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Abstract
The exploration of renewable energy such as wind and solar radiation has the potential of reducing reliance on fossil fuels, 
thus cutting emissions of carbon dioxide, particulate matter, and several other greenhouse gasses. However, recent findings 
indicate that wind speed across Zambia is very slow, it is increasing but remains unlikely to support large commercial wind 
farms. In this study, we explore the future impacts of climate change on solar photovoltaic resources. To do this, we examine 
the new high-resolution (25 km) Coordinated Regional Climate Downscaling Experiment—CORDEX-CORE simulations 
for the African domain, using two different emission scenarios until 2100. At an annual scale, results indicate a weak but 
steady decrease in  PVRes of around 0.02 W/m2 per annum under RCP2.6 and about 0.005 W/m2 per annum under RCP8.5. 
Results further show that at an average of ~ 237 ± 3.3 W/m2 and 212 ± 2.5 W/m2, respectively, RCP2.6 comes along with 
12 ± 3% more  PVRes than RCP8.5. Thus RCP2.6, a greener and climate-friendly pathway, points towards a higher renewable 
energy potential across Zambia compared to the business-as-usual pathway.

Keywords Renewable energy · Photovoltaic potential · CORDEX-CORE · Regional climate modelling · Climate change · 
Zambia

1 Introduction

Over the past decade, the cost of renewable energy has been 
declining steadily. The weighted average of the levelized 
cost of electricity at the global level fell by 15% for wind 
and 13% for solar energy in 2021 alone (Irena 2022). Over 
the past 5 years, the cost of solar energy has been declining 
at the rate of 13% per year while it was 7% for onshore wind 
energy (Lazard 2020). These trends have the potential to 
incentivize carbon neutrality and contribute to tackling the 
climate crisis by reducing reliance on fossil fuels (Pfeifer 
et al. 2021; Luderer et al. 2021).

To date, the burning of fossil fuels remains one of the 
largest producers of carbon greenhouse gasses contribut-
ing ~ 66% of global  CO2 emissions (Foster and Elzing 2015). 
Evidence suggests that in less than a couple of decades, 

anthropogenic activities have doubled the atmosphere’s 
 CO2 content since the beginning of industrialization (NASA 
2022). The presence of  CO2 in the atmosphere warms the 
earth and this leads to synoptic-scale changes in the climate 
system (Herwartz et al. 2021; Hartley and Turnock 2021). 
Most of these climatic changes which include extreme rain-
fall events such as floods and droughts impose cascading 
risks on lives, critical infrastructure, and property. There-
fore, a shift to clean energy contributes to achieving Sustain-
able Development Goals Number 7 and 13 which stress the 
importance of ensuring access to affordable clean energy 
through climate action (UN 2015).

While critiques of renewable energy cite the spatiotempo-
ral variability of wind and solar radiation as a weakness to a 
dependable electricity grid (Diesendorf and Elliston 2018), 
this shortcoming can be overcome by renewable energy 
mixes including wind, water, and solar power. Furthermore, 
technological advancements such as innovative energy stor-
age, and optimized management techniques show promise 
of turning wind and solar energy resources into dependable 
electricity grids. Indeed, renewable energy sources like solar 
and wind energy are constantly being replenished at a higher 
rate than what humans can consume.
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Many countries in the developed and developing world 
are turning to renewable energy as a pathway to climate 
change mitigation. The European Union for instance is 
accelerating the take-up of renewables to significantly con-
tribute to the reduction of net greenhouse gas emissions 
by at least ~ 55% before the end of 2030 (EU 2022). In 
Africa, many countries including but not limited to South 
Africa, Nigeria, and Kenya have also set strong emissions-
reduction targets. Zambia has also committed to reduc-
ing emissions by 25% by 2030 (USAID 2015). Overall, 
Africa has committed to cutting 32% of emissions by 2030 
(Abudu et al. 2023).

With these emissions-reduction ambitions, global renew-
able energy is expected to expand rapidly. Projections show 
that by 2024, the global capacity of renewable energy will 
increase by 50%, and 60% of this will be sourced from solar 
photovoltaic resources (IEA 2019). During the same period, 
additional 22 gigawatts of renewable energy are expected 
across sub-Saharan Africa alone (IEA 2019). While these 
ambitions and projections will have a profound effect on 
 CO2 emissions, it is notable that climate change, in turn, will 
also affect the future variability of wind and solar energy 
resources, affecting the ability of countries to produce elec-
tricity using renewables. Therefore, studies that assess future 
changes in climatic variables are indispensable for future 
renewable energy systems (Troccoli et al. 2018).

The overarching objective of this study is to explore 
future variations of climatic variables that are relevant to 
future photovoltaic solar power resources  (PVRes) in Zambia. 

While much of Zambia experience roughly similar climate 
characteristics due to the plateau that characterizes the coun-
try’s topography (Fig. 1A), a few climatic differences exist, 
and these can be classified into four main categories of the 
Köppen–Geiger classification (Peel et al. 2007):

1. Tropical Savanna The Tropical Savanna climate which 
is classified as Aw in the Köppen–Geiger classification 
covers Kalabo district, parts of Shang’ombo, and Mongu 
in the Western Province of Zambia (Fig. 1B). In the 
Eastern Province, Katete, Petauke, and parts of Chipata 
are also classified as Tropical Savana. These areas gener-
ally experience a pronounced dry season characterized 
by monthly rainfall averaging 60 mm (Africa Ground-
water Atlas 2019).

2. Arid Steppe This climate zone covers the semi-arid 
region of Livingstone, Kaloma, Choma, and parts of the 
Luangwa valley (Fig. 1B). While the rainfall in these 
areas is not as low as that of desert climates, it is usually 
less than potential evapotranspiration and can, thus, be 
described as semi-arid.

3. Temperate with dry winters (generally June–August, see 
Marshall 2017) and warm summers The Cwb climate 
of Zambia mainly covers the northern tip of the coun-
try bordering the Democratic Republic of the Congo 
and Tanzania (Fig. 1B). These areas include Kaputa, 
Mpulungu, and Mbala. Given their high elevations, tem-
peratures are usually lower than across the rest of the 
country.

Fig. 1  Overview of the study area showing: A the location of Zambia 
in Southern Africa (green square). The grey shading indicates topo-
graphical variations across the region based on the Global Land 1 km 
Base Elevation (GLOBE) digital elevation model (Hastings and Dun-
bar, 1999). The blue shading shows the location of major water bod-
ies, B climatic zones of Zambia were developed using the Climatic 

Research Unit Time Series Version 3.21 (CRU TS 3.21) dataset pro-
duced and maintained by the Climatic Research Unit of the Univer-
sity of East Anglia (Jones and Harries 2013). The precipitation and 
temperature CRU data used to produce the Climatic Zones of Zambia 
are for the period 1951–2010 (Africa Groundwater Atlas 2019)
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4. Temperate with dry winters and hot summers Classified 
as Cwa in the Köppen–Geiger classification (Peel et al. 
2007), this climate zone covers the rest of the country 
which is mainly characterized by dry winters and wet 
summers.

2  Data and methods

2.1  Data

2.1.1  Reference datasets

To perform the present analyses, we explored three different 
atmospheric variables which include air temperature meas-
ured at 2 m above sea level (TAS), wind speed measured at 
10 m above sea level (WS), and downwelling surface short-
wave solar radiation (SR).

TAS was sourced from the latest version of high-res-
olution monthly data (CRU TS v4.05) from the Climatic 
Research Unit of the University of East Anglia (Harris et al. 
2020; Table 1). The dataset covers all land areas across the 
globe apart from Antarctica and is gridded at a resolution of 
0.5°. CRU TS v4.05 was developed using angular-distance 
weighting to interpolate in situ data from a dense network of 
meteorological stations across the globe (Harris et al. 2020).

For wind speed, we used the fifth-generation global cli-
mate reanalysis (ERA5). ERA5 is a product of the European 
Centre for Medium-Range Weather Forecasts (ECMWF) 
and was developed by assimilating in situ data into a global 
weather forecast model (Hersbach et al. 2020). ERA5 has a 
0.1° × 0.1° horizontal resolution.

We retrieved SR from the archives of TerraClimate. This 
is also a high-resolution dataset gridded at 4 km (Abatzoglou 
et al. 2018). TerraClimate was developed by merging clima-
tological normals from WorldClim version 1.4 and version 
2 datasets (Fick and Hijmans 2017), CRU TS v4.0 (Harris 
et al. 2020), and JRA-55 (Ebita et al. 2011).

2.1.2  Climate models

In this study, we analyzed CORDEX-CORE models. Unlike 
ordinary CORDEX models, the CORDEX-CORE initiative 
is an improvement in terms of the horizontal resolution 
and a general homogenization of simulations across differ-
ent CORDEX domains (Gutowski et al. 2016). CORDEX-
CORE Regional Climate Models (RCMs) can, therefore, be 
thought of as a homogeneous set of high-resolution projec-
tions across all CORDEX domains driven by a common set 
of General Circulation Models (GCMs).

The CORDEX-CORE models used in the present study 
are for the historical period 1981–2005 and the future period 
2025–2100. The models used include the Germany Climate 
Service Centre’s REMO model (Jacob and Podzun 1997), 
the Consortium for Small-Scale Modeling (COSMO) com-
munity’s CCLM (Rockel et al. 2008), and the Abdus Salam 
International Center for Theoretical Physics’ RegCM4 
(Giorgi et al. 2012). The horizontal resolution of the COR-
DEX-CORE models is 0.22° × 0.22°. Despite the significant 
improvements the CORDEX-CORE initiative introduces, 
our literature review shows that no published peer-reviewed 
studies exist evaluating photovoltaic solar power resources 
 (PVRes) across Zambia. As such,  PVRes across Zambia 
remain largely unstudied, leading to major uncertainties and 

Table 1  Summary of the reference datasets used in this study. The 
1981–2005 period used in this study was chosen to align with the 
availability of climate model datasets

Variable Source Resolution Period used

Air temperature Harris et al. (2020) 0.5° 1981–2005
Wind speed Hersbach et al. 

(2020)
0.1° 1981–2005

Downwelling 
surface shortwave 
solar radiation

Abatzoglou et al. 
(2018)

4 km 1981–2005

Table 2  Parameterizations of the CORDEX-CORE models used in this study

REMO, Regional Model; GERICS, The Germany Climate Service Center; COSMO, the Consortium for Small-Scale Modeling; DWD, The 
Deutscher Wetterdienst i.e., German Meteorological Service; RegCM, Regional Climate Model; ITCP, International Centre for Theoretical 
Physics

Model Institution Microphysics Cumulus CONVEC-
TION

Planetary boundary 
layer

Radiation scheme Aerosols

REMO GERICS Lohmann and 
Roeckner (1996)

Nordeng (1994) Louis (1979) Morcrette et al. 
(1986)

No aerosol module

CCLM COSMO  and  DWD Doms et al. (2007) Tiedtke (1989) Herzog et al. (2002) Ritter  and  Geleyn 
(1992)

No aerosol module

RegCM ITCP Pal et al. (2000) Tiedtke (1989) Holtslag et al. (1990) Kiehl et al. (1996) Organic and black 
carbon,  SO4, dust, 
sea salt (Solmon 
et al. 2006; Zakey 
et al. 2006; 2008)
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a lack of understanding of how climate change will affect 
renewable energy potential in the future.

It is important to note that CORDEX-CORE RCMs are 
only available for two Representative Concentration Path-
ways (RCPs), i.e., the low-end RCP2.6 and the high-end 
RCP8.5 scenario (Giorgi et al. 2022). RCP 2.6 is an ambi-
tious target of keeping global temperature increments below 
2 °C by the close of the twenty-first century (IPCC 2014). 
To achieve the RCP2.6 target, emissions should decline and 
reach zero by 2100. On the other hand, the RCP8.5 is a 
business-as-usual scenario; emissions continue to rise and 
as such, it is considered a worst-case scenario (Meinshausen 
et al. 2011). In this study, we examined both scenarios over 
the period 2025–2100 (Table 2). We retrieved all simulations 
from the Earth System Grid Federation (ESGF) node of the 
German Climate Computing Centre (DKRZ).

2.2  Methods

2.2.1  Conceptual framework and reliability metrics

To establish a reliable understanding of future  PVRes, the 
RCMs used must realistically reproduce the observed his-
torical climate. Therefore, the analysis starts by evaluating 
the ability of CORDEX-CORE models to simulate TAS, 
SR, and WS as they are key to the generation of  PVRes and, 
thus, to the renewable energy sector as a whole. Based on 
data availability, we used the 1981–2005 reference period 
that is available for the observational and model datasets. 
This reference period is widely used in renewable energy 
studies (Costoya et al. 2021; Ogunjobi et al. 2022). To ease 
the evaluations, we used Climate Data Operators (CDO) to 
regrid all datasets to a common resolution of the CRU TS 
v4.05 reference data.

Several methods of model evaluation exist; some are 
simple and straightforward while others are more complex. 
For example, some previous studies used percent overlap 
(PO), arguing that its simplicity in using probability density 
functions (PDFs) as a statistical measure of how well mod-
els reproduce observed PDFs of variables of interest makes 
it a useful tool (Perkins et al. 2007). In the present study, 
however, we focus on the ability of models to simulate spa-
tiotemporal patterns as this is of importance when deciding 
where to install solar farms. In addition, it helps understand 
the seasonal cycle of solar energy potential with maximum/
minimum  PVRes to be expected. Using this performance cri-
terion, we were able to exclude simulations whose outputs 
seemed unrealistic, e.g., those that produce output that is 
abnormal and in disagreement with the current understand-
ing of the climate of Zambia. Spatiotemporal dynamics of 
climatic variables are widely used as a performance criterion 
for models (Cattiaux et al. 2013; Bartók et al. 2019; Vautard 
et al. 2019).

To compute the reliability metrics, we used the Satel-
lite Application Facility on Climate Monitoring (CM SAF; 
Kothe 2022). CM SAF is a toolbox that automates the cal-
culation of several model evaluation metrics in R Program-
ming Language (R Core Team 2020). Some of these metrics 
include correlation (R), root mean square error (RMSE), and 
mean absolute error (MAE). A summary of the process we 
followed is given in Fig. 2.

2.2.2  Calculation of solar photovoltaic energy resources

The energy received from the sun touches the earth’s surface 
as shortwave solar radiation and is part of the electromag-
netic radiation spectrum (Blal et al. 2020; Spiridonov and 
Ćurić, 2021). Solar radiation consists of visible light, infra-
red, ultraviolet light, X-rays, gamma rays, and radio waves. 
Ultraviolet and visible light together form shortwave down-
ward radiation. It is the only one that has enough energy 

Fig. 2  Conceptual framework followed in the present study. CRU, 
Climate Research Unit; ERA5, European Centre for Medium-Range 
Weather Forecasts Reanalysis version 5. REMO, Regional Model; 
GERICS, The Germany Climate Service Center; COSMO, the 
Consortium for Small-Scale Modeling; RegCM, Regional Climate 
Model; TAS, ambient temperature; WS, wind speed; SR, down-
welling surface shortwave radiation; Tcell, cell temperature;  PVRes, 
solar photovoltaic energy resources, far future: 2025–2055; near 
future: 2075–2100
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density to produce electricity when it reaches a solar cell 
(Costoya et al. 2022). To calculate solar photovoltaic energy 
resources  (PVRes) in this study, we considered the amount of 
shortwave downward radiation at the surface and corrected it 
based on the efficiency of PV cells which generally reduces 
with increasing temperature (Radziemska 2003). Our calcu-
lation of  PVRes was based on the work of Jerez et al. (2015) 
who studied the impact of climate change on  PVRes. Math-
ematically,  PVRes can be expressed as follows:

 where RSDS is the shortwave downward radiation at the 
surface given in W/m2 and PR is a performance ratio that 
considers the effect exerted by temperature on the efficiency 
of PV cells (Jerez et al. 2015). PR can be expressed math-
ematically as follows:

Here, � refers to the power thermal coefficient for mono-
crystalline silicon cells which indicates how strongly the PV 
power output is dependent on the temperature of the cells. 
Here, we use a constant value of − 0.005 °C (Tonui and 
Tripanagnostopoulos 2008). It is negative because the power 
output is inversely proportional to increasing cell tempera-
ture. TSRC refers to the temperature of the cell under standard 
test conditions and has a constant value of 25 °C. Tcell refers 
to a multiple regression model which considers the effects of 
solar radiation, temperature, and wind speed (Chennai et al. 
2007). It can be expressed as shown in Eq. 3:

 where Tas is the air temperature around the cells and is 
given in °C. RSDS is the downward solar radiation at the 
surface (W/m2), and WS is the near-surface wind speed (m 
 s−1). C1, C2, C3, and C4 are coefficients that are dependent on 
the properties of the PV materials used. According to Jerez 
et al. (2015), we apply the following values:

C1 = 4.3 °C,
C2 = 0.943,
C3 = 0.028 °C  m2  W−1

C4 = − 1.528 °C s  m−1

2.2.3  PVRes trend analysis

While there are several trend detection methods existing 
(e.g.,Adamowski et al. 2009; Sonali and Nagesh Kumar 
2013), the non-parametric Mann–Kendall trend test (MK 
test) and its modified version are inarguably the most used 
in climate research (Tesche and Kumar 2016; Agbo et al. 
2022). The modified MK test is especially preferred because 
it ensures that the time-series data under study are not 

(1)PVRes = PR ∗ RSDS,

(2)PR = 1 + �(Tcell − TSTC).

(3)Tcell = c1 + c2 ∗ Tas + c3 ∗ RSDS + c4 ∗ WS,

serially correlated and this prevents the detection of false 
trends (Hammed and Rao 1998).

In the present study, we employed the modified MK test 
to quantify the evolution of  PVRes trends. To do this, we used 
the ‘modifiedmk’ Package (Patakamuri and O’Brien 2021) 
in R Programming Language (R Core Team 2020). In modi-
fied MK tests, the equivalent normal variants of the rank of 
the de-trended series are obtained using Eq. 5:

 where Ri refers to the rank of the de-trended time series, n 
refers to the length of the time series, and �−1 is the inverse 
standard normal distribution function with a mean of 0 and 
a standard deviation of 1 (Hammed and Rao 1998).

2.2.4  Bias correction techniques

In an effort to increase confidence in future  PVRes projec-
tions, we applied linear scaling (LS) to simulations. LS is 
a widely used bias-correction technique that considers the 
difference between mean reference data and model outputs 
and then applies it to simulations (Ines and Hansen 2006; 
Shrestha et al. 2015).

3  Results and discussion

3.1  Regional climate model evaluation

During the 1981–2005 reference period, the Regional Cli-
mate Models REMO, CCLM, and their ensemble mean 
reproduce wind speed, TAS, and SR with spatial correla-
tions ranging between 0.5 and 0.7 (Fig. 3 and Table 3). 
At ~ 2.3  ms−1, the RMSE for wind speed is in the order of the 
mean wind speed suggesting a generally poor performance 
across the models. A temperature bias of ~ 3 °C and SR bias 
of ~ 22 W/m2 further adds credence to the observation made 
with wind speed, i.e., the state-of-the-art models exhibit sub-
stantial deficiencies in reproducing the observed climate of 
Zambia. These observations point to the need for a thorough 
bias correction before analyzing any future trends.

(5)Z
i
= �

−1

(

R1

n + 1

)

for i = 1 ∶ n,

Table 3  Summary of the correlation coefficients between mean 
annual observed and modeled near-surface wind speed at 10  m 
 (ms−1), downwelling surface shortwave radiation (SR, W/m2), and 
near-surface air temperature at 2 m (TAS, °C) during the 1981–2005 
period

CCLM REMO Ensemble mean

Wind speed 0.7 0.5 0.5
SR 0.6 0.7 0.8
TAS 0.6 0.7 0.68
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Notwithstanding the observed deficiencies, REMO, 
CCLM, and their ensemble mean show above-average per-
formance, especially considering that they can capture the 
spatial distribution of the reference dataset with generally 
higher wind speeds of up to 4 m  s−1 across the central parts 
of Zambia while the rest of the country experiences ~ 3 m 
 s−1. Further, the two models and their mean show a down-
ward gradient of SR increasing from the north of the country 
to the south. While these spatial distributions are captured 
correctly by the models, it is noticeable that they tend to 
overestimate SR. Overall, the reference dataset shows SR 
values of up to 195 W/m2 around Luapula Province and 
over the Mwinilunga area of Northwestern Province, but 
the models and their mean simulate values of ~ 205 W/m2 
(Fig. 3). Regarding TAS, models accurately simulate higher 
values of 26 °C over the Eastern and Southern Provinces 
of the country similar to the observational dataset (Fig. 3).

While it is noted in this study that all models struggle 
with reproducing historical climate, REMO and CCLM per-
form far better than RegCM. For instance, for TAS and SR, 
R values for REMO are up to 0.7 (TAS, RMSE and MAE are 
1.5 °C and 2.5 °C, respectively; SR, RMSE, and MAE = 25 
W/m2 and 24 W/m2, respectively), and up to 0.5 for WS. 
For CCLM, R values for TAS and SR go up to 0.6 (TAS, 
RMSE and MAE are 2.6 °C and 1.6 °C, respectively; SR, 
RMSE and MAE = 25 W/m2 and 24 W/m2 respectively). The 
above-average performance of the two models (i.e., REMO 
and CCLM) has been documented by other studies such as 
Ndiaye et al. (2022) who studied future changes in solar 
PV and wind energy potential over West Africa and found 
that REMO and CCLM behaved very well across the Guin-
ean coast, Sudan, and Sahelian climatic zones. It is nota-
ble, however, that while RegCM performs well across other 
regions, challenges to simulate wind speed, SR, and TAS 
are very vivid across Zambia (Fig. 3). The RegCM model 
notices no climatic variations across the whole country for 
all three variables. This observation was also made earlier 
with wind speed simulations (Libanda and Paeth 2022) and 
may be related to model parameterization, local climate fea-
tures which RCMs cannot reproduce due to discrepancies 
in resolution, or observational errors (Wilcke et al. 2013). 
Given these unrealistic simulations by RegCM, we excluded 
it from further analyses.

The remaining two RCMs were found to reproduce the 
observed annual cycle of wind speed, SR, and TAS differ-
ently (Fig. 4). The annual cycle of TAS is well captured 
by the RCMs with the highest values of about 25 °C from 
October to November and plummeting to ~ 18 °C in June/

Fig. 3  Spatial patterns of mean annual observed and modeled near-
surface wind speed at 10  m  (ms−1; first column), downwelling sur-
face shortwave radiation (W/m2; middle column), and near-surface air 
temperature at 2 m (°C; right column) during the 1981–2005 period

◂

Fig. 4  Mean annual cycle of observed and modeled a downwelling 
surface shortwave radiation (W/m2), b near-surface wind speed at 
10 m  (ms−1), and c near-surface air temperature at 2 m (°C) during 
the 1981–2005 period, averaged across longitude 21°–34° E and lati-
tude 17.4°–7.6° S
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July (Fig. 3C). Both RCMs tend to overestimate SR and 
wind speed (Fig. 4A, B). With an average of 3  ms−1, REMO 
consistently exhibited a positive bias of 20% compared to 
the reference dataset. CCLM, on the other hand, shows very 
good performance with a positive bias of only 4%. At an 
average of 2.7  ms−1, the mean of the models was 12% higher 
than the reference dataset. Positive biases are again seen 
with SR; for instance, REMO was found to exhibit a positive 
bias of ~ 11% while CCLM again exhibits better performance 
with a bias of only ~ 8%. The mean of the two models (i.e., 
REMO and CCLM) was found to be 10% higher than the 
reference dataset. Overall, both the models and the refer-
ence dataset exhibit the lowest SR values around July which 
constitutes the coldest month in Zambia. The low SR values 
in July can, therefore, be attributed to the fact that the sun's 
rays are generally more slanted during July than in other 
months (Marshall 2017). Regarding TAS, exceptional per-
formance was found with REMO showing a near-zero bias 
of − 1% while CCLM was found to have − 4% bias. Taken 
together, the multi-model ensemble exhibited a bias of only 
− 2% (Fig. 4).

Taken together, the biases found in this work are very 
minor compared to those found in West Africa where, e.g., 
wind speed overestimations were as high as 50% (Ndi-
aye et al. 2022). While interrogating the causes of biases 
observed herein was beyond the scope of the present study, 
it is well established that model biases can be caused by 
a range of factors which may include limited spatial reso-
lution, hence failure to read microscale meteorological 
processes, simplified thermodynamic processes, and utter 
incomplete understanding of the physics of the global cli-
mate system (ECMWF 2022).

Given the considerable overestimation of solar radiation 
during austral winter, a systematic overestimation of wind 
speed especially by REMO, and some minor errors in the 
seasonal temperature cycle, we calculated cell temperature 
(Tcell) and  PVRes during the reference period (1981–2005) 
and compared the performance of models to the reference 
data. At first sight, the ability of models to accurately repro-
duce present-day climate would give credence to their ability 
to project future  PVRes. We found strong and statistically 
significant correlations of up to 0.8 for Tcell (Fig. 5). Similar 
to the reference dataset, both models and the mean show the 
highest Tcell values of ~ 30 °C along the Luangwa Valley. 
Regarding  PVRes, we noticed that all models simulate the 

spatial pattern correctly with the highest values over Living-
stone and much of the Southern Province. However, some 
large biases are also noticeable, especially over the Cop-
perbelt where the reference dataset shows  PVRes of 190 W/
m2 while models overestimate it at ~ 210 W/m2. This, there-
fore, suggests that models can accurately depict areas that 
are expected to have higher future  PVRes although a notice-
able systematic overestimation of up to ~ 10 ± 2% should 
be expected. After applying bias correction, substantial 
improvements of R values reaching 0.8 are observed (Fig. 5 
Column 3). This finding re-echoes the earlier observation 
that a thorough bias correction prior to analyzing any future 
trends would be required.

The seasonal evolution of Tcell shows that all the models 
accurately depict month–month changes with all variations 
correctly mimicked although differences in the mean are evi-
dent (Fig. 6). Notably, models underestimate Tcell in January 
and February which represents the core of the rainy season 
in Zambia (Musonda et al. 2020); this underestimation could 
be related to models struggling to reproduce cloud cover and 
precipitation during the rainy season. It is estimated that dur-
ing the January/February period, close to 70% of the country 
is characterized by cloudy to overcast conditions punctu-
ated by rapid intermittent periods of sunshine (Nkolola et al. 
2021). These cloudy conditions dictate energy budgets with 
ripple effects on the variability of other climatic variables, 
especially the amount of solar radiation reaching the earth’s 
surface.

The ability of models to simulate  PVRes is lower than that 
of Tcell (Fig. 7). We found a good representation in terms 
of the basic structure of the annual cycle but a substantial 
overestimation from March to November. Notwithstanding 
these biases, the lower bounds during the rainy season in 
January and February are simulated correctly:  PVRes based 
on the reference dataset ranges from 165 to 229 W/m2 while 
that of CCLM, REMO, and the mean are 163–259 W/m2, 
164–250 W/m2, and 165–255 W/m2, respectively (Fig. 7). 
These results suggest that future projection based on these 
models will give reliable ranges for minimum solar radiation 
whereas the maximum is fairly overestimated.

Substantial biases of the maximum values of solar radia-
tion reported herein were also found in West Africa where 
CORDEX-CORE models were used to study photovoltaic 
potential (PVP; Ndiaye et al. 2022). However, while RCMs 
overestimate  PVRes in Zambia from March to November, 
they were found to underestimate it in West Africa, point-
ing to a regionally inhomogeneous bias in cloudiness across 
Africa. To get a reliable estimate of  PVRes projections, we 
applied a delta change bias correction to the mean and found 
a 9.2% improvement (Fig. 7).

Fig. 5  Same as Fig. 2, but for cell temperature (°C; Tcell i.e., column 
1), photovoltaic solar power resource  (PVRes; W/m2, column 2), and 
bias-corrected photovoltaic solar power resource  (PVRes; W/m2, col-
umn 3)

◂
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3.2  Future evolution of solar photovoltaic energy 
resources  (PVRes)

3.2.1  Future temporal evolution of  PVRes

For the future, results indicate that at an average of 237 W/
m2 and 212 W/m2, respectively, RCP2.6 leads to 12 ± 3% 
more  PVRes than RCP8.5 (Fig. 8). However, an explora-
tion of the future seasonal cycle of mean cloudiness does 

not show major differences between RCP2.6 and RCP8.5 
(Fig. 8); therefore, the observed less  PVRes in RCP8.5 can be 
attributed to higher near-surface temperature, thus making 
PV less efficient. However, no major changes are expected 
with regard to the annual cycle. Under RCP2.6, January and 
February are still expected to be characterized by relatively 
low  PVRes values ranging between 149 and 235 W/m2 while 
the highest  PVRes values of up to ~ 300 W/m2 are expected in 
September. Similarly, under RCP8.5, the lowest  PVRes values 

Fig. 6  Mean annual cycle of observed and modeled Tcell (°C) during the 1981–2005 period, averaged across longitude 21°–34° E and latitude 
17.4°–7.6° S

Fig. 7  Mean annual cycle of cloud cover (%), observed and mod-
eled photovoltaic solar power resource  (PVRes; W/m2) during the 
1981–2005 period, averaged across longitude 21°–34° E and latitude 
17.4°–7.6° S

Fig. 8  Projections of the annual cycle of photovoltaic solar power 
resource  (PVRes; W/m2) for the period 2025–2100 and mean annual 
cycle of cloud cover for low, medium, and high clouds (%), averaged 
across longitude 21°–34° E and latitude 17.4°–7.6° S



Future photovoltaic solar power resources in Zambia: a CORDEX-CORE multi-model synthesis  

1 3

Page 11 of 15 51

are expected in January and February ranging between 130 
and 180 W/m2

.
These findings suggest that regardless of the emission 

scenario, seasonality will be the major factor affecting  PVRes 
in the future (Wiltberger et al. 2009). One key observation 
is that the January and February period when the country 
is expected to experience the lowest  PVRes coincides with 
the time the country is characterized by lower wind power 
densities which also peak around August coincidentally 
with  PVRes (Libanda and Paeth 2022). Thus, our findings 
embodied point toward a wind–solar energy mix for enhanc-
ing production during peak times, but a substitutionary 
energy source such as hydropower may be necessary during 
months of low production. The peak of wind speed around 
August is also advantageous to enhance  PVRes because wind 
cools solar panels, making them more efficient (Gökmen 
et al. 2016). It is important to note that solar panels generate 
electricity with sunlight and not heat. Atoms get energized 

to a higher level in the presence of sunlight, thus leading to 
electricity generation (Tisdale et al. 2010). However, atoms 
tend to vibrate faster in a hot solar cell than in a cooler one. 
Electrons in a solar panel whose temperature is cooled by 
1 °C are 0.05% more efficient (Glenn 2019), thus the cooling 
effect of wind on  PVRes is beneficial.

The year-to-year variations indicate a very negligible 
but statistically significant decrease in  PVRes of 0.02 W/m2 
under RCP2.6 and 0.005 W/m2 under RCP8.5 (Fig. 9). The 
highest  PVRes values are expected toward the middle of the 
century reaching their peak of ~ 316 W/m2 under RCP2.6 
between 1930 and 1960 and 281 W/m2 between 1950 and 
1970 under RCP8.5. Similar observations were made in the 
Sahel-Savannah region where progressive  PVRes decreases 
of up to 2% were found, becoming more pronounced and 
reaching a high of − 3.5% in the far future (Ndiaye et al. 
2022). The decrease of  PVRes especially toward the end of 
the century can be explained by the expected temperature 
increments toward 2100. Although the projected  PVRes 
decrease will affect the size of future solar projects in Zam-
bia, it is unlikely to have a significant effect on their viability 
(Bichet et al. 2019).

3.2.2  Future spatial evolution of  PVRes

Results of the future spatial trend of  PVRes indicate that 
although on average Zambia is expected to experience slight 
reductions (Fig. 10), there are spatial differences across the 
country with some places such as Eastern Province being 
expected to experience a negligible positive annual trend of 
up to 0.003 W/m2 (Fig. 10). Both RCP2.6 and RCP8.5 agree 
on the trend of  PVRes across Eastern Province, they, however, 
disagree across Western Province where RCP2.6 projects a 
slight upward trend while RCP8.5 projects a downward trend 
(Fig. 10A, B, respectively). Given the marginal differences, 
what stands out from these results is that future changes of 
 PVRes in Zambia are likely to be near zero.

Fig. 9  Projections of the spatial mean of photovoltaic solar power 
resources  (PVRes; W/m2) for the period 2025–2100 averaged across 
longitude 21°–34° E and latitude 17.4°–7.6° S

Fig. 10  Projections of the future 
spatial trend of  PVRes (W/m2) 
across Zambia for A RCP2.6 
and B RCP8.5 for the period 
2025–2100
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4  Concluding thoughts

We set out to explore future variations of climatic varia-
bles with a focus on changes in future photovoltaic power 
resources  (PVRes) over Zambia. We used CORDEX-CORE 
simulations over the Africa domain to study future  PVRes for 
the period 2025–2100. The main findings of this study can 
be summarized as follows:

• Regional Climate Models REMO, CCLM, and the mean 
reproduce wind speed, SR, and TAS better than RegCM.

• Temporally, RCMs were found to accurately reproduce 
the annual cycle of wind speed, SR, and TAS although 
overestimations are evident, thus necessitating bias cor-
rections before analyzing future simulations.

• RCP2.6, a greener and climate-friendly pathway, points 
toward 12 ± 3% better renewable energy across Zambia 
compared to RCP8.5.

• Spatially, some positive trends are evident especially 
across Eastern Province although these are very mar-
ginal, thus suggesting that future changes of  PVRes in 
Zambia are likely to be near zero.

Given seasonal fluctuations of  PVRes, the present analysis 
showed that a wind-solar energy mix has a lot of promise 
for enhancing production during peak times, but a substitu-
tionary energy source may be necessary during months of 
low production. While this study has highlighted key future 
spatiotemporal  PVRes trends in Zambia, it suffers from the 
lack of robust reliable observational datasets and a limited 
number of models. Furthermore, it is important to note that 
the multi-model ensemble used herein does not factor in the 
influence of aerosols on  PVRes projections. Aerosols are well 
known to be strong modulators of SR (Mallet et al. 2021) 
and clouds (Deroubaix et al. 2022), consequently  PVRes 
especially in arid environments (Neher et al. 2019). Never-
theless, although RegCM inherently has an aerosol module, 
its unrealistic simulation of the past climate of Zambia sug-
gests that including it in the ensemble would lead to larger 
biases. It is also notable that types of aerosols included in 
RegCM (e.g., Sea salt and dust; Solmon et al. 2006; Zakey 
et al. 2006, 2008) are not common in Zambia. Future  PVRes 
investments in Zambia should, therefore, be undertaken after 
addressing these limitations thoroughly.
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