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Abstract
An accurate quantification of fluxes from heterogeneous sites and further bifurcation into contributing homogeneous fluxes 
is an active field of research. Among such sites, fragmented croplands with varying surface roughness characteristics pose 
formidable challenges for footprint analysis. We conducted two flux monitoring experiments in fragmented croplands char-
acterized by two dissimilar surfaces with objectives to: (i) evaluate the performance of two analytical footprint models in 
heterogeneous canopy considering aggregated roughness parameters and (ii) analyze the contribution of fluxes from indi-
vidual surfaces under changing wind speed. A set of three eddy covariance (EC) towers (one each capturing the homogenous 
fluxes from individual surfaces and a third, high tower capturing the heterogeneous mixed fluxes) was used for method 
validation. High-quality EC fluxes that fulfill stationarity and internal turbulence tests were analyzed considering daytime, 
unstable conditions. In the first experiment, source area contribution from a surface is gradually reduced by progressive cut, 
and its effect on high-tower flux measurements is analyzed. Two footprint models (Kormann and Meixner ‘KM’; analytical 
solution to Lagrangian model ‘FFP’) with modified surface roughness parameters were applied under changing source area 
contributions. FFP model has consistently over predicted the footprints  (RMSEFFP = 0.31  m−1,  PBIASFFP = 19.00), whereas 
KM model prediction was gradually changed from over prediction to under prediction towards higher upwind distances 
 (RMSEKM = 0.02  m−1,  PBIASKM = 8.50). Sensitivity analysis revealed that the models are more sensitive to turbulent con-
ditions than surface characteristics. This motivated to conduct the second experiment, where the fractional contribution of 
individual surfaces (α and β) to the heterogeneous fluxes measured by the high tower (T3) was estimated using the principle 
of superposition (FT3 = α FT1 + β FT2). Results showed that α and β are dynamic during daylight hours and strongly depend 
on mean wind speed (U) and friction velocity (u*). The contribution of fluxes from adjoining fields [1 − (α + β)] is significant 
beyond 80% isopleth. Our findings provide guidelines for future analysis of fluxes in heterogeneous, fragmented croplands.

1 Introduction

Eddy covariance (EC) technique provides a direct meas-
urement of fluxes of trace gasses (such as  CO2 and  CH4) 
within the atmospheric boundary layer at high tempo-
ral frequencies (Aubinet et al. 1999; Leclerc and Foken 
2014b). EC techniques rely on the covariance of turbulent 
fluctuations between vertical wind speed and the scalar 
component of interest. EC methods are now a mainstay of 
continental and global assessments of carbon and water 
exchanges (Chu et al. 2021). Applications of EC have 
spread into many domains including dense vegetative for-
ests (Longdoz and Granier 2012), managed agricultural 
croplands (Moureaux et al. 2012), grasslands (Wohlfahrt 
et al. 2012), wetlands (Laurila et al. 2012), inland water 
bodies such as lakes (Timo Vesala et al. 2012), and densely 
populated urban areas (Feigenwinter et al. 2012). Meas-
ured fluxes are primarily originated from an upwind 
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region, known as the footprint. Mathematically, flux 
footprints are described using functions that relate spa-
tial distribution of surface sources/sinks to the measured 
signal (Horst and Weil 1992; Leclerc and Thurtell 1990). 
Conceptually, footprint represents the sensor's ‘field of 
view’ with size and shape depending on meteorological, 
and surface parameters such as measurement height, wind 
direction, atmospheric stability, and surface roughness 
(Rannik et al. 2012). An accurate representation of foot-
print is indispensable for many applications including data 
interpretation, quality assessment, and upscaling (Arriga 
et al. 2017; Chu et al. 2021; Göckede et al. 2004). Foot-
print models serve as an important first step in evaluating 
the contribution of different sources/sinks to the fluxes 
measured by EC towers.

Methods for characterizing footprint fall into four cat-
egories: (i) analytical models that are based on the solu-
tion of an advection–diffusion equation (Horst 1999; Horst 
and Weil 1992, 1994; Hsieh et al. 2000; Kaharabata et al. 
1997; Kljun et al. 2002, 2004; Kormann and Meixner 2001; 
Schmid 1994; Schmid and Oke 1990; Schuepp et al. 1990), 
(ii) stochastic Lagrangian particle dispersion models (LS) 
that simulate trajectories of a large number of particles 
between their source and the point of measurement (Kljun 
et al. 2015; Markkanen et al. 2009), (iii) large-eddy sim-
ulation models that solve for flow field characteristics by 
neglecting small-scale information via numerical solution of 
Navier–Stokes equations (Markkanen et al. 2009), and (iv) 
ensemble average closure models that use empirical infor-
mation to close sets of ensemble-averaged Navier–Stokes 
equations (T. Vesala et al. 2008). A comprehensive over-
view of footprint approaches, their applications and limita-
tions can be derived from numerous publications (Foken 
and Leclerc 2004; Leclerc and Foken 2014a; Rannik et al. 
2012; Schmid 2002; Vesala et al. 2008). Analytical models 
have relatively few parameters, computationally inexpen-
sive, and are straightforward to use, hence widely used for 
footprint characterization (Leclerc and Foken 2014a). Foot-
prints from analytical models can be estimated exclusively 
from the atmospheric variables (Leclerc and Foken 2014b) 
via model parameterization (Leclerc and Foken 2014a). 
However, these models consider a horizontal homogene-
ous field for footprint characterization (Rannik et al. 2012). 
To date, Korman and Meixner (KM) model is arguably the 
most preferred analytical solution due to its: (i) ease of use, 
(ii) consideration of realistic power-law profiles of eddy dif-
fusivity and wind velocity, (iii) applicability over a wide 
range of stability conditions, and (iv) numerical stability 
(Leclerc and Foken 2014b). Reliable application of the KM 
model is however restricted to near-surface measurements 
and homogeneous surfaces. Alternatively, the flux footprint 
parameterization approach (FFP model) considers changes 
in surface roughness through a scaling approach, hence 

widely used for a broad range of boundary layer conditions 
and measurement heights (Kljun et al. 2002, 2004, 2015).

Real-world sites are often complex and spatially het-
erogeneous with respect to surface characteristics such as 
topography, roughness length, and leaf area index. This is 
particularly true to Indian agro-economic settings dominated 
by fragmented, heterogeneous croplands. A high diversity 
among the agricultural fields in terms of shape, size, crops 
sown, management practices, etc. makes the fluxes to be 
highly heterogeneous. Interpretation and bifurcation of 
fluxes from such complex sites is highly challenging as the 
outreach of homogeneous surface is usually shorter than the 
footprint (Rannik et al. 2012). Fractional contribution of 
individual fields to the fluxes observed in such mixed fetch 
environment depends on many factors including measure-
ment height, aerodynamic roughness, boundary layer char-
acteristics, and atmospheric stability (Foken and Leclerc 
2004; Göckede et al. 2004; Rebmann et al. 2005). While 
analytical models successfully represent the source area of 
fluxes from homogenous fields, the effect of surface hetero-
geneity remains mostly unexplored (Göckede et al. 2005). 
The ability of analytical models to simulate fluxes generated 
from such heterogeneous surfaces can be improved with: 
(i) parameter aggregation that considers arithmetic and 
area-weighted averages of input parameters (e.g., rough-
ness length) from contributing homogeneous surfaces (Stull 
and Santoso 2000), (ii) inclusion of an effective roughness 
length parameter normalized with friction velocity (Göckede 
et al. 2004; Hasager and Jensen 1999; Taylor 1987), and 
(iii) flux averaging technique, that superimposes fluxes esti-
mated from individual land-uses using tile or sub-grid scale 
approach (Beyrich et al. 2006; Leclerc and Foken 2014a; 
Wang et al. 2006).

Field validation of flux footprints over heterogeneous sites 
characterized by two dissimilar surfaces can be done using 
a set of three EC towers: two low towers capturing homoge-
neous fluxes from individual landscapes (as reference), and 
a third high tower capturing heterogeneous, mixed fluxes 
(Foken and Leclerc 2004). Several studies have compared 
the fluxes measured on a high tower with the area-averaged 
footprint from individual fields (Avissar and Pielke 1989). 
For example, Beyrich et al. (2006) developed a strategy to 
estimate area-averaged turbulent fluxes over a heterogene-
ous landscape. Sensitivity of source area to surface char-
acteristics and atmospheric stability was analyzed using a 
two-dimensional footprint model (Schmid 1997) combined 
with EC tower data. Göckede et al. (2005) analyzed corre-
lations between measured and model-simulated fluxes in a 
mixed fetch using flux source area method (FSAM) (Schmid 
1994, 1997) and LS models. They concluded that a three-
tower configuration (with two reference systems and one 
with mixed fetch) outperformed two-tower configurations 
(both capturing heterogeneous fluxes with varying source 
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strengths) for validating the footprint models in heterogene-
ous conditions. Arriga et al. (2017) used three EC systems to 
partition carbon fluxes in managed, progressively cut grass-
lands based on two analytical models (Schuepp and KM) 
and numerical LS models. They concluded that a detailed 
description of roughness and vertical turbulent structure 
would improve footprint prediction in complex topography.

An extensive literature survey using Scopus (Elsevier) 
database for the period 2007–2023 has resulted in 107 
published articles on the application of footprints for het-
erogeneous landscapes. Of these, only 8 (< 0.1%) articles 
have used analytical models to heterogeneous vegetative 
surfaces. Interestingly, none of these studies have consid-
ered realistic, fragmented croplands characterized by dis-
similar surfaces that typify Indian agro-economic settings 
such as: (i) dissimilar surfaces resulting from progressive 
harvesting of a crop and (ii) dissimilar surfaces result-
ing from growing multiple crops. This study is aimed at 
extending the application of analytical footprint models 
to Indian fragmented landscapes using EC flux observa-
tion datasets. Hence, the objectives of this study are to: 
(i) evaluate the performance of two footprint models (KM 
and FFP) with modified roughness parameters to repre-
sent fluxes under changing source area and (ii) analyze the 
contribution of individual surfaces to the heterogeneous 

fluxes measured in a mixed fetch environment under 
changing turbulence. To achieve these objectives, two 
flux monitoring experiments were performed. These two 
experiments are akin to the commonly found mixed flux 
scenarios in Indian agro-economic settings. In the first 
experiment (successive cut experiment), vegetation cover 
(of sugarcane) within the source area is gradually reduced 
to modify surface roughness. Performance of two footprint 
models with modified roughness parameters was evaluated 
under changing source area. In the second experiment (two 
crop surface experiment), the fractional contribution of 
individual surfaces (sugarcane and cotton) to the fluxes 
measured in mixed fetch conditions was analyzed under 
changing turbulent conditions, in particular wind speed. 
In both experiments, carbon fluxes were monitored dur-
ing daytime unstable atmospheric conditions (10:00 to 
18:00 Hrs of the day). The towers were configured in such 
a way that one tower (T3) monitors combined fluxes from 
the two surfaces, while other two reference towers (T1 and 
T2) monitor fluxes generated from individual fields. We 
hypothesized that differences in measured fluxes among 
the towers were largely attributable to underlying surface 
characteristics and less attributable to errors in measure-
ment. Flowchart illustrating the proposed methodology is 
presented in Fig. 1.

Fig. 1  Flowchart illustrating the methodology to quantify (successive cut experiment) and partition (two crop surface experiment) fluxes from 
fragmented, heterogeneous croplands. For a detailed explanation of the variables, the reader is advised to refer Eqs. (2)–(7)
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2  Materials and methodology

2.1  Site characterization and instrumentation

Flux monitoring experiments were conducted in privately 
owned agricultural fields located in Nandi Kandi Village, 
Telangana, India (latitude: 21° 25′ 30.7″ E, longitude: 78° 
9′ 30.2″ N, elevation: 534 m asl). Agricultural parcels of 
the region are highly fragmented with areas ranging from 
0.014 to 1.3 ha. The shape, size, and orientation of the 
land parcels are highly non-uniform, posing challenges 
for data analysis and interpretation. The region has a 
semi-arid climate (BSh, Köppen and Geiger climate clas-
sification) characterized by hot summers and warm to 
cool winters with low precipitation (Köppen 1884). Aver-
age annual precipitation for the study area is 795 mm, 
with more than 80% received during monsoon months 
(Jun–Oct). Annual potential evapotranspiration (PET) for 
the region is 1790 mm (IMD report 1901–2017). Three EC 
towers, with two low height towers (T1 and T2) captur-
ing the homogeneous fluxes from individual surfaces, and 
the third higher tower (T3) capturing the heterogeneously 
mixed fluxes forms the basis for flux monitoring. Each 
tower is equipped with a 3D sonic anemometer (to meas-
ure three-dimensional wind velocity) and an open-path 
fast response infrared gas analyzer (IRGASON-EB-IC, 
Campbell Sci. Inc., USA) to measure  CO2 and  H2O fluxes. 

Raw data were collected with a logger (CR3000, Campbell 
Sci. Inc., USA) at 10 Hz frequency and averaged at half-
hour intervals for computations. Wind rose diagrams for 
the study region reveal a prevailing South to North wind 
during experiment 1, and East to West flowing wind dur-
ing experiment 2. All sensors were thus oriented in the 
predominant wind direction to minimize errors associated 
with flux loss (Kumari et al. 2020).

2.1.1  Successive cut experiment

The first experiment was conducted in a sugarcane field 
of 1.24 ha, having a long side (135 m) in the North–South 
direction (Fig. 2a). During the monitoring period (6–13 
Jan 2018, i.e. DOY 6–13, 2018), the field was progres-
sively cut (at 20 m per day) from South to North using a 
mechanical harvester to remove leafy tops and stalk, result-
ing in steep roughness change across the interface. Mean 
canopy height (hc) and roughness length (z0) of sugarcane 
and cut surfaces during the monitoring period are 4.0 m, 
0.6 m; and 0.01 m, 0.0015 m respectively. This will ensure 
a maximum possible roughness length change in managed 
croplands. The first (Zm = 6 m) and second (Zm = 1.5 m) 
towers were aimed to monitor homogenous fluxes from the 
two reference (sugarcane and mowed) surfaces. In contrast, 
the third tower (Zm = 8 m) is aimed to monitor fluxes from 
the sugarcane field with a reduced source area. All fields 
outside the experimental setup were harvested, hence the 

Fig. 2  Distribution of agricultural fields within the study area specific 
to successive cut experiment (left) and two crop surface experiment 
(right). Yellow dots and ovals correspond to eddy covariance (EC) 
flux towers and corresponding two-dimensional flux footprints under 

unstable atmospheric conditions. A wind rose diagram showing the 
predominant wind directions during the monitoring period is shown 
in the inset
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contribution of fluxes from the nearby fields is neglected. All 
fluxes were observed during daytime, unstable atmospheric 
conditions (u* = 0.16 ± 0.5   ms−1, L = −11.35 ± 38.76 m, 
U = 0.81 ± 0.46  ms−1).

2.1.2  Two crop surface experiment

The second experiment was conducted in a fragmented 
cropland characterized by two dissimilar surfaces, i.e., sug-
arcane–cotton (Fig. 2b). The sugarcane field (C1) has an 
area of 1.24 ha, mean canopy height (hc) of 4.0 m, rough-
ness length (z0) of 0.6 m, and a mean leaf area index (LAI) 
of 3.0  m2m−2. Corresponding values for the cotton field 
(C2) are 1.21 ha, 1.5 m, 0.225 m, and 4.3  m2m−2. Sugar-
cane was planted in December 2017, whereas cotton was 
planted in June 2018. The monitoring period of the two 
crop surface experiment was (01 Apr–19 Dec, 2018 i.e. 
DOY: 91–353, 2018). Both fields are drip-irrigated with 
an average frequency of 6–8 days. Two low-height tow-
ers (T1 and T2) mounted in sugarcane (Zm = 6 m) and cot-
ton (Zm = 3 m) fields were intended to capture the fluxes 
originating from respective fields. The third (high) tower 
(T3) was located in the sugarcane field (Zm = 8 m) and is 
designed to capture the combined fluxes originating from 
the two fields. All sensors were aligned in East direction 
with fluxes observed during daytime, unstable atmospheric 
conditions (u* = 0.32 ± 0.07  ms−1, L = -28.62 ± -31.44 m, 
U = 0.96 ± 0.50  ms−1).

2.2  Flux data processing and quality assessment

Eddypro post-processing software was used for primary 
data processing on half-hour mean fluxes (Version 6.2.0, LI-
COR, USA). First, several standard corrections were applied 
on the fast response measurements, including: (a) removal of 
bad quality (quality tag > 1) data, (b) tilt corrections on sonic 
measurements (Wilczak et al. 2001), (c) frequency response 
corrections and (d) Webb–Pearman–Leuning (WPL) cor-
rections (Ray Leuning 2007). We then applied secondary 
corrections to remove spurious data and fill the data gaps 
with reasonable estimates. The REddyproc package (Wutzler 
et al. 2018) developed in an open-source ‘R’ environment 
and MATLAB script were used for secondary data process-
ing that includes: (a) flux spike removal and (b) removal of 
negative night time  CO2 fluxes.

To ensure the reliability of EC measurements made in 
a heterogeneous mixed fetch environment, we assigned 
quality flags to the observed  CO2 fluxes based on the 
deviation from ideal conditions (Foken and Wichura 1996; 
Göckede et al. 2004). Quality metrics considered include: 
(i) stationarity of measurements, and (ii) development 
of full-scale turbulent conditions (Göckede et al. 2004). 
The stationarity of flow was tested by comparing 30-min 

covariance with a mean of six successive sets of 5-min 
covariances obtained for the same period (Foken and 
Wichura 1996). The development of full-scale turbulent 
conditions was tested using flux-variance similarity theory 
(R. Leuning et al. 1982; Optis et al. 2014; Wyngaard et al. 
1971). Turbulent characteristics of wind velocity compo-
nents (u and w) were compared with values parameter-
ized with standard functions developed for flat terrains 
with low vegetation (Thomas and Foken 2002). Deviations 
between measured and parameterized values were then 
used to derive an integrated quality tag for each measure-
ment that ranged from 0 (best) to 2 (worst) (Foken and 
Wichura 1996; Foken et al. 2005; Göckede et al. 2008). 
EC fluxes with a quality tag of ≤ 1 were considered further 
for footprint analysis and hypothesis testing.

2.3  Footprint modeling

2.3.1  Flux footprint functions

Mathematically, flux footprint (f) is a transfer function 
between sources or sinks of passive scalars at the surface 
(Qc), and turbulent flux (Fc) measured at a receptor height 
of Zm (Pasquill and Smith 1983; Schmid 2002). Footprint 
function (f) estimates the location and relative importance 
of passive scalar sources/sinks that are influencing the flux 
measurements (Fc) at a given receptor height (Zm). For a 
receptor mounted above the origin (0, 0) with positive ‘x’ 
indicating upwind distance, relation between fluxes meas-
ured by an EC tower (Fc) and a footprint function from 
analytical models (f) is given by:

where ℜ denotes the integration domain (0 to ∞), and x, 
y are the space coordinates. We used two well-performing 
analytical models to interpret the turbulent transport of car-
bon fluxes generated from the heterogeneous surface. These 
include:

1) Korman and Meixner approach (KM Model): 
This method provides an analytical solution to the two-
dimensional advection–diffusion equation by considering 
power-law profiles for horizontal wind velocity (u) and 
eddy diffusivity (K) (Kormann and Meixner 2001). The 
two profiles are further related to Monin–Obukhov simi-
larity profiles using an analytical (Huang et al. 1979) or a 
numerical root-finding approach. The analytical approach 
is adopted in this study to consider stationary flow condi-
tions over homogeneous, isotropic terrains and to estimate 
cross-wind integrated fluxes at a downstream distance 
(x > 0), as given by:

(1)Fc(0, 0, zm) = ∫
ℜ

QC(x, y)f (x, y)dxdy
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where, Γ(x) is the Gamma function, μ is a parameter that 
depends on atmospheric stability conditions, and ξ(z) is the 
length scale parameter. Among the available analytical mod-
els, KM is the most preferred one due to realistic profiles 
of ‘u’ and ‘K’, applicability over a wide range of stability 
conditions, and numerical stability. Although KM model 
gives an approximate solution, the method uses atmospheric 
stability parameters as input instead of surface roughness 
parameters.

2) Flux footprint prediction approach (FFP): This method 
provides an analytical solution to the Lagrangian model, 
with an application to a wide range of boundary layer con-
ditions and measurement heights (Xu et  al. 2019). The 
two-dimensional footprint function is expressed in terms of 
crosswind-integrated footprint f y and a crosswind dispersion 
function Dy (Horst and Weil 1992) given by:

where x, y are the space coordinates and σy is expressed as a 
function of atmospheric stability and distance downwind of 
the source (Horst and Weil. 1992)

The method uses a scaling approach and parameteriza-
tion to estimate f y and lateral dispersion (Dy) from turbulent 
parameters, thereby eliminating long computational times 
associated with the release of a large number of trajectories. 
The model simulates a continuous range of stabilities from 
stable to convective while satisfying the well-mixed condi-
tion of Thomson (1987) everywhere. FFP requires stationar-
ity and horizontal homogeneity of the flow over time periods 
and its simulations are limited to measurement heights above 
the roughness sublayer and below the entrainment layer.

2.3.2  Averaging surface characteristics

Despite refinement, there has been limited application of 
analytical models to heterogeneous landscapes as the chang-
ing surface characteristics (such as topography, roughness 
length, leaf area) are not considered. This makes it difficult 
to interpret experimental footprints using model parameters 
obtained for homogeneous surfaces. Hence, we modified 
roughness length used in analytical models to suit changed 
roughness conditions through parameter aggregation.

2.3.2.1 Parameter aggregation (arithmetic average) This 
method employs simple arithmetic mean of input param-

(2)f (x) =
1

Γ(�)

��

x1+�
e

(

−
�

x

)

(3)Dy(x, y) =
e

−y2

2�2y

√

2��y

(4)f (x, y) = f y(x)Dy

eters (e.g., aerodynamic roughness length) from contrib-
uting parcels in estimating fluxes.

where, zarith is average roughness length used in footprint 
computations, zoi is roughness length from the surface ‘i' 
out of ‘n’ surfaces. Oversimplification of underlying physics 
makes this a less preferred method, particularly in regions 
with strong turbulence and contrasting surface characteris-
tics (Göckede et al. 2006).

2.3.2.2 Parameter aggregation (area‑weighted aver‑
age) This method employs area-weighted mean of input 
parameters (e.g.: aerodynamic roughness length) from 
contributing parcels in estimating heterogeneous fluxes.

where A1

A
, A2

A
,… .

An

A
 are areal proportions of individual homo-

geneous surfaces within the footprint of high tower.

2.3.2.3 Effective input parameters Previously discussed 
averaging methods disregard non-linearity between sur-
face characteristics and contributing fluxes. As a result, 
use of simple or weighted average parameters may result 
in altogether different flow characteristics that represent 
neither of the underlying surfaces. This method uses a 
logarithmic average of roughness length normalized with 
friction velocity to represent effective roughness length 
(Foken and Leclerc 2004; Hasager and Jensen 1999; Tay-
lor 1987).

where zo is the roughness length, u* is the frictional veloc-
ity, and zeff  is the aggregate roughness length. Since KM 
model indirectly considers roughness length (via U/u*) as 
an input, we matched the calculated roughness length with 
aggregated parameter value prior to footprint prediction. A 
R code is developed to estimate flux footprint using KM 
method. Since FFP directly considers roughness length as 
input parameter, we used the online tool developed by Kljun 
et al. (2015) (https:// geogr aphy. swans ea. ac. uk/ nkljun/ ffp) to 
implement parameter aggregation. A time series of input 
data is uploaded in prescribed format in the FFP online 
tool. Footprints are estimated for each time step, and aggre-
gated to a footprint climatology. The online tool provides 
1D as well as 2D flux footprints from the input parameters 
observed by the flux tower. While FFP-1D tool provides the 

(5)zarith =
1

N

N
∑

i=1

zoi

(6)zarea =
1

A

N
∑

i=1

Ai ∗ zoi

(7)zeff =
u∗. ln zo
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https://geography.swansea.ac.uk/nkljun/ffp
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crosswind integrated flux footprint, FFP-2D uses time-series 
of input datasets and provides footprint climatology along 
with underlying unsupervised classified land cover. The tool 
overlays land cover classes on footprint climatology to pro-
vide an estimate of which land cover contributes most to the 
measured fluxes (Kljun et al. 2015).

2.4  Sobol sensitivity analysis

To better understand the contribution of each input param-
eter (as well as their interactions) on simulated fluxes under 
heterogeneous conditions, we performed variance-based 
Sobol sensitivity analysis (Zhang et al. 2015). This method 
allows for the identification of a parameter (or set of param-
eters) with the most significant influence on output variance. 
Input parameters considered include: upwind distance (x), 
wind velocity (U), Obukhov length (L), friction velocity 
(u*), and roughness length (z0). These parameters were var-
ied over a finite range and rescaled to [0, 1]. Carbon fluxes 
were assessed as a function of the input parameter set using 
a Monte Carlo approach following probabilistic interpreta-
tion. This method decomposes output variance into a sum of 
variances of input parameters in increasing dimensionality 
to determine contributions of each input parameter and their 
interactions to overall variance. Algorithm outputs include: 
first-order (contribution of a single parameter), second-order 
(contribution of parameter interactions), and total-order 
(combination of main and higher-order effects) sensitivity 
indices. The main effects or first-order sensitivity indices 
measure the fractional contribution of a single parameter 
to the output variance whereas, second-order sensitivity 
indices are used to measure the fractional contribution of 
parameter interactions to the output variance. The total order 
sensitivity indices consider both main, second-order, and 
higher-order effects which involve the evaluation over a full 
range of parameter space (SOBOL’ 1993). As the order of 
sensitivity indices increases, the model parameters and asso-
ciated steps become more influential. An arbitrary threshold 
of 0.1 is considered to differentiate important and unim-
portant parameters. A comprehensive discussion on Sobol’s 
sensitivity analysis and its implementation can be found in 
Zhang et al. (2015).

2.5  Flux contribution from individual land use

Parameter aggregation methods are designed to estimate 
fluxes in a mixed fetch environment by modifying input 
parameters. However, these methods do not estimate propor-
tional contributions of individual landmasses. Flux partition-
ing overcomes this limitation using the principle of superpo-
sition (Arriga et al. 2017; Foken and Leclerc 2004; Leclerc 
and Foken 2014a). In brief, the combined fluxes measured 
by the high-tower (FT3) is considered as the weighted sum of 

fluxes measured by the two low-height towers (that capture 
homogenous fluxes: FT1 and FT2) given by:

where α and β (range 0–1) are proportional contributions of 
fluxes generated from sugarcane and cotton fields, respec-
tively. The ‘noise’ term (E) represents ‘closing error’ con-
taining the fluxes generated from outside the field bounda-
ries as well as interaction fluxes. The optimal values of α and 
β that satisfy Eq. (8) were obtained using least square mini-
mization. Proportional contributions depend on a number of 
surface and atmospheric characteristics including roughness 
length 

(

z0
)

 , atmospheric stability 
(

z−d

L

)

 , source areas ( A1

A
 and 

A2

A
 ), wind velocity (U), and friction velocity (u*).

2.6  Performance evaluation

We used four goodness-of-fit indicators to evaluate per-
formance of parameter-aggregated analytical models in 
simulating flux footprints under heterogeneous conditions. 
These include: (i) coefficient of determination (R2), (ii) root 
mean square error (RMSE), (iii) bias of estimation (PBIAS), 
and (iv) modelling efficiency (NSE). These indicators were 
computed from the pairs of EC observed (Oi) and analytical 
model simulated (Pi) fluxes, as well as their means ( O,P ) for 
various upwind distances. Coefficient of determination (R2) 
provides the strength of linear relation between observed and 
model estimated fluxes. Root mean squared error (RMSE) 
measures the variance of residual errors. Percentage bias 
(PBIAS) indicates the average tendency of the simulated 
data to be larger or smaller than the corresponding observa-
tions made at the high tower (T3). Similarly, Nash–Sutcliffe 
efficiency (NSE), determines the relative magnitude of the 
residual variance compared to the measured data variance. 
We judged the model ability to estimate flux footprints over 
heterogeneous surfaces to result in a high R2 and NSE (that 
would ideally approach 1), minimum RMSE, and PBIAS 
(that would ideally approach 0).

3  Results and discussion

This section provides a detailed analysis of fluxes gen-
erated from heterogeneous croplands with varying sur-
face roughness lengths. As footprint models rest on the 
assumptions of profiles of turbulence parameters, we 
first analysed the diurnal cycles of atmospheric and tur-
bulence parameters as monitored by the high tower. This 
will also help to apply similarity theories, which is the 
basis for footprint prediction using analytical models. 
EC fluxes generated from two distinct surfaces resulting 
from progressive harvesting (experiment 1) were used to 

(8)FT3 = � ∗ FT1 + � ∗ FT2 + E
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evaluate and improve the performance of the analytical 
models (KM and FFP) with modified surface roughness 
 (z0) inputs. Knowing the importance of turbulence char-
acteristics over surface roughness on estimated footprints, 
we then analysed the contribution of individual surfaces 
(experiment 2) to the fluxes measured in a heterogenous 
cropland under changing turbulent regimes.

3.1  Turbulent conditions

As the two-crop surface experiment has lasted for a longer 
period, diurnal cycles of turbulent parameters during this 
period (01 Apr–9 Dec, 2018, i.e. DOY: 91–353, 2018) for 
the high tower (T3) were analyzed and presented in Fig. 3. 
Variation in turbulent parameters has three distinct time-
windows within which the values are fairly constant. These 
include: (i) early hours, i.e. 00:00 to 08:00, (ii) daylight 
hours, i.e. 10:00 to 16:00, and (iii) nocturnal hours, i.e. 

Fig. 3  Diurnal variations showing mean and one standard deviation of: a wind velocity (U), b friction velocity ( u∗ ), c U/u∗ , and d stability 
parameter (z − d/L) observed at T3 during the monitoring period (01 Apr–19 Dec, 2018, i.e. DOY: 91–353, 2018)
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18:00 to 00:00. Both wind speed (U) and friction veloc-
ity ( u∗ ) showed a similar trend with low magnitudes dur-
ing early hours (0.52 ± 0.02   ms−1; 0.06 ± 0.00   ms−1), 
sustained peak during daylight hours (1.67 ± 0.07   ms−1; 
0.30 ± 0.01  ms−1), and returned to low magnitudes during 
nocturnal hours (0.71 ± 0.17  ms−1; 0.10 ± 0.02  ms−1). The 
ratio: U

u∗
 (being proxy for surface roughness, zo (Arriga et al. 

2017)) varied significantly throughout the monitoring period 
(8.99 ± 2.86) and followed an opposite trend to variation in 
U. The variation in U

u∗
 was almost similar for the three towers, 

suggesting that any change in friction results in an equivalent 
change in mean flow, thus making fluxes less dependent on 
roughness changes. A steep change in these variables dur-
ing 08:00 to 10:00 and 16:00 to 18:00 Hrs time-windows is 
responsible for changes in atmospheric stability and eddy 
circulation. Highly unstable atmospheric conditions were 
prevailed during daylight hours ( z−d

L
∶ −0.45 ± 0.585) and 

are weakly correlated with U and u∗ (R2 < 0.1). A smooth 
transition from stable to neutral and then to unstable atmos-
pheric conditions was observed from 06:00 to 10:00 Hrs. 
Even though low wind speeds and small eddy formation 
during stable atmospheric conditions facilitate flux meas-
urement, increased fetch from multiple landscapes makes 
interpretation cumbersome. Enhanced convection and turbu-
lent diffusion during unstable atmospheric conditions have 
resulted in a smaller source area, favourable for experimen-
tation. Thus, we restricted data monitoring to daylight hours 
(10:00 to 18:00) so that only two surfaces will contribute 
to the fluxes observed by the high tower. Wind direction 
throughout the day time was fairly constant (~ 45° ± 12° 
from the North). We observed a significant change in wind 

direction from East to North–East after 08:00 Hrs. All tow-
ers were aligned at 90° from the North to minimize the 
effects of cross currents. The standard deviation of lateral 
wind speed (σv) was found to be about one-fourth of mean 
longitudinal wind ( U) . Biases in fluxes caused by changes 
in mean wind direction were negligible (Kumari et al. 2020) 
and are not considered further. Over the course of the study 
period, and for unstable atmospheric conditions, sensible 
heat, H  (Wm−2) was varied between 138.99 ± 34.95, latent 
heat, LE  (Wm−2) between 109.63 ± 42.41, Obukhov length 
(m) between (28.62 ± 31.44), and friction velocity  (ms−1) 
between 0.32 ± 0.07. The strength of the linear associa-
tion between available energy (Rn–G) and turbulent fluxes 
(H + LE) is 0.96, confirming a good energy balance closure.

3.2  Performance of footprint models 
under changing roughness conditions

For the same atmospheric and surface conditions, there 
can be obvious differences in the behaviour of footprint 
models (Hui and Xuefa 2015; Kljun et al. 2015; Arriga 
et al. 2017; Heidbach et al. 2017; Prajapati and Santos 
2017; Kumari et al. 2020). Successive cut experiment has 
resulted in multiple source area envelopes resulting from 
different roughness lengths. Figure 4 shows the model-
derived footprints for a reference mast height (Zm) of 
8 m, with varying roughness lengths (Eqs. 4–6). A total 
of five roughness lengths specific to: homogeneous cut 
surface,  z1; homogeneous sugarcane,  z2; arithmetic aver-
age,  z3; area weighted average,  z4; and effective roughness 
length,  z5 were used in an ensemble mode. Parameters 

Fig. 4  Cross-wind integrated flux footprints, using a KM model and b FFP model considering modified roughness length parameters (z1thru z5) 
under unstable atmospheric conditions (U = 2.51  ms−1, u∗ = 0.29  ms−1, and (z − d)/L =  − 0.09)
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used in the model development include: U = 2.51  ms−1, 
u∗ = 0.29  ms−1, and (z–d)/L = -0.09. While FFP consid-
ers roughness length as a direct input, the KM model 
indirectly considers roughness length via U/u∗ values. 
Model footprints for given conditions are characterized 
by a single-peaked curve with a steep rising limb (slope: 
18.8 ×  10−3 with KM, 0.0138 with FFP), followed by a 
gentle recession (slope: 3 ×  10−4 with KM, 2.3 ×  10−4 with 
FFP). The contribution of surface fluxes was significant 
up to a distance of about 150 m (levelling off in Fig. 4), 
which is falling outside the boundary of the sugarcane 
field (Fig. 2). As the neighbouring fields are mowed, con-
tribution of fluxes generated outside the sugarcane field is 
considered to be negligible. In comparison to FFP, the KM 
model has underestimated and delayed the footprint peak. 
We observed little to no improvement in footprint repre-
sentation between the scenarios, perhaps due to a small 
deviation in average roughness length values considered 
(0.30–0.65 m) from that of sugarcane (0.60 m) or cut sur-
face (0.005 m). The similarities in roughness between our 
target land classes are unlike the abrupt changes observed 
by Heidbach et al. (2017) between grasslands and forests.

Data from successive cut experiment was further utilized 
to evaluate the performance of two footprint models under 
changing surface roughness and source area conditions 
(Arriga et al. 2017). For this, we assumed only sugarcane 
and mowed surface will contribute to the fluxes measured by 
the high tower (forcing the closing error, E in Eq. 8 to zero). 
Contribution of sugarcane (α) and cut (1 − α) surfaces to the 
fluxes monitored by the high-tower can be estimated from:

with, FT1, FT2, and FT3 representing the carbon fluxes meas-
ured by the three towers T1, T2, and T3. During the experi-
ment, α was gradually decreased from 0.8 (cut-1) to 0.0 
(cut-5), and the corresponding cumulative footprints as a 
function of distance are plotted in Fig. 5. Error bars repre-
sent the contribution of sugarcane surface to the measured 
fluxes during each of the five cuts. With a reduction in crop 
stretch and extension of dragging canopy, the estimated  z0 
values were decreased resulting in a slight expansion of foot-
print (Leclerc and Foken 2014a, b; Rannik et al. 2012). As 
the aerial contribution of individual surfaces changes dur-
ing each cut, a discontinuous footprint model was observed 
with the area-weighted roughness (z4) model. KM model 
performance was gradually changed from over prediction 
at lower source area (α) contribution to under prediction at 
higher source area contributions. Whereas FFP model has 
consistently over-predicted the source area contributions 
due to inherent representation of landscape heterogeneity 
during footprint estimation. As the contribution of nearby 
fields to the high tower (T3) fluxes increases, which is indi-
cated by lowering of α, FFP model results are in congruence 
with experimentally obtained cut fractions. On the contrary, 
when only sugarcane field is contributing to the high tower 
fluxes (indicated by a high α), the KM model performed 
better. This concludes that, applicability of the KM model in 
heterogeneous conditions is relatively poor. The cumulative 
footprints predicted by the two models were levelled off after 
about 150 m, which is beyond the boundary of the sugarcane 

(9)FT3 = � ⋅ FT1 + (1 − �) ⋅ FT2

Fig. 5  Cumulative flux contributions using a KM model, and b FFP 
model for different cuts (x = 10 m, 25 m, 40 m, 55 m, and 80 m) con-
sidering modified roughness parameters in unstable atmospheric con-

ditions (U = 8.42  ms−1, u* = 0.29  ms−1, and (z − d)/L =  − 0.09). Error 
bars represent the observed flux contribution for different upwind dis-
tances from T3
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surface. Since the nearby fields were mowed, contribution of 
fluxes from outside the sugarcane field is negligible.

The vertical offsets between measured and simulated ‘α’ 
contributions for all upwind distances were further used to 
evaluate parameter aggregation techniques (Table 1). With 
a sample size (n) of 1,171, FFP model resulted in RMSE of 
0.31, MBE of −0.08, NSE of 0.25, and PBIAS of 19.0. Simi-
larly, KM model resulted in RMSE of 0.02, MBE of 0.03, 
NSE of 0.06–0.07, and PBIAS of 8.50–8.90. RMSE and 
MBE were close to zero owing to low ‘error’ magnitudes. 
Both models are biased to the lower side of experimental 
data and statistical parameters were similar irrespective of 
the averaging method used for roughness length. We con-
clude that parameter aggregation could not improve the per-
formance of footprint models (under changing source area) 
due to negligible variation in roughness length across the 
surface.

3.3  Sensitivity of footprint models

Knowing the fact that roughness length changes have a triv-
ial effect, we performed global sensitivity analysis to bet-
ter understand the role of surface-layer forcing on footprint 
predictions (Sobol algorithm; (SOBOL’ 1993). The method 
uses a Monte Carlo approach to decompose the variance in 
model outputs into proportions attributed to sets of inputs. 
The algorithm to estimate Sobol indices for first-order and 
total-order was developed in open-source ‘R’ using ‘Sensi-
tivity’ package (https:// CRAN.R- proje ct. org/ packa ge= sensi 
tivity) with a total computational cost of (p + 2) × n model 
evaluations (where, p is the number of factors and n is the 
sample size). We tested sensitivities of the two models (KM 
and FFP) to five input parameters, i.e., upwind distance (x), 
mean wind speed (U), Obukhov length (L), friction velocity 
(u*), and roughness length (zo). Parameter ranges consid-
ered in the analysis are as follows: x − 0 to 100 m, U − 0.082 
to 2.79  ms−1, L − 1.03 to − 116.53 m, u* − 0.03 to 0.68  ms−1, 

and zo − 0.005 to 0.65 m. Input data were normalized with 
respective maximum values for ease with comparison. We 
used a sample size of 10,000 with uniform distribution of 
all input parameters. Results of Sobol sensitivity analysis 
with output sensitivities are shown in Fig. 6. As a whole, 
model derived footprints are sensitive to turbulent char-
acteristics (U, and u*), atmospheric stability (L), upwind 
distance (x), and showed a weak sensitivity to roughness 
parameters (z0). Footprint predictions using KM model 
are more sensitive to upwind distance, atmospheric stabil-
ity, and wind speed, while friction velocity and roughness 
length have a negligible impact. Considering the FFP model, 
footprint predictions are sensitive to upwind distance, wind 
speed, and friction velocity. Changes in surface roughness 
and atmospheric stability had a little impact on model foot-
prints. Except for U and u*, the two models have responded 
similarly to input parameters. This motivated us to analyse 
heterogenous fluxes under changing turbulent conditions (U, 
u*) rather than surface roughness (z0), resulting in experi-
ment-2. A high dependence of upwind distance (x) on model 
footprints confirm that the measured fluxes are influenced 
by heterogeneity. Analytical models mainly consider x, U, 
and u* in flux footprint estimation. As these are not varied 
during parameter averaging, they did not contribute to model 
improvement. Our findings support those of Arriga et al. 
(2017) and Kumari et al. (2020). Of the two models, FFP 
performed slightly better, owing to a better interpretation of 
changes in roughness length during flux estimates.

3.4  Flux partition in heterogeneous conditions

The difference in sensitivities between the two mod-
els clearly highlight the difference in methodological 
approaches to estimate the footprints. In order to ensure 
the maximum flux contribution from the two surfaces, i.e. 
sugarcane and cotton, isopleths of varying intensities were 
considered. Footprint climatology showing two-dimensional 

Table 1  Residual statistical parameters used in the comparison of parameter aggregation methods in estimating flux footprints from inhomoge-
neous landscapes

FFP model

Method zo [m] RMSE [–] PBIAS [–] NSE [–] R2 [–]

Arithmetic average 0.30 0.31 19.00 0.25 0.49
Area weighted average 0.48 0.31 19.00 0.25 0.49
Effective input parameter 0.65 0.31 19.00 0.25 0.49

KM model

Method zo [m] RMSE [–] PBIAS [–] NSE [–] R2 [–]

Arithmetic average 0.30 0.02 8.50 0.06 0.68
Area weighted average 0.48 0.02 8.60 0.06 0.68
Effective input parameter 0.65 0.02 8.90 0.07 0.68

https://CRAN.R-project.org/package=sensitivity
https://CRAN.R-project.org/package=sensitivity


 S. Kumari et al.9 Page 12 of 16

Fig. 6  Sensitivity of roughness and turbulence parameters on footprint predictions using KM (left) and FFP (right) models. Effect of variation in 
individual parameters (main effect) as well as its interaction with other parameters (total effect) was computed using the Sobol algorithm

Fig. 7  Footprint climatology showing two-dimensional source area of flux measurements from the three towers under unstable stratification. Iso-
pleths of different percentage contributions to the total flux are indicated with solid lines. Tower positions are indicated by a plus mark
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isopleths of different source area contributions superim-
posed on land use map is presented in Fig. 7. We used two-
dimensional FFP online tool (Kljun et al. 2015) to generate 
an ensemble of footprints considering multiple time steps 
during unstable atmospheric conditions. Isopleths of X % 
(0 ≤ X ≤ 100) represent the area contributing to X % of the 
total measured flux, such that all the cells lying within the 
X-isopleth have each accumulated flux contributions of up to 
X % of the measured fluxes. Isopleths beyond 90% threshold 
were not displayed as they correspond to much larger areas. 
These figures reveal that, for up to 80% isopleths, both T1 
and T2 are capturing fluxes originating from the individual 
sugarcane and cotton fields, respectively. Similarly, for the 
high-tower T3, the contribution of the two fields alone to 
the measured fluxes is significant beyond 70% and up to 
80% isopleths. Also, most parts of the 70–80% isopleths 
have recorded good quality of the carbon fluxes (classes: 0 
and 1). Hence, we have considered the fluxes within 80% 
isopleth (that captures the fluxes mostly from the cotton 
and sugarcane fields during unstable conditions) to mini-
mize the disturbances caused by the effect of neighbouring 
fields. Availability of only three EC towers has restricted our 
application to two crop surfaces and to neglect the contribu-
tion of fluxes from other fields.

As the effect of turbulence on footprint estimates is signif-
icant and dynamic, we analyzed the diurnal fluxes monitored 
by the three towers within the 80% isopleth under unsta-
ble atmospheric conditions. Variations in daytime carbon 
exchanges were assessed across four-time steps: (i) 10:00 
to 12:00; (ii) 12:30 to 14:00; (iii) 14:30 to 16:00; and (iv) 
16:30 to 18:00. Variation in u* for these four time steps are, 
respectively: 0.15 to 1.16  ms−1, 0.14 to 1.12  ms−1, 0.11 to 
0.98  ms−1, and 0.0316 to1.06  ms−1. Obukhov length (L) 
gradually declined (e.g., from −1.03 m at 10:00 Hrs to 
−116.53 m at 16:30 Hrs) as the day progressed. Contribu-
tion of fluxes from sugarcane (α) and cotton (β) fields to the 
high tower (T3) observations during different hours of the 
day is shown in Fig. 8. Optimal values of α and β for given 
turbulence characteristics were obtained by regressing mixed 
fluxes against a linear combination of homogeneous fluxes 
using ‘lm function’ in RStudio (V. 3.6.2). Both α and β were 
fairly constant throughout the day (α ~ 0.25, β ~ 0.45), with 
an exception during 14:30 to 16:00 Hrs (α ~ 0.45, β ~ 0.2). 
A sudden increase in the flux contribution from Cotton field 
around 14:30 to 16:00 Hrs is observed resulting from the 
sudden transition in wind speed, turbulent characteristics (U, 
u*) and atmospheric stability (z − d/L). We note that the sum 
of error and interaction terms (1 − (α + β)) were significant 
throughout the day (> 0.2).

The contribution of individual fields to the mixed fluxes 
within the 70–90% isopleths of the high-tower, averaged over 

the day are presented in Fig. 9. The contribution of sugarcane 
field (α) was progressively declined from 70% to 55% as the 
isopleth purview was enhanced from 70% to 90%. During this 
enhancement, there was a complementary increase in fluxes 
generated from the surrounding fields (from 5% to 25%). At 
70% isopleth, both sugarcane (α) and cotton (β) fields were 
collectively contributing to 90% of the observed fluxes, which 
was decreased to 78% at 90% isopleth. This concludes that 
the contribution of both sugarcane and cotton fields decreases 
towards higher isopleths with a higher rate for sugarcane than 
for cotton.

Validation of footprint models of varying complexity with 
experimental data as in Fig. 5 has improved our understand-
ing of footprint representation over complex heterogeneous 
surfaces. Findings of this study can help in extending foot-
print models to other heterogeneous surfaces and bifurcate the 
fluxes measured by EC tower in mixed-fetch conditions. In a 
broader sense, the outcome of this study can help to: (i) char-
acterize water use efficiency (ratio of carbon to water fluxes) 
in fragmented crop lands, (ii) understand carbon and meth-
ane exchanges between atmosphere and cropland ecosystem. 
Availability of only three EC towers has restricted our appli-
cation to two crop surfaces and to neglect the contribution of 
fluxes from other areas. We considered only 80% of the total 
fluxes observed by EC system so as to neglect the contribution 
of fluxes from the nearby fields. The modelled and measured 
flux footprint estimates are site and setup specific.

Fig. 8  Diurnal variations in the contribution of sugarcane (α) and cot-
ton (β) fields to the heterogeneous fluxes under unstable atmospheric 
conditions
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4  Conclusion

This study presents an experiment-based flux footprint anal-
ysis in fragmented heterogeneous cropland system. Two flux 
monitoring experiments using three EC towers were per-
formed in fragmented croplands characterised by contrast-
ing surfaces with objectives to: (i) quantify the heterogene-
ous fluxes using two footprint models (KM and FFP) with 
modified roughness parameters and (ii) bifurcate the fluxes 
into contributing homogenous fluxes using the principle of 
superposition. The main observations of the study are as 
follows:

1. The first objective was achieved by a successive cut 
experiment on a homogeneous sugarcane field, and 
apply KM and FFP models with varying roughness 
length parameters to represent changes in source area 
contributions, as measured by the high-tower. FFP 
model has consistently overestimated the footprints, KM 
model predictions are found to be a function of upwind 
distance.

2. Parameter aggregation methods failed to incorporate the 
heterogeneity of canopy surface using surface roughness 
length as we observed little to no improvement in model 
footprints due to marginal changes in roughness length. 
Parameter aggregation methods thus need to be revisited 
to consider the effect of smaller variations in roughness 
length.

3. Sensitivity analysis revealed that KM and FFP model 
footprint prediction are more sensitive to meteorological 
conditions (U, u*, L) and upwind distance (x), than to 
roughness length (zo).

4. The second objective is achieved by monitoring fluxes in 
a sugarcane–cotton field setup under varying turbulent 
conditions throughout the day hours. A drastic decrease 
in sugarcane field flux contribution happened between 
14:30 and 16:00 Hrs contrary, the contribution of cotton 

field increased. The change in contribution to the meas-
ured fluxes happened with the change in atmospheric 
stability (z − d/L), wind speed, turbulence characteristics 
(U, u*).

5. Contribution of fluxes generated from nearby fields was 
found to be significant at higher isopleths (> 80%) which 
requires a careful attention while designing flux foot-
print studies.

6. The modelled and measured flux footprints are site spe-
cific as well as setup specific and stable stratification 
is not considered in the study. The heterogeneity in the 
sites can be due to topography also but heterogeneity 
originating from canopy surface is only considered in 
the study.

This work can be further extended to heterogenous 
canopy with varying management conditions and help in 
improving flux-based water use management strategies in 
fragmented croplands.
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