
WS10 to the north and south of Great Britain—is related to
the differences in SLP between Scandinavia and Iceland.

The relation between the second WS10 and SLP patterns is
more prominent in the recent period. The extreme WS10 in
the German Bight is related to the low SLP over
Scandinavia. The extreme WS10 is strongly increasing
from the early 1980s to the beginning of 1990s, which is
not observed in the corresponding SLP time series over
Scandinavia.

1 Introduction

The climatology of marine surface wind field is of
considerable commercial interest, e.g., for harnessing wind
energy at favorable offshore sites, for the shipping, and for
the offshore oil and gas industry. In view of a strong
increase in the industrial exploitation of the North Sea, this
study addresses some questions related to the climatology
of the daily mean wind speed at 10-m height (WS10),
namely (1) whether there are important differences in the
mean and extreme WS10 in different low-resolution
reanalysis datasets, especially related to their long-term
trends; (2) how well is WS10 represented in the low-
resolution global reanalysis dataset (horizontal resolution of
roughly 100×100 km) compared to the high-resolution
simulations (horizontal resolution of 3×3 km) or alterna-
tively are there important processes that remain unresolved
at low resolution and are resolved in higher-resolution
simulations and whether there is a subsequent long-term
impact; (3) can the relationship between the monthly mean
WS10 and the large-scale circulation patterns over the
European–Atlantic region and their interannual variability
in the last few decades be quantified; and (4) can the
extreme WS10 over the German Bight be related to extreme
circulation patterns and do the long-term trends of extreme
WS10 and circulation patterns agree?
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The WS10 from different reanalysis datasets can be used
to study the near-surface wind climatology and its relation
to the circulation patterns. The reanalysis data have
previously been widely used for climate studies since the
data quality is mostly consistent over a number of decades,
which is achieved by using the same model throughout the
reanalysis period (Kalnay et al. 1996). However, with the
development of the observation system, the quality of
reanalysis data has improved over the last two decades.
The most pronounced change affecting WS10 is probably
the assimilation of the satellite-measured near-surface
wind speeds which started in the late 1970s (Kistler et al.
2001). This can lead to discontinuities in the WS10 time
series and artificial trends. It was confirmed that some
basic parameters, such as the sea level pressure (SLP)
from different reanalysis generally agree well over Europe
(e.g., Greatbatch and Rong 2006), which increases
confidence in using the reanalysis data. The WS10 from
reanalysis may be sensitive to the model details, such as
the selected surface and boundary layer parameterizations
(Kalnay et al. 1996). As far as we are aware, there has
been no systematic comparison of the WS10 from
different reanalysis over northern Europe.

Most studies concerned with the wind climatology over
northern Europe use low-resolution wind speed or a proxy
dataset (e.g., derived from the horizontal pressure gra-
dients). For example, Pryor and Barthelmie (2003), Pryor et
al. (2006), and Yan et al. (2006) use reanalysis data to infer
the climatology of near-surface mean and extreme winds
over northern Europe, their interdecadal variability, and
linear trends. Weisse et al. (2005) investigated the changes
of cyclone intensity and frequency over the North Atlantic
and the North Sea from the downscaled National Centers
for Environmental Prediction (NCEP) reanalysis data of
around 50-km horizontal grid size. Studying extreme
winds, some authors prefer to use proxy data, such as the
mean SLP or geostrophic wind speed inferred from the SLP
gradients, arguing that the SLP data are less prone to
systematic errors which may lead to artificial trends (e.g.,
Schmidt and von Storch 1993; Alexandersson et al. 2000;
Matulla et al. 2007). The proxy data derived from SLP are
usually able to capture the large-scale forcing on the wind
field but not the local effects. The ability of the low-
resolution wind speed datasets or the proxy data to
represent realistic surface wind conditions over the North
Sea remains unclear. The largest differences between low-
and high-resolution wind speed are expected close to the
coastline or orographic features, where the wind speed may
deviate due to strong gradients in forcing and formation of
local circulation patterns or in case of strong horizontal
gradients (e.g., fronts).

The influence of the North Atlantic oscillation (NAO),
which is described by the anomaly of pressure gradient

between northwestern (usually Iceland) and southwestern
North Atlantic (usually Azores), on the wind speed over
northern Europe is well documented (e.g., Marshall et al.
2001; Hurrell and van Loon 1997; Trigo et al. 2002). The
NAO index (NAOI) is well correlated with the wind speed
over northern Europe, especially in the winter season where
the large-scale circulation has a more dominant influence
on the weather. In the summer season, the surface heating
produces disturbances weakening the large-scale circula-
tion. An increase of the NAOI from the 1960s to the mid-
1990s was observed. It is known that the increase in NAOI
leads to higher wind speeds over northern Europe (e.g.,
Hurrell and van Loon 1997). Here, we investigate whether
a regional spatial pattern of SLP exists, which has a more
dominant influence on the WS10 variability over northern
Europe than the NAO. It is also not clear if there are other
patterns which are able to describe an additional fraction of
WS10 variability. For example, Barnston and Livezey
(1987) have observed that the second dominant mode of
the North Atlantic pressure variability is the East Atlantic
(EA) pattern, which can explain a considerable part of the
wind speed variability in northern Europe. Kaas et al.
(1996) found that a pressure structure similar to the NAO is
related to the wind speed in northern Europe, although the
northern center of their pattern is more elongated and
shifted eastwards. Rogers (1997) identified a pattern similar
to the one from Kaas et al. (1996) and observed that it was
related to the position of the storm tracks. Another
alternative is to relate the surface wind speeds to other
large-scale fields such as the surface temperature. The study
by Deser and Blackmon (1993) suggests that the Sea
Surface Temperature (SST) is well correlated with the wind
speed. However, they found that the relationship is local
and suggest that the surface wind influences the SST by
mixing the upper ocean waters.

High-resolution simulations can resolve a number of
physical processes such as the land–sea breeze in the coastal
areas which is additional information not obtained by
statistical downscaling of low-resolution reanalysis data. The
climate signature of these processes may be vital for some
applications such as for wind energy resource studies. The
long-term fluctuations and trends extracted from the reanal-
ysis can be combined with the detailed regional information
from high-resolution simulations. This information is vital for
risk management, resource assessment, and long-term plan-
ning to compensate for the inherent fluctuations of the climate
system in the development of renewable energy resources and
by other stakeholders. Here, we use 3-year data from a
mesoscale model (Weather Research and Forecasting, WRF)
simulation with 3-km resolution to determine the significance
of key regional physical processes.

As opposed to the well-studied variability of the mean
wind speed over northern Europe, the variability of extreme
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winds over the past few decades is less known. On one
hand, with an increase in the NAOI and the mean wind
speed from the 1960s to the mid-1990s, the extreme wind
speeds are expected to rise. On the other hand, there are
studies that show a trend in shifting of the North Atlantic
storm track northwards in the past decades, which causes a
trend of decreasing storms in the southern part of northern
Europe (Schneidereit et al. 2005; Wang et al. 2006). The
extreme winds can be characterized by different criteria,
such as the occurrence of wind speeds exceeding a
threshold (e.g., Weisse et al. 2005) or wind speeds at
certain high percentiles, such as for example the 90
percentile (Pryor and Barthelmie 2003; Matulla et al.
2007). With the first approach, the number of storm events
exceeding a predefined threshold level is investigated,
while, with the second approach, the intensity of storms is
studied. Different and sometimes contradictory results
regarding the trends of the extreme winds or storms have
been presented. Based on the SLP measurements, Schmidt
and von Storch (1993) found no increase and very little
interannual variability of the high wind speed percentiles
over the last century in the German Bight. From the SLP
analysis, Matulla et al. (2007) concluded that the extreme
wind speeds in the northeastern Atlantic region were high
in the late nineteenth and the beginning of the twentieth
century, lower in the middle of the twentieth century, and
then at the end of the twentieth century reach a similar level
as at the beginning of the twentieth century. Their analysis
is focused on the wind speed north and east of the North
Sea. Pryor and Barthelmie (2003) observed an increase in
the high wind speed in the last few decades over the Baltic
Sea and parts of the North Sea derived from the NCEP/
National Center for Atmospheric Research (NCR) reanal-
ysis. An increase in the extreme wind speeds over the Baltic
is related to an increase in the frequency of the western
types of “Grosswetterlagen” (GWL) in the last quarter
compared to the middle of the twentieth century. The
extreme weather conditions are usually not well linked to
the large-scale circulation patterns such as the NAO since
the NAO explains well the variability on monthly to
interdecadal timescales, while the extreme values by
definition occur only for short periods. Therefore, some
authors link the extreme values to different circulation
patterns (Yiou and Nogaj 2004; Panja and Selten 2007).

The paper is structured as follows. The data are
described in “Section 2.” In “Section 3,” the WS10s over
the North Sea from different reanalysis datasets are
compared to each other and to the high-resolution WS10.
The relation of the mean WS10 to the circulation patterns
and their time evolution and the relation of the extreme
WS10 to the extreme circulation patterns are then derived.
Finally, the discussions and conclusions are presented in
“Section 4.”

2 Data description

The present study uses the daily SLP, 2-m temperature
(T2M), WS10, and wind speed at 700-hPa level
(WS700hPa) from three reanalysis datasets—NCR (Kalnay
et al. 1996; Kistler et al. 2001), NCEP-Department of
Energy (NCR2; Kanamitsu et al. 2002) which is an updated
version of the NCR reanalysis and ECMWF ERA40
(Uppala et al. 2005). The NCR and NCR2 reanalyses are
based on the same model with a global T62 horizontal grid
and 28 vertical sigma levels. In NCR2, errors found in
NCR were corrected; additional data were assimilated as
well as some of the physical parameterizations were
changed. For the present analysis, the most relevant
modification is the change of a simple boundary layer
parameterization based on the local Richardson number in
NCR to a nonlocal diffusion scheme in NCR2 (Kanamitsu
et al. 2002). The ERA40 model is defined on the global
T159 grid with 60 hybrid vertical levels.

In addition, the higher-resolution (3-km grid size) but
shorter (3 years) WS10 data were obtained by integrating the
WRF (Skamarock et al. 2005) model (Sood et al. 2007). The
duration of the short time series of high-resolution data is not
adequate to derive climate variability characteristics of WS10.
Rather, it was used to investigate how well daily WS10 over
the North Sea is represented in the low-resolution reanalysis
dataset and to detect additional high-resolution information.
WRF was initialized at 18 UTC every second day with a spin
up time of 6 h and a forecast horizon of 53 h. A continuous
four-time daily time series is constructed by combining
the 6-hourly data from the 6th to 53rd forecast hours.
The initial and boundary conditions are prescribed from
the NCEP Final Analysis. Three (two-way) nested
domains are defined in WRF, where the third domain
with a horizontal resolution of 3 km spans the innermost
region (lat. 52.5–55.25 N, lon. 4.75–9.5 E). The WRF
model includes parameterizations of all essential physical
processes. The surface and the boundary layer parameter-
izations were based on the Mellor–Yamada–Janjić model
(Janjić 2002). Here, only WS10 from the third WRF
domain (WRF3) was analyzed.

To relate the dominant WS10 patterns to the main modes
of atmospheric variability, the NAOI and the East Atlantic
Index (EAI) from the Climate Prediction Center (CPC)
were used. These indices were constructed based on the
Rotated Principal Components analysis of the northern
hemispheric 500-hPa geopotential height. In addition, the
corrected and preprocessed measurements of SLP from the
stations at Göteborg (Sweden) and Oksoy (Norway), which
were a part of the European project EMULATE (European
and North Atlantic daily to multidecadal climate variability;
Ansell et al. 2006), were used to relate the extreme WS10
to the circulation indices.
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All datasets used in this study are shown in Table 1,
where the time period, the horizontal resolution, and the
parameters used (where applicable) are listed.

The focus of the WS10 analysis is mainly over the North
Sea region (NS; lat. 50–60 N, lon. 3 W–20 E), though, for
relating the WS10 patterns to the large-scale patterns, a
larger North Sea region (lNS) is defined (lat. 45–65 N, lon.
15 W–30 E). For the case where only WS10 patterns were
investigated, the North European (NE) region is addition-
ally used (lat. 40–70 N, lon. 20 W–30 E). The SLP and
T2M data, used as predictors of WS10, are defined on the
Atlantic–European domain (lat. 30–90 N, lon. 80 W–40 E).
The extreme WS10 was studied over the German Bight (lat.
52.5–55.5 N, lon. 4.7–9.5 E).

The analysis is based on the daily mean values defined
as an average of the four-time daily data (00 UTC, 06 UTC,
12 UTC, and 18 UTC). In case of WS10, the magnitude of
WS10 was calculated from the wind speed components
(U10 and V10) from 6-hourly data and averaged over the
day.

A part of the analysis is performed on the anomalies
from the annual cycle. The anomalies were computed for
each grid point of the data field separately. First, the
monthly average value is computed as an average value at
each grid point within a calendar month. The mean annual
cycle was constructed by assuming that the monthly
average corresponds to the 15th day of the calendar month,
while the daily values of mean annual cycle are calculated
as a linear interpolation of the values at the 15th day. The
anomalies, i.e., deviations from the mean annual cycle, are
obtained as a difference between the original field and the
mean annual cycle. Part of the analysis is performed for the
winter (December–February) and the summer (June–
August) seasons separately. Two periods of 21 years were
defined, the past presatellite period (1960–1980) and the

recent period (1980–2000) where the satellite data (in
particular, the marine surface wind) are assimilated in the
reanalysis.

3 Analysis methods and results

The surface wind conditions over North Sea derived from
the datasets described in “Section 2” are investigated for a
range of temporal and spatial scales to detect resolution-
dependent characteristics and to test the robustness of
consequent assertions. The modes of wind speed variability
over the North Sea are examined and related to the large-
scale circulation patterns to identify and analyze relevant
indicators of regional climate trend. The time evolution of
the extreme wind speed and its relation to the circulation
patterns are studied.

3.1 Description of surface wind speed in different datasets

To estimate the reliability of reanalyzed daily wind speed in
terms of mean values and trends, the surface wind speed
(WS10) and the WS700hPa from different reanalyses are
compared. Since all reanalyses are based on virtually the
same measurement data, the wind speed especially close to
the surface (WS10) may have similar problems such as the
artificial trends and discontinuities due to advances in the
observation system (such as the assimilation of near-surface
satellite measurements). In order to assess the representa-
tion of WS10 by the low-resolution data, it was interpolated
and compared to the high-resolution data.

In the recent period, the pattern of the mean WS10
across the NS domain is mainly influenced by the land–sea
interface, with the highest WS10 values over seas reaching
a maximum between around 8 and 10 ms−1 (depending on a

Table 1 Dataset used in this study (for abbreviation look in text), the horizontal resolution, time period, and parameters

Dataset Resolution (lat.×lon.) Time period Parameters

NCR 2.5°×2.5°a Jan. 1948–Dec. 2007 SLP T2M

1.85°×1.9°b WS10 WS700hPa

NCR2 2.5°×2.5°a Jan. 1979–Dec. 2007 SLP T2M

1.85°×1.9° b WS10 WS700hPa

ERA40 2.5°×2.5° Sept. 1957–Aug. 2002 SLP T2M

WS10 WS700hPa

WRF3 3×3 km Jan. 2004–Dec. 2006 WS10

NAOI, EAIc – Jan. 1950–Dec. 2006 –

SLP measurementsd – Jan. 1948–Dec. 2002 SLP

a Resolution for SLP and T2M
bResolution for WS10
c Data derived from geopotential height at 500 hPa
d From stations Göteborg and Oksoy
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reanalysis model) and the lowest values over land between
around 3 and 6 ms−1 in the southeastern part of the NS
domain (Fig. 1, upper panel). The mean WS10 from NCR
and ERA40 agree well over the studied area, while the
mean WS10 from NCR2 is around 2 ms−1 higher. The
difference between the mean WS10 from NCR and NCR2
is strikingly high even though both the reanalysis are based
on the same model core and assimilation setup. The
possible reasons for the differences are different atmospher-
ic boundary and surface layer parameterization or the
description of the land surface used in NCR and NCR2
models. Comparing the mean WS700hPa which is used as a
measure of the wind speed at the top of the boundary layer
or in the free atmosphere and represents the upper
kinematic forcing on the boundary layer of all reanalysis
models (lower panel of Fig. 1) reveals small difference (less
than 0.5 ms−1). This indicates that the differences in mean
WS10 between the models are primarily due to different
representations of the boundary or land surface processes.

The variability of WS10, characterized by the standard
deviation of daily mean WS10 time series of roughly half
its mean value, varies very little across the domain (not
derived). Significant fraction of the WS10 variability is due
to the mean annual cycle, which is considered by
examining the probability density distribution of the wind

speed P(WS10) and the wind direction P(θ) averaged over
the NS domain for the recent period (Fig. 2). The data
plotted in Fig. 2 are binned on monthly resolution to
present the intra-annual variability. The magnitude of
spatially averaged WS10 is sensitive to the domain
definition and the reanalysis data used, while the time
evolution of the mean annual cycle of WS10 and the wind
direction are relatively insensitive. The strongest winds are
observed in the winter months (November–February), when
the storm activity over the northern Europe is peaking.
During this period, the wind direction is mostly from west
to southwest (200–270°). In the spring season (March–
June), the mean wind speeds decrease with the weakening
of the storm activity over northern Europe. The wind
directions remain predominantly from west to southwest,
but other directions are also observed. The weakening of
the storm activity allows for more frequent outbreaks in this
region especially from the north and northeast. Approaching
summer, the wind speeds decrease further, reaching the
minimum in late summer, and then increasing again from
August onwards.

The temporal variability of WS10 between the datasets
agrees well. The linear correlation coefficient between the
time series of daily WS10 from NCR and ERA40
(bilinearly interpolated on the NCR grid points) is high,
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Fig. 1 Mean WS10 (ms−1; upper panel) and WS700hPa (ms−1; lower panel) in the recent period (1980–2000) over NS domain from NCR,
NCR2, and ERA40 reanalysis
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reaching the values between 0.9 and 0.95 everywhere
within the NS domain, except in the southern part of
Scandinavia where the values are as low as 0.8 (not shown).
The reason for the lower correlation coefficient above
Scandinavia may be the different model resolutions which
also lead to different representations of terrain. Since the
NCR and NCR2 models are based on the same underlying
orography, the correlation coefficient between WS10 from
those two reanalysis is above 0.95 over the NS domain.

Even though WS10s from different reanalyses are well
correlated, the linear trends differ substantially. In Fig. 3,
the linear trends in the annual averaged WS10 data
calculated for each grid point separately and significant at
the 5% level are plotted. To estimate the statistical
significance of the WS10 trends, Student t test was used
with an adjusted number of degrees of freedom to account
for serial autocorrelation in the data. The effective sample
size is calculated as:

ne ¼ nt
1� r1
1þ r1

ð1Þ

where nt is the number of sample members, ne the effective
sample size, and r1 the lag one correlation of the regression
residuals. The effective data size was used to correct the
estimation of variance of residuals above the regression line
and the number of degrees of freedom in the Student t test.
Further details can be found in Santer et al. (2000). In the
past period, ERA40 data show a high positive trend of
WS10 over the North Sea, while the trend in NCR is lower
and seems to be centered in the northwestern part of the
domain and over the coastal areas (Fig. 3, upper panel). In
the recent period, the trend from the three reanalysis models
is positive everywhere but quite different (Fig. 3, lower
panel). The WS10 trend from NCR data is the lowest and
concentrated over the southwestern part of the domain. In
the ERA40 data, the trend is mainly over northern Germany
whereas in the NCR2 data it is over the southwestern part
of the domain including the North Sea. The linear trends in

the WS700hPa well agree among all reanalysis models and
are positive and significant over the northern part of the
domain. As with the mean daily WS10, the different trends
in WS10 reanalysis data appear mainly as a result of
different representations of surface and boundary layer
processes in the reanalysis models. The WS10 trends in the
different datasets differ substantially while the correlation
coefficients of WS10 are high. This seems contradictory but
understood since the linear trends explain only a small
proportion of the WS10 variance.

The question addressed next is whether it is possible to
represent the daily mean WS10 over the North Sea by the
low-resolution datasets, such as the reanalysis data. This
depends on the spatial scales of the governing physical
processes responsible for the daily regional WS10 variabil-
ity compared to the resolution of the reanalysis data. It is
well known that WS10 over the North Sea is partly
influenced by the North Atlantic storm activity with typical
horizontal scales of a few hundred kilometers. It is not clear
if there are other local circulation patterns that distinctly
influence the daily WS10. To estimate the typical length
scale of WS10, the isotropic first-order autoregressive AR
(1) model is fitted to the WS10 data. In the AR(1) model,
the correlation coefficient between time series at locations ri
and rj, separated by the distance d(ri,rj), exponentially
decreases (e.g., von Storch and Zwiers 1999) and is not
directionally dependent:

corr ri; rj
� � ¼ e�d ri;rjð Þ=d0 ð2Þ

where the d0 is the decorrelation length and is interpreted as
the characteristic length at which points in space are no
longer correlated. In the WRF3 data, the decorrelation
length of the daily WS10 anomaly from the annual cycle is
around 800 km over most of the domain and the North Sea,
with smaller values over the southern and northern part of
the domain as well as along the coastal regions (Fig. 4).
The absolute value of the decorrelation length is not too
reliable since the horizontal domain of WRF3 is smaller
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than the decorrelation length. However, the result indicates
that the daily WS10 variability over the North Sea can be
well represented by the reanalysis models since the
decorrelation length of the daily WS10 is larger than the
resolution of the reanalysis models. Exceptions are proba-
bly the regions along the North Sea coast especially in the
Weser-Ems area, where the decorrelation length is lower

probably due to the local circulation patterns. The spatial
pattern may result from the local land–sea orientation with
respect to the prevailing southwest to west winds. A smaller
decorrelation length at the northern and southern parts of
the domain may be related to a real signal and not an
artifact of the boundary conditions while calculating the
decorrelation length. The second Empirical Orthogonal
Function (EOF) of WS10 describes that the WS10 over
these areas is negatively correlated (“Section 3.2”).

To quantify the relationship between WS10 from the
low-resolution reanalysis data (NCR) and the high-
resolution WRF3, WS10 from NCR was interpolated on
the WRF3 grid and compared on the 3-year common time
frame. To interpolate the WS10 data, two different
techniques were used: (1) bilinear interpolation of WS10
from NCR ignoring any information of the land–sea
interface (we refer to this interpolation as BILIN) and (2)
separate bilinear interpolation for the WRF3 land and sea
areas. At the interface, where the bilinear interpolation is
not possible, the WS10 from the nearest point was taken
(we refer to interpolation as BILIN-COAST). These simple
interpolations do not take any specific knowledge of the
atmospheric dynamics into account. As expected, the 3-
year mean WS10 interpolated with BILIN-COAST show
excessively high gradient of WS10 along the coasts, while
the WS10 interpolated with BILIN method shows a too
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weak gradient at the coast compared to WS10 from WRF3
(Fig. 5). Therefore, it appears that, at the coastal regions,
high-resolution WS10 adds additional information to the
low-resolution data related to the local circulation patterns.
In the upper panel of Fig. 6, it is seen more clearly that, in
case of the BILIN interpolation, due to the too weak
gradient of WS10 at the coast, WS10 is overestimated at the
land points close to the coast and underestimated over the
sea points at the coastal region, while with WS10
interpolated with the BILIN-COAST method with a sharp
land–sea discontinuity, just the opposite is true. The
correlation coefficient of WS10 from WRF3 and interpo-
lated from NCR is high over the whole domain, with the
lowest values at the coast of the Weser-Ems area and
Holland. The lower correlation is probably due to the
prevailing southwestern wind which mixes the continental
and oceanic air masses at the land–sea interface, weakening
the local circulation patterns at the windward side but
retaining some part towards the leeward side, which may
leave an imprint on the long-term daily WS10 variability.

3.2 Modes of wind speed variability and their relation
to the large-scale patterns

Since WS10 over the North Sea is spatially highly
correlated, it is sufficient to characterize it by a few well-
chosen modes as for example with the EOFs. EOF analysis
(e.g., Preisendorfer 1988; von Storch and Zwiers 1999)
finds a linear combinations of modes comprising of the
spatial patterns (EOFs) and their time evolutions (principal
components, PCs), so that the modes explain the highest
part of the variance of data under the orthogonality
constrain of the EOFs. The resultant EOFs represent the
spatial distribution of the magnitude of the field together

with its relative phase, while the time series (PCs) are
uncorrelated and explain the time evolution of the
corresponding EOF. In this analysis, each pair of PC and
EOF is normalized so that the variance of PC equals unity
and the EOF represents the magnitude of typical variation
of the field and thus the physical units of the field are
attributed to the EOF. The EOF analysis is performed on
the monthly mean WS10 anomalies from the mean annual
cycle to account for the seasonality. Since only the monthly
WS10 anomalies from the mean annual cycle are consid-
ered in this section, we simply refer to them as WS10. EOF
modes of WS10, related SLP, and T2M patterns from NCR
dataset for the complete NCR period (1948–2007) are
shown in first part of this section, while, in the second part,
the differences between NCR and other two reanalysis
datasets in the recent (1980–2000) and the past (1960–
1980) period are discussed.

The EOF modes of WS10 from NCR reanalysis are
calculated on three domains (NS, lNS, and NE, as defined
in the previous section) and compared to investigate the
sensitivity of the modes on the domain size, where the
measure of similarity is the correlation coefficients between
the corresponding PCs (Table 2). While the first EOF mode
is almost identical on all three domains, the second mode is
very similar on only the two largest domains (lNS and NE),
while on the smallest domain it deviates considerably. The
third (and also higher) EOF modes are sensitive to domain
selection. In addition, the rotation of the EOFs has been
preformed with the VARIMAX method (e.g., Richman
1986) using the first five or ten EOF patterns. In both cases,
the first rotated pattern was almost identical to the first
unrotated, while the second and third rotated patterns were
mainly the linear combination of the second and the third
nonrotated patterns (not shown). Since the rotated EOF
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Fig. 5 The 3-year averaged WS10 (ms−1) from WRF (left), NCEP interpolated with BILIN (middle), and with BILIN-COAST (right)
interpolation on the WRF3 grid
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modes do not seem to give additional information or better
capture the relevant WS10 variability, only the nonrotated
EOF modes are used in further analysis.

To investigate the relevance of the EOF modes of WS10,
the explained variance of each mode is compared to the
explained variance of the simple isotropic diffusive model
modes projected on the EOF modes of WS10. The diffusive

model is defined in Dommenget (2007) as AR(1) model in
space and time:

d

dt
Φ ¼ cdampΦþ cdiffr2Φþ f ð3Þ

where the Φ is the synthetic field forced by the spatial and
temporal white noise (f); the damping (cdamp) and diffusive
(cdiff) coefficients are calculated from the WS10 data. As
shown by Dommenget (2007), the comparison of the
explained variance of the data modes and the ones from
an AR(1) process projected on the data modes helps to
separate the data modes which represent the spatial
covariance of the data and modes which represent tele-
connection patterns.

The first three EOFs of the monthly WS10 for the lNS
domain are plotted and the EOFs on the smaller NS domain
are superimposed (Fig. 7). The explained variance of the
first five EOF modes of WS10 from the lNS domain is
shown in Fig. 8, where the confidence limits are obtained
from North’s rule of thumb (North et al. 1982). The

Table 2 Correlation coefficients for the first four PCs of monthly
WS10 anomaly from NCR data for the time period 1948–2007,
calculated over the NS and lNS domain (corr(NS, lNS)) and over the
lNS and NE domain (corr(NS, lNS))

Mode corr(NS, lNS) corr(lNS, NE)

1 0.90 0.99

2 0.69 0.91

3 0.50 0.53

4 0.31 0.64
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Fig. 6 Mean difference (upper
panel) and correlation coeffi-
cient (lower panel) between
3 years of WS10 (ms−1) from
WRF3 and NCEP interpolated
on WRF3 grid. Left panel is for
BILIN-COAST interpolation
and right for BILIN interpola-
tion (look in text for details)
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explained variance of the AR(1) process modes projected
on the EOF modes is also shown in this plot.

The first EOF mode of WS10, which explains around
38% of its variance, is hardly separated from the stochastic
AR(1) model, suggesting that this mode reflects that WS10
above the area studied is highly correlated in space
(consistent with Fig. 4) and does not represent any specific
teleconnection pattern. The higher magnitude of the WS10
in the first EOF above the sea is due to the higher
variability of the WS10 over sea compared to land.

The second mode, which shows the negative correlation
of WS10 above the North Atlantic north and south of Great
Britain, is statistically different from the AR(1) model. This
mode explains around 18% of the WS10 variability, while
the same mode will explain only around 10% of WSA10
variability under the assumption of an isotropic AR(1)
process. The large separation of the explained variance
between the WS10 mode and the same mode from the AR
(1) process suggests that this mode represents a tele-
connection pattern of the WS10 anomaly rather than just

being a higher-order mode of an AR(1) process. The EOF
pattern from the smaller (NS) domain is very similar,
although the corresponding PCs are not highly correlated.
The negative correlation between the northern and southern
part of the domain is consistent with the lower decorrelation
lengths at those two areas (Fig. 4).

The third and higher modes cannot be distinguished
from the EOF modes of the AR(1) process and seem to be
partly determined by the domain geometry and the
requirement of the orthogonality of the EOF modes. The
third EOF spatial pattern explains the dipole in the WS10
anomaly between the western (west of England) and eastern
(above the North Sea and the Baltic Sea) parts of the
domain.

For further analysis, the EOF modes from the lNS
domain are used to ensure an adequate regional represen-
tation of WS10 over the North Sea. The first three modes of
WS10 anomaly over the lNS domain are related to the
monthly SLP and T2M anomalies from the annual cycle.
The relation between the WS10 and the SLP patterns
describes the dynamical forcing of WS10, while relating
the WS10 modes to T2M is an attempt to describe the
baroclinic contribution to the WS10 anomalies. Even though
the third EOF mode seems to only represent the orthogonal-
ity requirement of the first EOF mode of an AR(1) process, it
was included in the following analysis. The justification to
neglect the third mode in the following analysis was
established with the cross-validation procedure.

For each of the first three PCs of the WS10, two maps of
temporally averaged SLP and T2M anomalies are plotted
after filtering days for which the PCs of WS10 are higher or
lower than the standard deviation separately (Fig. 9). The
filtered fields plotted in Fig. 9 are in the units of their local
standard deviation, i.e., each grid point is divided by its
standard deviation. For the first three PC modes of the
WS10 anomalies, the SLP and T2M anomaly patterns show
a bimodal structure. The sign of the extrema changes with a
change in the sign of the PC, which suggests an
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approximately linear relationship between the PCs of WS10
and the large-scale circulation. Therefore, a large-scale
index is defined as a time series of the difference between
spatially averaged predictors within a defined center of
activity at extrema (shown in Fig. 9) in SLP and T2M
separately and is used to predict the PC of WS10
anomalies.

As expected, the first SLP anomaly pattern has a similar
spatial structure as the NAOI, although the northern center
is moved slightly eastwards. The correlation between the
first SLP index and NAOI from CPC is fairly high only in
the winter season, while it is low in the summer season

(Table 3). The first T2M anomaly pattern appears to be
almost identical to the surface temperature related to the
NAOI (e.g., Trigo et al. 2002), which suggests that the
T2M anomaly pattern describes a relationship between SLP
and T2M anomalies but adds no additional information for
predicting the PC of WS10 anomaly. The second SLP
anomaly pattern is a dipole between the SLP over Great
Britain/North Sea and Greenland and is not much related to
the EA pattern, which is also indicated by a low correlation
coefficient between EAI and the second SLP index
(Table 3). The second T2M anomaly pattern is the dipole
with minimum above Great Britain and maximum above
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the southeastern part of Europe and may be explained by
the advection related to the SLP pattern. In the positive
phase of the anomaly pattern, the SLP is lower over Great
Britain and the cyclonic circulation advects warmer air to
Eastern Europe and the colder air west of Great Britain.
Therefore, the T2M anomaly maxima are at these locations.
In the negative phase, the situation is approximately
inverse. The third SLP anomaly pattern is a dipole between
Scandinavia and the North Atlantic west of Great Britain. It
is seen that the third pattern has a much lower amplitude
compared to the first two patterns, implying a lower
association between the third SLP pattern and the third
EOF pattern of WS10. The related T2M pattern is a dipole
between west of Scandinavia and central North Atlantic.
The relationship between the SLP and the T2M anomaly
pattern may be explained as with the second pattern.

To test the relationship between the EOF modes of
WS10 and the corresponding large-scale patterns, the cross-
validation is preformed as follows. The large-scale indices
are linearly fitted to the corresponding PCs of WS10
anomaly on four fifths of the time series length and the
fitted relationship was used to predict the remaining one
fifth time series of the PCs of WS10 anomaly. This
procedure was repeated five times each time one fifth of
the consecutive data was omitted from the fitting procedure
and predicted. From the predicted PCs of WS10 anomalies,
the whole WS10 anomaly field was reconstructed, assum-
ing that the EOF spatial patterns are constant in time. The
ability of the indices to predict WS10 anomaly was
estimated by computing the correlation coefficient between
the original and predicted WS10 anomaly field. In all cases,
the SLP indices were better predictors than T2M indices
(not shown). Also using both the SLP and T2M indices at
the same time by multiple regressions did not improve the
correlation coefficient between the original and the pre-
dicted WS10 time series. The highest correlation coeffi-
cients were obtained when the first two PCs of WS10 were
predicted and used for reconstructing the WS10 anomaly.
Including the third EOF mode of WS10 decreases the
correlation coefficient. This is since the third EOF mode
does not represent significant variability of WS10 and adds
mostly noise. Therefore, in the further analysis, only the
first two EOF modes of WS10 and the related circulation
patterns from the SLP are considered.

The PCs of WS10 and the large-scale circulation indices
of SLP and T2M as well as NAOI are shown in Fig. 10.
The SLP and T2M indices and NAOI are linearly fitted to
the PCs of WS10. In the winter, the PCs of WS10 are more
variable than in the summer. The first PC of WS10 over the
NCR period shows a strong interannual variability with an
increasing trend. The increasing trend is most pronounced
in winter, while only slight increase is observed in the
summer. The positive trend is consistent with the NAOI
trend (Marshall et al. 2001). In the last decade, a relatively
strong decrease of the first PC of WS10 anomaly is
observed, reaching almost its mean value over the NCR
period. It is not clear if this decrease is due to a change in
trend or a manifestation of the interannual variability. The
first SLP and T2M indices as well as NAOI follow closely
the first winter PC of the WS10 on an interannual
timescales. There is some disagreement between the time
series at the beginning of the period (from 1950 to 1960).
The reason for this may be the lower quality of WS10 from
NCR before 1960 (Kistler et al. 2001). In the summer, the
first SLP index captures interannual variability of the first
PC of WS10 anomaly relatively well, while the NAOI and
the T2M index are not able to describe it.

The intra-annual variability of the second PC of WS10 is
poorly described by either the SLP or the T2M indices.
Especially poor agreement is seen in the winter where even
the trends do not match. The trends of the second SLP and
T2M index show a decrease not observed in the PC of
WS10 anomaly. During the summer period, interannual
variability of the second SLP index follows the second PC
of WS10 anomaly well. However, since only a small
improvement in the correlation coefficient of WS10 is
achieved when the second PC of WS10 anomaly is related
to the indices, it may be inferred that predicting only the
first PC of WS10 anomaly is sufficient.

The EOF patterns of WS10 are not very sensitive to the
reanalysis dataset used. The correlation coefficients between
corresponding PCs of WS10 from NCR and other two
reanalysis datasets are very high (up to 0.99) but decrease with
the higher order of PC (Table 4). The correlation coefficient
between PCs of WS10 anomalies is slightly higher in the
recent period compared to the past period (in brackets).

The correlation coefficients between PCs of WS10
anomaly and the corresponding derived SLP circulation

Correlation Summer Winter

SLP(1)/NAOI 0.24 0.81

T2M(1)/NAOI 0.52 0.72

SLP(2)/EAI 0.17 0.20

T2M(2)/EAI 0.46 0.13

Table 3 Correlation coefficient
between NAOI (EAI) from CPC
and the first (second) circulation
index derived from SLP/T2M
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indices are shown in Table 5. In the winter, the surface
winds are much better described by the large-scale
circulation patterns compared to the summer, which is
indicated by high correlation coefficients between the PCs
of WS10 and the circulation indices. In this season, the
correlation coefficients between PCs of WS10 and circula-
tion indices are not significantly dependent on the reanal-
ysis dataset used. The correlation coefficients in the recent
period are considerably higher than in the past period for
both NCR and ERA40 data. The reason for the lower
correlation coefficients in the past period may be due to the
better quality of WS10 data in the recent period with the
assimilation of the satellite-derived near-surface wind
speeds or the change in the climate dynamics within the
last decades. Since the PCs of WS10 anomalies from
different reanalysis in the past period differ more than in the
recent period, we argue that at least part of the lower
correlation between PCs of WS10 anomalies and circula-
tion patterns in the past period may be related to the lower
data quality of the reanalysis data of the past period.

3.3 Extreme wind conditions

In this paper, the extreme wind speeds are defined as for
example in Pryor and Barthelmie (2003) with predefined
high percentiles of the daily WS10 distribution. The WS10
percentiles are calculated for each winter season. The
winter season was selected where the highest wind speeds
during the storms are predominant. For example, the 90
percentile of WS10 is defined when WS10 is exceeded in
10% of the days during the winter season in a given year.
The extreme WS10 and its relation to the circulation
patterns can be assessed from the high PCs of WS10 or
the high intensity of the circulation indices as shown in the
previous chapter. However, EOF functions are not optimal-
ly designed to capture extreme values since the extreme
values occur rarely and thus do not necessarily have an
important contribution to the total variance of data which is
the criteria for extracting EOF patterns. Moreover, there is
also a scale mismatch between the circulation patterns that
describe the variability of WS10 and the typical duration of
extreme WS10. Typical duration of the extreme wind
speeds by definition cannot exceed a few days, while the
first EOF pattern of WS10 is related to the NAO-like
patterns which is known to describe well the monthly to
interdecadal variability of the SLP (e.g., Hurrell and van
Loon 1997). The more scale-appropriate circulation pat-
terns describing the extreme WS10 may be obtained for
example from the circulation types such as from the GWL

PC ERA40 NCR2

1 0.99 (0.95) 0.99

2 0.95 (0.92) 0.98

3 0.91 (0.89) 0.97

Table 4 Correlation coefficient
between PCs of WS10 anomalies
from NCR and other datasets

The numbers in brackets are for
the past period (1960–1980), all
others for the recent period
(1980–2000)
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Fig. 10 Time series of the
5-year running mean PCs of
WS10 anomalies (solid black),
linearly fitted corresponding
SLP index (dashed black), T2M
index (solid gray), and NAOI
(dashed gray). Upper panel first
PC, lower panel second PC. Left
panels for winter, right for
summer. All data except NAOI
are from NCR
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catalog, which usually persists for few days (e.g., James
2007).

Therefore, to find a relationship between the extreme
WS10 over the North Sea and the corresponding circulation
patterns, a slightly different approach is considered as
described below. For each day, a maximum WS10
(MWS10) over the German Bight region is first calculated.
The circulation pattern related to the extreme WS10 is
found in the following manner. The map of time-averaged
SLP anomalies for the days when the MWS10 exceeds
twice its standard deviation over the mean value is plotted
on Fig. 11. It is observed that the high WS10 is related to
an anomalously low SLP over Scandinavia. This SLP
pattern is related to the Cyclonic-Westerly and Cyclonic-
Northwesterly GWL, which have already been identified
and related to the wind storms over the North Sea. The
resultant SLP pattern is very robust regarding the choice of
the mean or the maximum WS10 over German Bight or the
reanalysis dataset used. Also, almost the same pattern is
obtained by using the more complicated method of extreme
associated functions described in Panja and Selten (2007),
which finds the combination of EOF patterns that are
optimally related to the extreme WS10. The SLP index
related to the extreme WS10 can be derived as the negative
of the spatial averaged SLP anomaly over the area of the
lowest SLP anomaly (lat. 55–70°N, lon. 10–25° E) as in
Fig. 11. The index is also constructed from the SLP
measurements at stations located in the southern part of
the Scandinavian peninsula. The advantage of deriving the
index from measurements is that the pressure-measuring

techniques did not significantly change in the last century
and thus the measurement causes less problems regarding
temporal inconsistencies compared to the SLP from the
reanalysis data. Here, the measured index is constructed as
the negative of the mean daily SLP measurement at the
synoptic stations in Göteborg (Sweden) and Oksoy (Nor-
way). The results do not change if SLP from only one of
the stations is taken instead of the average of both stations.

The relationship between the SLP index and the extreme
WS10 is almost linear (not shown); the high percentiles of
the MWS10 are fitted to the high percentiles of the SLP
index. For example, the annual time series of the 90
percentile of MWS10 and the 90th percentile of the indices
(from both reanalysis and measurements) linearly fitted to
the 90 percentile of MWS10 are shown in Fig. 12. The
correlation coefficient between the time series of the 90th
percentiles of MWS10 and 90 percentiles of the related
indices is relatively high (exceeding 0.7 for all datasets).
However, the time series of the 90th percentiles of MWS10
and the related indices show consistently different interan-
nual variability. The time series of the 90th percentiles of
MWS10s are also sensitive to the reanalysis dataset. The
90th percentile of the MWS10 from the NCR shows almost
no interannual variability until the middle of 1970s and
subsequently a strong increase which reaches a maximum
in the mid-1990s and a decrease thereafter with a slight
increase towards the end. The results from NCR2 are
similar to NCR for the common data period. The 90
percentile of MWS10 from ERA40 is slightly decreasing
until beginning of the 1970s and then shows a sudden jump
over a few years followed by a constant period and an
increase until mid-1990s with decrease thereafter. The 90
percentiles of the SLP index from the reanalysis agree with
respect to the MWS10 being relatively constant until the
mid-1980s and then show a slight increase until the mid-
1990s and a decrease thereafter. The indices show signif-
icantly smaller trends compared to the WS10. The MWS10
index derived from the measurement is amazingly constant
in time and does not show an increase from late 1970s until
mid-1990s.

The disagreement of the interannual variability between
the high percentiles MWS10 and the related indices fitted to
the MWS10 is observed in other high percentiles. In
Fig. 13, the linear trends are shown during the recent and
the past period. The high percentile indices derived from

PCs Winter Summer

NCR NCR2 ERA40 NCR NCR2 ERA40

1 0.85 (0.61) 0.86 (–) 0.85 (0.55) 0.49 (0.43) 0.46 (–) 0.54 (0.47)

2 0.61 (0.29) 0.59 (–) 0.59 (0.42) 0.31 (0.35) 0.35 (–) 0.43 (0.49)

Table 5 Correlation coeffi-
cients between PCs of WS10
anomaly and the circulation
patterns for the recent period
(1980–2000, without brackets)
and for the past period (1960–
1980, in brackets)

  75 o
W

  50 o
W

  25oW    0
o

  2
5
o E

36 o
N

48 o
N

60 o
N

72 o
N

84 o
N

–3500 –3000 –2500 –2000 –1500 –1000 –500 0 500 1000

Fig. 11 The SLP anomaly [Pa] from NCR related to high WS over
the NS domain

416 K. Sušelj et al.



the measurements show no significant trend. The index
derived from the reanalysis SLP shows a slight trend in the
recent period, which in most cases is not significant, while
the high percentiles of WS10 show significant trends
towards higher high percentiles of WS10. We investigated
if the trend in MWS10 may have resulted by the change in
thermal forcing. The T2M and thickness between 700 and
1,000 hPa were used to calculate the extreme indices, same
as with the SLP, and were related to the MWS10. None of
these two indices was able to explain the interannual
variability of MWS10.

4 Discussions and conclusions

The representation of daily mean WS10 over the North Sea
between the NCR, NCR2, and ERA40 reanalysis data is
compared with the main goal to assess the reliability and
deficiencies of the datasets for applications such as the
long-term wind resource assessment. The WS10 over the
North Sea from different reanalysis sources is highly
correlated, as shown by the high linear correlation
coefficient of the data as well as the correlation coefficient
between the first three PCs from different reanalysis

datasets (Table 4). The agreement between PCs of WS10
is slightly better in the recent period (1980–2000) compared
to the past period (1960–1980) which can partially be
attributed to the improved WS10 dataset in the recent
period probably due to assimilation of satellite-measured
wind data.

Some important differences in the WS10, such as its
mean magnitude and linear trends of time-averaged values,
are model dependent which can be at least partially
attributed to the choice of parameterizations of boundary
layer, surface layer and land surface processes, and the
model resolutions. The WS10 from reanalysis is interpo-
lated from the first model level to 10-m height using surface
layer parameterizations and is also sensitive to the vertical
model resolution. As a result, in the recent period, the mean
magnitude of NCR WS10 is around 2 ms−1 lower than in
NCR2 WS10. Also, the linear trends of annual mean WS10
are significantly different among the three reanalysis data-
sets. Since the trends and the mean values of WS700hPa
from all models are nearly the same again increases the
confidence in this reasoning.

Next, the imprint of local circulation patterns on the
WS10 climatology over the NS domain resolved in the
high-resolution model (WRF) simulations is investigated.
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Fig. 12 The 90th percentile of winter WS10 (ms−1; black lines) and
related circulation indices from reanalysis models (red lines) and from
measured SLP (green lines). Thin lines represent yearly data, the thick

lines 9-year moving average. Left for NCR, middle for NCR2, and
right for ERA40 data
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Fig. 13 Linear trends of the
high percentiles (from 70 to 90)
of winter MWS (solid lines) and
high percentiles of related cir-
culation patterns (dashed lines)
for past (left) and recent (right)
period. Green line is for mea-
sured SLP, black for NCR, blue
for NCR2, and red for ERA40

North Sea near-surface wind climate 417



Some of the processes such as the land–sea breezes are to
some degree smoothened by averaging the WS10 on the
daily time step. It is expected that the daily WS10 in the
low-resolution dataset is well represented since the decor-
relation length of daily WS10 is around 800 km which is
considerably larger than the horizontal resolution of the
reanalysis models. Exceptions are only at the coast of
Weser-Ems area and Holland which probably deviate due to
the influence of the local circulation patterns. The compar-
ison of WS10 reanalysis data with a high-resolution dataset
(WRF3) for the 3-year (2003–2006) period is sufficiently
long to warrant a closer examination of the influence of
local processes on the WS10. Comparing the NCR
reanalysis data to the high-resolution WRF3, we again
confirmed that the variability of daily WS10 over the North
Sea is mostly well described by the low-resolution
reanalysis dataset. The highest deviations between NCR
and WRF3 data were found mostly along the coast which
indicates the influence of the local circulation patterns that
cannot be resolved in the low-resolution dataset. As with
the different reanalysis datasets, the mean magnitude of the
WS10 from the NCR and high-resolution datasets differs.
The exact location of the coastline is not well resolved in
the NCR, resulting in larger deviations between the NCR
and high-resolution WS10 along the coast.

The dominant modes of the mean monthly WS10
described by the EOF modes are related to the SLP and
T2M patterns. The SLP and T2M patterns were obtained
empirically to represent the forcing on WS10 such that the
circulation indices (corresponding time series) are well
correlated to the PCs of WS10. The circulation indices were
fitted to the corresponding PCs of WS10 in order to
hindcast the WS10. There are alternative approaches for
searching the dominant modes of WS10 variability and its
relationship to the circulation patterns. For example, Fil and
Dubus (2005) preferred cluster analysis over EOFs of the
northern European SLP in order to isolate the climate
regimes since the cluster analysis does not require an
assumption of the linearity. However, for the analysis
presented here, the cluster analysis is not well suited since
it would be harder to obtain the continuous relationship
between the large-scale indices and the clusters of WS10
anomaly. The other alternative would be to use one of the
multivariate methods for finding the relationship, such as
canonical correlation analysis (CCA; von Storch and
Zwiers 1999) of the EOF prefiltered fields. However, the
disadvantage of the CCA is that its patterns do not
necessarily represent a large proportion of the data
variability. The T2M pattern does not bring a significant
improvement in explaining the WS10 variability. Most of
the interannual variability of the WS10 explained by the
first EOF pattern describes a coherent increase of WS over
the North Sea region and is related to a SLP pattern similar

to the NAO. However, the northern center of the pattern
found in this study is shifted eastwards and is very similar
to the pattern found by (Kaas et al. 1996). In the winter, the
correlation coefficient between first SLP index and NAOI is
high. The first SLP index is highly correlated to the first PC
of WS10 only in the winter. The higher correlation between
the first PC of WS10 and the SLP index in the winter
reflects that the empirically found pattern is better correlat-
ed to the WS10 variability compared to the NAOI. The
second SLP pattern is the SLP anomaly between Scandi-
navia and Greenland and is related to the WS10 dipole over
south and north of Great Britain. The index from the second
circulation pattern is well related to the WS10 in the recent
period, whereas it was rather poor in the past period. Again,
it is not self-evident if this is an indication of the better
quality of the WS10 data in the recent period compared to
the past period or if this reflects the changes between the
recent and past period. The second SLP and WS10 patterns
seem to reflect the monthly mean position of the storm
tracks and increase toward the end of the reanalysis period
which is consistent with the observed northern shift of
storms tracks in the recent period (Schneidereit et al. 2005;
Wang et al. 2006).

The extreme wind speeds are described as the WS10
exceeding a predefined high percentile (e.g., 90th) of daily
WS10 for each year in winter season separately. The
extreme circulation patterns related to the high daily
WS10 were found by filtering the SLP anomalies for the
days when WS10 crosses a predefined limit. The search for
the different SLP patterns related to the extreme wind
speeds may not be suitable since the patterns based on the
EOF functions are not designed to find rare extreme values.
The extreme wind speeds in the German Bight are related
to the low SLP over Scandinavia. The time series of the
extreme WS10s are insensitive to the reanalysis datasets
used in the analysis. In the past period, there are an
important differences between the extreme WS10s from
different reanalysis, while, in the recent period, the
correspondence is better. The circulation indices defined
as the same percentiles of the negative SLP over the
Scandinavia and regressed on the extreme percentiles of the
WS10 show considerably less interannual variability;
especially, the increase from the 1960s to the mid-1990s
is underestimated. Similar SLP index was constructed from
the daily SLP measurements at two stations in the south of
the Scandinavian peninsula (Göteborg and Oksoy). The
circulation index from these two stations shows incredibly
little interannual variability. These results show high
sensitivity to the methodology of the estimation of extreme
wind speeds. It has been noted in the literature that the time
series of extreme near-surface wind speeds are very
different when estimating them from the wind speeds and
from the proxy data like the SLP. We showed here that,
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even if the data from the same reanalysis are used, which is
expected to be highly consistent, the deviations in the
interannual variability of extreme wind speeds exist. The
extreme wind speeds are probably only partially captured in
the SLP patterns.

The analysis of different resolution datasets was under-
taken in this study to comprehensively describe the current
state of surface wind climate (WS10) over the North Sea. In
particular, a methodology to detect and examine a regional
indicator of climate change influencing primarily the
surface marine wind field is developed and applied. This
methodology is applied in a subsequent study to compare
and investigate the surface wind climate states in the
regional climate hindcasts and future climate scenarios.

Acknowledgements The data used in this study were obtained from
NCEP/NCAR, ECMWF, and CPC. The work was partially supported
by the European Union Marie-Curie Early Stage Researcher Program
Modobs (MRTN-CT-2005-019369).

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

Alexandersson H, Tuomenvirta H, Schmith T, Iden K (2000) Trends
of storms in NW Europe derived from an updated pressure data
set. Clim Res 14:71–73

Ansell TJ et al (2006) Daily mean sea level pressure reconstructions
for the European–North Atlantic region for the period 1850–
2003. J Clim 19(12):2717–2742

Barnston AG, Livezey RE (1987) Classification, seasonality and
persistence of low-frequency atmospheric circulation patterns.
Mon Weather Rev 115:1083–1126

Deser C, Blackmon ML (1993) Surface climate variations over the
North Atlantic during winter: 1900–1989. J Clim 6:1743–1753

Dommenget D (2007) Evaluating EOF modes against a stochastic null
hypothesis. Clim Dyn 28:517–531

Fil C, Dubus L (2005) Winter climate regimes over the North Atlantic
and European region in ERA40 reanalysis and DEMETER
seasonal hindcast. Tellus 57A:290–307

Greatbatch RJ, Rong PP (2006) Discrepancies between different
northern hemisphere summer atmospheric data products. J Clim
19(7):1261–1273

Hurrell JW, van Loon H (1997) Decadal variations in climate
associated with the North Atlantic oscillation. Clim Change
36:301–326

James PM (2007) An objective classification method for Hess and
Brezowsky Grosswetterlagen over Europe. Theor Appl Climatol
88:17–24

Janjić Z (2002) Nonsingular implementation of the Mellor–Yamada level
2.5 scheme in the NCEP Meso model. NCEP office note, no. 437

Kaas E, Li TS, Schmith T (1996) Statistical hindcast of wind
climatology in the North Atlantic and northwestern European
region. Clim Res 7:97–101

Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project.
Bull Am Met Soc 77(3):437–471

Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo J, Fiorino M,
Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull
Am Met Soc 83(11):1631–1643

Kistler R et al (2001) The NCEP-NCAR 50-year reanalysis: monthly
means CD-ROM and documentation. Bull Am Met Soc 82
(2):247–268

Marshall J et al (2001) North Atlantic climate variability: phenomena,
impacts and mechanisms. Int J Climatol 21:1863–1898

Matulla C, Schöner AWH, von Storch H, Wang XL (2007) European
storminess: late nineteenth century to present. Clim Dyn .
doi:10.1007/s00382-007-0333-y

North GR, Bell TL, Cahalan RF (1982) Sampling errors in the
estimation of empirical orthogonal functions. Mon Weather Rev
110:699–710

Panja D, Selten FM (2007) Extreme associated functions: optimally
linking local extremes to large-scale atmospheric circulation
structures. Atmos Chem Phys Discuss 7(5):14433–14460

Preisendorfer RW (1988) Principal component analysis in meteorol-
ogy and oceanography. Developments in atmospheric science,
vol 17. Elsevier, Amsterdam

Pryor SC, Barthelmie RJ (2003) Long-term trends in near-surface flow
over Baltic. Int J Climatol 23:271–289

Pryor SC, Barthelmie RJ, Schoof JT (2006) Inter-annual variability of
wind indices across Europe. Wind Energy 9:27–38

Richman MB (1986) Rotation of principal components. J Climatol
6:293–335

Rogers JC (1997) North Atlantic storm track variability and its
association to the North Atlantic Oscillation and climate
variability of northern Europe. J Clim 10:1635–1647

Santer BD, Wigley T, Boyle JS, Gaffen DJ, Hnilo JJ, Nychka D,
Parker DE, Taylor KE (2000) Statistical significance of trends
and trend differences in layer-average atmospheric temperature
time series. J Geophys Res 105(D6):7337–7356

Schmidt H, von Storch H (1993) German bight storms analysed.
Nature 365:791

Schneidereit A, Blender R, Fraedrich K, Lunkeit F (2005) Icelandic
climate and North Atlantic cyclones in ERA-40 reanalysis. Meteo
Z 14(1):1–3

Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W,
Powers JG (2005) A description of the advanced research WRF
version 2. NCAR technical note

Sood A, Sušelj K, Heinemann D (2007) Wind resource assessment in
the offshore and coastal domain of the German Bight using high
resolution validated mesoscale simulations compared to the
standard techniques. In: European Wind Energy Conference
Milan, Italy

Trigo RM, Osborn TJ, Corte-Real JM (2002) The North Atlantic
Oscillation influence on Europe: climate impacts and associated
physical mechanisms. Clim Res 20:9–17

Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc
131(612):2961–3012

von Storch H, Zwiers FW (1999) Statistical analysis in climatology.
Cambridge University Press, Cambridge

Wang XL, Swail VR, Zwiers FW (2006) Climatology and changes of
extratropical cyclone activity: comparison of ERA-40 with
NCEP-NCAR reanalysis for 1958–2001. J Clim 9(13):3145–
3166

Weisse R, von Storch H, Feser F (2005) Northeast Atlantic and North
Sea storminess as simulated by a regional climate model 1958–
2001 and comparison with observations. J Clim 18(3):465–479

Yan Z, Bate S, Chandler RE, Isham V, Wheater H (2006) Changes in
extreme wind speeds in NW Europe simulated by generalized
linear models. Theor Appl Climatol 83:121–137

Yiou P, Nogaj M (2004) Extreme climatic events and weather regimes
over the North Atlantic: when and where? Geophys Res Lett 31:
L07202. doi:10.1029/2003GL019119

North Sea near-surface wind climate 419

http://dx.doi.org/10.1007/s00382-007-0333-y
http://dx.doi.org/10.1029/2003GL019119

	North Sea near-surface wind climate and its relation to the large-scale circulation patterns
	Abstract
	Introduction
	Data description
	Analysis methods and results
	Description of surface wind speed in different datasets
	Modes of wind speed variability and their relation to the large-scale patterns
	Extreme wind conditions

	Discussions and conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


