
Vol.:(0123456789)1 3

Meteorology and Atmospheric Physics (2023) 135:9 
https://doi.org/10.1007/s00703-022-00948-9

ORIGINAL PAPER

Linkages between Madden–Julian oscillation and drought events 
over Kenya

Phillip Okello Ochieng1,2  · Isaiah Nyandega1 · Boniface Wambua1 · Victor Ongoma3 

Received: 23 December 2021 / Accepted: 6 December 2022 / Published online: 14 December 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022

Abstract
Increased frequencies and intensities of extreme weather events have negatively impacted climate-sensitive socio-economic 
sectors in Kenya and larger Equatorial East Africa (EEA). Madden–Julian oscillation (MJO) influence intra-seasonal weather 
variability over Kenya although less attention has been given to its effect on extreme weather events such as droughts and 
floods, which have increased in frequency and intensity. Outgoing Longwave Radiation (OLR) was used in this work as proxy 
data for rainfall to study the geographical distribution and circulation anomalies associated with MJOs and their impacts 
on extreme weather events. Extreme weather events are identified using the self-calibrating Palmer Drought Severity Index 
(sc-PDSI), based on sc-PDSI, 2013/2014 and 2017/2018 as the drought and flood years, respectively. The background 
power spectral analysis reveals that MJOs are more dominant during the March–May (MAM) season than other seasons. 
The variance analysis depicted that the maximum power of MJO-filtered OLR is cantered within the tropical Indian Ocean, 
maritime continent and the tropical Pacific Ocean. Upper tropospheric (200 hPa) wind signatures give a clear Matsuno-Gill-
type circulation compared to the lower tropospheric wind flows. Thus, the signatures can be used to develop a dynamic MJO 
index for prediction purposes. There exists a weak direct relationship between MJO and sc-PDSI; however, the influence 
may result from its modulation of atmospheric circulation as illustrated by the wind and velocity potential patterns before 
and after the passage of the convective MJO phase.

1 Introduction

Extreme weather events such as droughts and floods have 
far-reaching consequences on the economy and the envi-
ronment at large (Seneviratne et al. 2012; Lyon 2014; Basu 
et al. 2016). Although the occurrence of droughts is inevi-
table, a lot can be done to minimize the associated negative 
impacts. The measures may include but are not limited to an 
early warning system that enhances preparedness for sustain-
able adaptation and mitigation actions (Kilavi et al. 2018). 
Drought forecasting forms a fundamental component of the 

drought early warning system by adopting better forecasting 
methods.

Arid and Semi-Arid Lands (ASALs) in Kenya are the 
most prone and vulnerable to droughts. Unlike other mete-
orological hazards experienced in these regions (e.g., flash 
floods, landslides), drought events are more devastating 
since they exacerbate the water scarcity condition. The over-
dependency of the local community on pastoralism which 
relies on rain-fed pastures as the main economic activity 
further aggravates this situation. The 2008–2010 drought, 
for example, affected the entire East Africa region, with 
approximately 13 million people directly impacted (Muller 
2014). Pastoralists lost over 60 percent of their livestock 
(Huho and Kosonei 2014); an estimated 3.2 million people 
in ASALs of Kenya were left in need of emergency help. 
The drought situation that used to occur after every 5 years 
has become more frequent and intense, and its management 
has been complicated by other pandemics such as COVID-
19 (Funk 2020).

The rainfall pattern in Kenya is characterized by two 
maxima experienced during October to November (OND) 
and March to May (MAM), locally referred to as ‘short’ 
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and ‘long’ rains, respectively (Okello et  al. 2021). At 
numerous temporal and geographical dimensions, many 
factors govern the start, length, and rebound from climate 
extremes, especially floods and droughts (Frei et al. 2006; 
Dai 2013; Sun et al. 2016). In particular, teleconnections 
such El Nino–Southern Oscillation (ENSO), Madden Julian 
Oscillations (MJO), the North Atlantic Oscillation (NAO), 
the Indian Ocean Dipole (IOD), and the Pacific Decadal 
Oscillation (PDO) have a substantial impact on climatic 
extremes (Weisheimer et al. 2017; Zhang et al. 2010). For 
instance, the positive and negative phases of ENSO are asso-
ciated with above and below-normal rainfall, respectively, 
over East Africa OND (Omondi et al. 2014; Indeje et al. 
2000b; Kalisa et al. 2020; Mpelasoka et al. 2018).

The IOD is the primary influencer of rainfall variability 
over Kenya throughout the MAM season (Mpelasoka et al. 
2018; Ongoma et al. 2015; Owiti et al. 2008). Warming 
(cooling) in the western Indian Ocean is connected with a 
positive (negative) phase of the IOD. The positive phase of 
IOD is associated with enhanced rainfall in Equatorial East 
Africa (EEA).

Madden–Julian Oscillation (MJO, a 30- to 60-day oscil-
lation) is one of the most important features that influence 
climate variability within the tropics (Zhang 2005). It is 
known to cause intra-seasonal to seasonal rainfall variabil-
ity in Kenya (Hogan et al. 2015; Omeny et al. 2008; Pohl 
and Camberlin 2006). The Indian Ocean, the Caribbean, 
the Pacific Ocean and Africa are all affected by this belt 
of deep convective clouds moving eastward at a speed of 
about 5 miles per hour (8.0 km/h). According to Madden 
and Julian (1994), the MJO is strongest in the winter and 
weakest in the summer, even though it is present year-round. 
Although its strength varies seasonally, it impacts climate 
and weather events all year round in the tropics and extra-
tropics. MJO is also known to have a considerable impact on 
the atmospheric circulation in the global tropics, as well as 
causing fluctuations in the weather and temperature in non-
tropical places around the world (Bond and Vecchi 2003; 
Zhang 2005).

Zhang (2005) provided a comprehensive study of the 
MJO's properties and dynamics. Similar studies have been 
done by Li (2014), and Demott et al. (2015). A convec-
tive core that is made up of a large number of small-scale 
deep convective structures is what distinguishes the “active 
phase” of the MJO from other phases. Near the surface, 
zonal winds blow in the same direction as the core, but 
higher up, they are blowing in opposite directions. Active 
phase convergence is seamlessly connected to a “suppressed 
phase” of low convection and surface divergence that flows 
along with the active phase. This results in the production 
of a convective dipole that can traverse significant areas of 
the world’s tropical regions. Large-scale tropospheric heat-
ing that is linked with the active phase of the MJO is what 

typically leads to eastward-propagating dry Equatorial Kel-
vin waves and westward-propagating Equatorial Rossby 
Waves.

In Kenya, MJO influence on extreme weather events, 
which could be vital information for the prediction of 
inter-seasonal rainfall in East Africa (Kimani et al. 2020; 
Kilavi et al. 2018; Omeny et al. 2008). There is a correla-
tion between the MJO’s influence on precipitation and its 
modulation of large-scale tropospheric circulation, oscillat-
ing between favourable and unfavourable circumstances for 
upward vertical movement and convection (Schreck et al. 
2013). Mutai and Ward (2000) observed that a form of intra-
seasonal rainfall variability in EEA short rains corresponds 
to MJO timeframes. They determined that intensified MJO 
convection in the Indian Ocean lags positive rainfall anoma-
lies by about 5 days. As this link is time-lagged, Mutai and 
Ward (2000) indicate that EEA convection may lead to the 
generation of MJO episodes in the Indian Ocean. However, 
they did not study the processes by which the MJO influ-
ences EEA precipitation, but they did underline the vital 
implications of scale interlinks between intra-seasonal oscil-
lations, including the MJO, and inter-annual climatic vari-
ability impacting EEA precipitation.

Omeny et al. (2008) quantified the relationships between 
MJO and precipitation over Kenya. Similar to Pohl and 
Camberlin (2006), they reported a substantial association 
between highland rainfall, in this instance rainfall in western 
Kenya, and MJO when the MJO convective core is in the 
Indian Ocean. When the MJO advances into the Western 
Pacific, rainfall in western Kenya decreases. The outcome is 
the same for both short and long rains. The study highlights 
that this link might be used to inform 10-day-ahead rainfall 
estimates, but it advocates for integrating MJO information 
with other diagnostics to account for a larger proportion 
of variability. Omeny et al. (2008) observed insignificant 
relationships between the MJO and precipitation in eastern 
Kenya.

Berhane and Zaitchik (2014) extend the research of Pohl 
and Camberlin (2006) and Omeny et al. (2008) by analys-
ing sub-seasonal variation in the MJO’s contribution on 
EEA during both the short and long rainy seasons. They 
found that MJO convection in the Indian Ocean is related to 
increased EEA highland rainfall throughout the long rains, 
but that the association is strongest near the conclusion of 
the MAM season. During the short rains, substantial connec-
tions with highland precipitation are weaker in October than 
in November and December. In October, however, there is 
a strong negative relationship between Maritime Continent 
MJO convection and coastal EEA precipitation that is absent 
later in the season.

Extreme drought research has gained a lot of research 
interest on the international scene. Understanding the 
dynamic dynamics behind extreme drought occurrences 
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has not yet been established. The catastrophic droughts have 
affected Kenya in the recent past and are projected to persist 
into the future over most parts of East Africa (Haile et al. 
2020). There is a great deal of scientific value in investi-
gating and uncovering the reasons behind these incidences. 
This study’s findings may help improve present monitor-
ing and prediction technologies for catastrophic climate 
occurrences like Kenya’s droughts. As mentioned earlier, 
larger-scale atmospheric and oceanic variability effects 
and modulates all processes. All of this prior research has 
focused on the effects of the MJO on either rainfall over 
the study region. However, the effects of MJO droughts 
on floods have been rarely investigated over the study area. 
This research aims at finding the effects of the tropical MJO 
on this bimodal rainfall pattern and examine the physical 
factors for the occurrence of drought events in terms of the 
persistent intra-seasonal atmospheric circulation anomalies 
in the MJO, as well as to provide scientific evidence for the 
monitoring and prediction of extreme droughts and floods 
through establishing the nexus between MJO and drought.

2  Data and methodology

2.1  Study area

Kenya lies between longitude 34° E and 42° E and latitude 5° 
S and 5° N (Fig. 1). The country is surrounded by Uganda, 
Ethiopia, Tanzania, Southern Sudan and Somalia. The coun-
try’s economy and most households are largely dependent 
on rain-fed agriculture (Eichsteller et al. 2022). The central 
highlands have the highest elevation, whereas the climate 
and natural systems of the low-lying eastern, northwest, and 
north-eastern parts are mainly ASAL. The average annual 
precipitation ranges from less than 250 mm in the ASALs to 
more than 2000 mm in regions with high potential (Ochieng 
et al. 2022). The Indian Ocean to the south regulates the 
local climate pattern of the adjacent coastal zones, but the 
enormous water basin of Lake Victoria on the western flanks 
of the research area drives land-lake breezes with modifying 
the climate of its basin (Okoola 1999).

Fig. 1  Digital elevation map 
and the location of the study 
area a Kenya b Africa and c 
Eastern Africa. Data represents 
the Shuttle Radar Topography 
Mission (SRTM) 30 m image 
for Kenya. These SRTM was 
created through mosaicking tiles 
and clipping to the extent of the 
country. The digital elevation 
and major lakes were mapped 
using the shapefiles obtained 
from the World Resources 
Institute (WRI) (National Space 
Agency et al. 2000)
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Owiti et al. (2008) conducted extensive research on Ken-
ya’s annual rainfall cycle, while most studies (e.g., Indeje 
et al. 2000b; Ogwang et al. 2015; Okello et al. 2021) focused 
on rainfall over the larger East Africa region. The studies 
found that the first and second maxima of precipitation occur 
in MAM and OND, respectively, in these geographical areas. 
The minimum rainfall is recorded during December–Feb-
ruary (DJF) and June–August (JJA). The meridional and 
zonal propagation of the ITCZ (convective rainfall belt) is 
mainly responsible for this rainfall seasonality (Camberlin 
et al. 2001; Ongoma et al. 2015; Nicholson 2018). Droughts 
across Kenya and the wider EEA region are complex phe-
nomena involving multiple teleconnection mechanisms. 
There is evidence that the ENSO is responsible for some 
of the extreme weather in East Africa (Indeje et al. 2000a; 
Kalisa et al. 2020; Lyon 2014; Masih et al. 2014).

2.2  Data

This study utilized a monthly gridded temperature dataset 
for the computation and modification of the projected Thorn-
thwaite Evapotranspiration. The data has a spatial resolution 
of 0.5° × 0.5°, sourced from the Climatic Research Unit, 
CRUTS4.03 (Harris et al. 2014). CRU temperature dataset 
has successfully been applied by Polong et al. (2019) in the 
computation of potential evapotranspiration (PET) over the 
Tana River basin, Kenya. Similarly, Ayugi et al. (2020) suc-
cessfully utilized the data to calculate PET in their evalua-
tion of drought over Kenya based on SPEI.

Climate Hazard Group Infrared Precipitation with Sta-
tion monthly precipitation datasets (CHIRPS v2; Funk et al. 
2015) was used in the computation of sc-PDSI. The spatial 
resolution of the CHIRPS data package is 0.05 (~ 5.3 km). 
This dataset is a blend of satellite and ground observation 
and has the highest correlation with the real observations 
(see the supplementary file). The accuracy of CHIRPS data 
to delineate rainfall characteristics has also extensively been 
studied (e.g., Ayugi et al. 2019; Kimani et al. 2017; Ngoma 
et al. 2021). These studies pointed out that CHIRPS dataset 
reproduces the observed rainfall over East Africa wells. All 
the aforementioned datasets are analysed for the period of 
1980–2018.

The climatological Soil Available Water Holding Capac-
ity (AWHC), also referred as AWC or Root Zone Water 
Holding capacity was obtained from Oak Ridge National 
Laboratory Distributed Active Archive Centre (ORNL 
DAAC) for biochemical dynamics (https:// daac. ornl. gov/ 
cgi- bin/ dsvie wer. pl? ds_ id= 548). The data has a spatial 
resolution of 1° × 1°. This dataset has extensively been 
applied (e.g., Dai 2011; Trenberth et al. 2014) in computing 
sc-PDSI.

Convection is inferred using the daily interpolated 
National Ocean and Atmospheric Administration (NOAA) 

OLR data collection (Liebmann and Smith 1996). It is a 
2.5° × 2.5° global gridded data set with global coverage. 
Data running from 1980 to 2018 is used in this study.

Daily datasets from the National Centres for Environmen-
tal Prediction–National Centre for Atmospheric Research 
(Kanamitsu et al. 2002) are utilized to study the circulation 
anomalies associated with MJO. This dataset comprises 
meteorological variables (wind, temperature, geo-potential 
height, humidity on pressure levels, surface variables, and 
flux variables like precipitation rate). It has a spatial resolu-
tion of 2.5° × 2.5° observed 4 times a day at 0000, 0600, 
1200 and 1800 UTC, with 17 pressure levels from 1000 to 
10 hPa. This study used daily values from January 1, 1980, 
and December 31, 2018.

2.3  Methodology

2.3.1  Computation and self‑calibration of palmer drought 
severity index

Among the most commonly adopted drought index for 
assessing the duration and severity of droughts is the PDSI 
(Aiguo et al. 2004; Wellet al. 2004; Hua et al. 2011; Palmer 
1965). The PDSI is determined using an elaborate water 
balance procedure that integrates past data on temperature, 
precipitation, AWHC, and possible evapotranspiration. The 
complete PDSI calculation technique includes various quan-
titative variables that are assessed depending on the hydro-
thermal conditions of the study area. As a result, the PDSI's 
shortcomings in regional hydrological studies are apparent. 
As a consequence, since it uses a significant number of cli-
mate variables as data, this index gives a detailed instrument 
for assessing global warming impact drought (Dai 2013; Liu 
et al. 2012). Wells et al. (2004) presented the sc-PDSI as an 
enhanced form of the “classical” PDSI. For the purposes of 
clarity in the self-calibrating PDSI calculation technique, 
we commenced with Palmer (1965) PDSI computation. The 
symbol without a subscript indicates the initial variable for 
the PDSI calculation. Using a water balance model, the 
water deficit, d, can be calculated.

2.3.1.1 Step 1: Computation of water deficiency, d The deter-
mination of the PDSI value for a particular month in a particu-
lar year begins with the calculation of water balance model 
elements depending on precipitation, temperature, and AWC. 
Based on the recorded precipitation and the precipitation 
under the Climatically Appropriate for Existing Condition 
(CAFEC), the water deficit, d, may be calculated. The water 
balance model uses ET (evapotranspiration), R (recharge of 
the actual world soil moisture), RO (runoff), L (loss of the 
real world soil moisture), and PE (potential evaporation), PR 
(potential soil moisture recharge), PRO (potential runoff), and 
PL (potential soil moisture loss) to calculate d. The PET was 

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=548
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=548
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calculated using the Thorthwaite algorithm (Thornthwaite 
1948). On the basis of actual precipitation and prospective 
evapotranspiration, the Double-Layer Soil Model (DLSM) 
was used to determine the remaining water balance elements.

The DLSM analysis separated the soil layer into two dis-
tinct portions (Eq. (1)). As a result, the AWC consisted of two 
distinct components: the AWC of the surface soil layer (AWC 
s), which measured approximately 1 inch (or 25.4 mm), and 
the AWC of the underlying soil layer (AWC u), which measured 
approximately 9 inches (or 228.6 mm):

During the first few days of the month, we assumed that 
the initial moisture content of the surface soil and the layer 
underneath is, Ss and Su respectively (Eq. 2). During the first 
month, the moisture content of the surface soil equals the 
AWCS, whereas the moisture content of the soil beneath the 
surface equals the AWCU. The Ss and Su values for subsequent 
months can be calculated using the observed values of soil 
moisture in the real world for the months that came before 
them. The difference between the effective soil moisture and 
the real-world observed soil moisture is the highest potential 
water retention (PR) that the soil volume can hold (Eq. (2)):

The PRO is the total soil moisture, which is determined 
using Eq. (3):

According to DLSM, when rainfall is insufficient to fulfil 
ET, the soil moisture of the surface soil layer can supplement 
ET’s water inadequacy, while the soil moisture of the subsur-
face soil layer can partially satisfy ET. In this instance, the PL 
of the DLSM was calculated using Eqs. 4, 5, 6:

The ET, R, RO and L can be computed based on P and PET: 
given PET ≤ P, ET = PET, L = 0, R = 0, RO = P − ET − PR; 
given PET > P, ET = P + L, RO = 0, L = Ls + Lu, R = min 
(PE − P, PR). Where the elements of the DLSM are derived 
using (Eqs. 7 and 8).

(1)AWC = AWCS + AWCU

(2)PR = AWC −
(
Ss + Su

)

(3)PRO = Ss + Su

(4)PL = PLs + PLu

(5)PLs = min
(
PE, Ss

)

(6)PLu =
(
PE − PLs

)
.

Su

AWC
PLu ≤ Su

(7)Ls = min
(
PE − P, Ss

)

On the basis of the previously discussed water balance 
elements, the remaining water balance elements can be 
derived by (Eqs. 9, 10, 11, 12):

where �i =
ETi

PEi

; �i =
Ri

PRi

; �i =
ROi

PROi

; �i =
Li

PLi
 i denotes 

months of a given year and ranges from 1,2,… to 12. αi, βi, 
γi, and δi denote coefficients of the water balance compo-
nents related to ith month.

The letter with a straight line cap signifies the average 
value for a particular month, and ÊT , R̂ , R̂O , and L̂ denote 
the ET, recharge of soil moisture, runoff, and loss of soil 
moisture under CAFEC. Then, we determined the water 
deficit based on the actual rainfall quantity observed in 
the real world (Eq. 13) and the rainfall quantity under the 
CAFEC for a particular month (Eq. 14):

where d represents the water deficit, P represents actual pre-
cipitation, and P̂ represents precipitation under the CAFEC.

2.3.1.2 Step 2: Determination of Z values The water inad-
equacy, d, is employed to quantify the variation between 
the actual precipitation total for the current month and P̂ 
in inches or millimeters. Nevertheless, the P̂ value var-
ies from place to place and month to month. Thus, the 
same d value may indicate varying humidity situations 
depending on the place and month, e.g., identical water 
deficit may indicate different drought intensities in arid 
and humid regions or during the rainy and dry seasons, 
correspondingly. In this instance, modification factors, K, 
were implemented to measure water demand and supply 
relationships in a particular location as in Eq. (15).

We estimate the water requirements with PE + RO + R 
and the water supply with P + L . We adjusted the water 
inadequacy, d, to the water deficit index, Z, to accurately 
represent the variations in moisture and dryness as in 
Eq. (16).

(8)Lu =
(
PE − P − Ls

)
.
Su

AWC
PLu ≤ Su

(9)ÊT = �iPE

(10)R̂ = 𝛽iPR

(11)R̂O = �iPRO

(12)L̂ = 𝛿iPL

(13)d = P − P̂

(14)P̂ = �ET + R̂ + �RO − L̂
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Z index is the departure of actual wetness/dryness from 
the long-term yearly mean water availability in a specific 
location for a certain month. In arid climates, water require-
ment exceeds water supply; thus, drought conditions are 
more dependent on scarcity or water supply in arid areas 
compared to other places. Hence, K > 1 and K operate as 
a booster and underscores the importance of water supply, 
which is not advantageous for PDSI-based drought moni-
toring over a wider area. Considering drought monitoring 
in a particular region with distinct water availability and 
other particular geographic characteristics, K value should 
be modified periodically. The K factor was further enhanced, 
as demonstrated by Eq. 17.

The parameter with a small line above it represents the 
long-term yearly mean  of this parameter for a specific 
month, i.e., Di represents the long-term yearly average of the 
absolute value of the water deficiency, di , for a particular 
month, i.e., K ′

i
 is, therefore, the calibrated K value for a par-

ticular location during a particular month. Various 
∑

DiK
′

i
 

were determined through evaluations of different locations 
within the study location; the mean of these values, 17.67, 
was used as the base case, while the 

∑
DjK

′

j
 for a particular 

region was used as the denominator. Once more, the K value 
was modified (Eq. 18). The succeeding K value can only be 
employed for drought monitoring in the regions studied by 
Palmer; it is not applicable for drought monitoring in other 
geographic areas. A simplified version of K values for a spe-
cific month is shown in Eq. (19).

where K is the moisture anomaly index.
Without taking into account the patterns of the latest rain-

fall, the Z index can be applied to provide an indication of 
the level of dryness or wetness experienced during a given 
month. You can also use it to approximate the value of the 
PDSI for a particular month by using Eq. 20, which is as 
follows:

(15)K =
Water Demand

Water Supply
=

PE + R + RO

P + L

(16)Z = dK

(17)Di =

∑
all years

��di��
Leghth of Years

(18)K
�

i
= 1.5 log10

⎛
⎜⎜⎜⎝

PEi+ROi+Ri

Pi+Li

Di

⎞⎟⎟⎟⎠

(19)Ki =
17.67∑12

j=1
DjK

�

j

K
�

i

The only distinction between the PDSI and the sc-PDSI 
is that the empirical constants (K) and the duration factors 
(0.897 and 1/3) are replaced with values that are automati-
cally created based on the research site’s historical climate 
data This gives the sc-PDSI geographical comparability and 
calibrates the index’s performance at any region (Wang et al. 
2015). Sequentially the 98th and 2nd percentile values of the 
PDSI then finally sc-PDSI is computed as shown in Eq. 21.

Thus, considering any category of drought, specified as 
C, the computed index is calibrated as long as m and b can 
be computed, where m is the line slope and b is the y inter-
cept. Table 1 shows the sc-PDSI values as well as drought 
categories. The theory of run (Le et al. 2019; Yevjevich 
1969) is then applied to the sc-PDSI time series to isolate 
the most severe droughts and their facets.

2.3.2  Power spectral analysis and wavenumber‑frequency 
filtering

MJO modes characterized by zonal dispersion are investi-
gated using zonal space–time spectral analysis and filter-
ing of OLR data in the wavenumber–frequency dimension. 
The spectral analysis reveals the power dispersion in the 
wavenumber-frequency spectrum related to the moving 
phases. By applying a filter, we can get a rough approxi-
mation of the longitude-time pattern typical of various 
locations in the wavenumber-frequency dimension. Studies 
(e.g., Wheeler and Kiladis 1999; Roundy and Janiga 2012; 
Roundy 2012) applied a similar approach to figure out 
the spectral characteristics of Intra-Seasonal Oscillations' 
spectral characteristics. To initiate the spectral analysis, 
the yearly periodicity was determined at every grid point 
by standardizing a sequence of daily means. This annual 
loop was eliminated to create a collection of anomalies. 

(20)Xi = 0.897Xi−1 +
(
1

3

)
Zi

(21)Xt =
(
1 −

m

m + b

)
Xi−1 +

CZt

m + b

Table 1  PDSI classification (Palmer 1965)

PDSI category Weather PDSI category Weather

 > 4.00 Extremely wet  < − 4.00 Extreme drought
3.00–3.99 Very wet − 3.00 to 

− 3.99
Severe drought

2.00–2.99 Moderately wet − 2.00 to 
− 2.99

Moderate 
drought

1.00–1.99 Slightly wet − 1.00 to− 1.99 Mild drought
0.50–0.99 Incipient wet 

spell
− 0.50 to 

− 0.99
Incipient drought

0.49 – − 0.49 Near normal
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The anomalies at every latitude were then grouped into 
sixty globally zonal 97-day temporal pieces that spanned 
65 days and intersected one another.

The periodic average, regular and parabolic tendencies 
were eliminated from each component to exclude pulses 
with frequencies less than or equal to 1/97 cycles per day. 
The zonal space–time spectral calculations for every sec-
tion were computed by decaying the portions into sophisti-
cated wavenumber and frequency aspects for eastward and 
westward-moving perturbations (Roundy and Janiga 2012) 
using a discrete Fourier transform in space preceded by 
one in time, and then calculating the product of this decay 
and its sophisticated conjugate. Based on the specified 
spectral structure, the generated power was then averaged 
across all relevant portions and all appropriate latitudes 
or latitude permutations. In spectrum analysis, only bands 
reflecting data from 15° N to 15° S were considered is in 
Wheeler and Kiladis (1999). The statistical significance of 
spectral power is determined using the red-noise spectrum 
and the Student’s t test. Presented in Eq. 22 is the precise 
formulation of the red noise spectra prn.

where k is zonal wavenumber, � is frequency, �2
z
 is the vari-

ance of driving white noise, and 1 is lag-1 autocorrelation 
coefficient computed from the observed time series whose 
longitudinal component is transformed into wavenumber 
space. In Eq. 1, �2

z
 is chosen so that it is equivalent to the 

amplitude of the original spectrum when integrated over fre-
quency at each wavenumber.

Transforming the time-domain wavelet transform of 
OLR anomalies down the long axis yields the space–time 
wavelet transform Eq. (23). Morlet’s wavelet,

is applied, where s represents x or t  for the spatial or 
temporal transforms, respectively, and s represents angular 
frequency, v or wavenumber, k . The bandwidth parameter 
B was assigned a value of 4(v∕2�)−3∕2 for the temporal 
transform and 1.5(k∕2�)−3∕2 for the spatial transform.

The above procedure can be summarized step by step 
as:

1) Longitude–time arrays of OLR anomalies are used to 
organize the data.

2) To create symmetric filtering, both north and south lati-
tudes are added or subtracted from each other and then 
divided by two in the following phase (for asymmetric 
filtering).

(22)prn(k,w) =
�2
z
(k)

1 + �1(k)
2 − 2�1(k) cos (2��)

,

(23)�(s) =
1√
�B

exp (i�s)exp

�
−
s2

B

�

3) These several 96-day segments that overlap each other 
by 48 days are the product of symmetry filtering. After 
that, the segments’ linear temporal trends are removed 
and they are progressively tapered in time using a sine 
function called cosine bells (to reduce spectral leakage). 
As a consequence of the tapering, some wavelet trans-
form may have been removed.

4) Afterwards, the Fourier transform is done throughout 
the longitude spectrum.

5) The coefficients obtained as a result are converted in 
time.

6) The spectral power of the resulting complex arrays is 
obtained by multiplying them by the complex conjugates 
of the producing complex arrays.

7) The power of each segment is averaged throughout the 
entire collection of segments to get a mean spectrum.

8) Once the symmetric and antisymmetric spectra have 
been calculated, they are smoothed 30 times with a 1-2-1 
filter to obtain an approximation of the background spec-
trum for each spectrum.

9) The normalized spectrum is calculated by dividing the 
original spectrum by the smoothed background.

Longitude-time arrays of anomalous OLR aggregated 
between 30° N and 30° S are translated in longitude and time 
(without regular segmentation) to extract MJO features with 
unique phase speeds from the OLR. The wave-number-fre-
quency field’s related factors are decreased to zero, focusing 
on eastward propagation beyond the required phase speeds 
band. Using the spatial–temporal inverse Fourier transform, 
it is possible to acquire filtered (Kiladis et al. 2005; Ventrice 
et al. 2013).

2.3.3  Variance analysis

The following procedure was used to determine the propor-
tion of variance attributable to the MJO and each of the 
equatorial wave types. To begin, the original data was sub-
tracted from the 39-year mean and the first three harmonics 
of the seasonal cycle. Second, each grid point’s standard 
deviation was used to partition the daily anomalies. The 
wavenumbers and frequencies associated with each wave 
type were then filtered from the standardized anomalies. 
Each wave type’s share of the total variance is represented 
by the variance of these filtered values.

2.3.4  Lagged regression composite analysis

To study the MJO-filtered OLR bands’ spatial structure 
and evolution, we used a variety of methods. To begin, the 
OLR filtered by the MJO was gathered at a starting location 
(39° E, 1° N). Relying on a reference grid point over Kenya 
(1° N, 39° E), a time series, henceforth known as the MJO 
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index, was generated. The MJO index consists of all days 
where the minimum negative MJO-filtered OLR was less 
than − 1.5 standard deviations during the active/negative 
phase and days where the maximum positive MJO-filtered 
OLR was greater than + 1.5 standard deviations during the 
suppressed/positive phase during the 1980–2018 time frame. 
In the remaining time series, we determined the dates of all 
peaks and minima that were more than two standard devia-
tions apart (± 2�) . To create lagged composites for a given 
field, the data were averaged over these dates so that the 
highest amplitude occurred on day zero. Linear regression 
has previously been used to construct symmetric compos-
ites between positive and negative phases (e.g., Klotzbach 
2010; Schreck 2021; Ventrice et al. 2013). It was possible 
to create time-varying composites by merely averaging data 
points from extremes of the same sign, as in Roundy (2008). 
Composite anomalies were tested for statistical significance 
using a bootstrap test similar to Wheeler and Kiladis (1999) 
method. Null examples were detected in this test utilizing the 
same months and days as the original composite but from 
the other 37 years of the period in question.

For example, on January 13, 1981, the maximum filtered 
value occurred, and every January 13 from 1980 to 2018 
and from 1982 to 2018 would be considered null cases. The 
baseline composite was contrasted against randomly selected 
null dates from the null cases to create the null composites. 
These composites were generated 1000 times by repeating 
this procedure. A two-tailed test indicates that an anomaly 
at a specified grid point in the original composite was 95% 
significant if it occurred in 975 of the 1000 null composites. 
This statistical test is valid since it considers sample size and 
seasonal fluctuation. The daily datasets are initially filtered 
using Lanczos (1950) technique to reduce the noise inherent 
in the data.

2.3.5  Characterisation of drought

Probability Density Function (PDF) plot is used to char-
acterise droughts in this study. Previous studies by Kalisa 
et al. (2020) and Ongoma et al. (2018) successfully applied 
PDF to examine the drought and precipitation characteris-
tics over East Africa (EA), respectively. The initial step of 
plotting PDF in this study begins with the determination of 
the frequencies. In this study, the frequencies are expressed 
as counts of individual droughts events that falls within a 
given drought category as described in Table 1. The drought 
frequencey, F, determined as in Eq. 24.

Equation 24 Determination of drought frequency

(24)Fj =

∑m

i=1
M

N
× 100%

In Eq. 24, N is the length of the time series (from 1980 to 
2018 = 39 years) and m is the number of drought events in a 
given Palmer category/class; M is the drought category. To 
compute the cumulative frequency: the first category has the 
cumulative probability of itself. The next category is the sum 
of the previous category and itself and all were expressed 
in percentage as obtained from Eq. 24. The cumulative fre-
quency tells you the probability of drought being below a 
given category. The next step is to compute the probability 
of exceedance. The probability of exceedance signifies the 
probability of drought being above the given category. It 
is simply the maximum probability minus the probability 
of the drought being below the category. To compute it: 
subtract the cumulative probability of a given category from 
the maximum probability and is similarly expressed as a 
percentage.

3  Results and discussions

3.1  Historical dry events and their characteristics

The extreme events are identified using the sc-PDSI as dis-
cussed in Sect. 2.3.1. The most severe dry spell was experi-
enced between March 1983 to March 1988 lasting 61 months 
followed by the Oct 1998 to Oct 2001 dry spell which lasted 
for 37 months. The severe droughts peaks captured by the 
sc-PDSI runs were February 1981, August 1984, April 1992, 
June 1994, February 1997, June 2001, July 2011, June 2014. 
The period in which the dry events were experienced dur-
ing the study period is shown in Table 2. These results are 
in concurrence with Balint et al. (2013) which identified 
1983–1984, 1992–1993, 1999–2000, and 2009–2011 as 
some of the drought years though using different approaches 
to study drought. It is evident that there has been a decline 
in the severity of drought over the last decade. However, it 
is not clear what might be contributing to this shift of events 
given that recent studies (Dai 2013; Ongoma et al. 2018) 
have presented results indicating an increase in the frequen-
cies and severity of the drought events over the larger East 
African domain. The relationship between the sc-PDSI time 
series and MJO is later examined in Sect. 3.6.

The annual distribution of the sc-PDSI values based 
on Table 1 from 1980 to 2018 is presented in Fig. 2. Mild 
droughts and extreme droughts account for the high-
est percentage of the drought categories with 15.38 and 
12.82%, respectively. While moderate and severe droughts 
accounted for 5.13 and 2.56%, respectively. The probabil-
ity of exceeding the extreme drought category is very low 
at 0% while the probability of exceedance of the mild, 
moderate and severe drought categories are 20.5, 15.4 
and 12.8%, respectively. Generally, more wet periods 
were observed compared to the dry periods as depicted 
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by the high frequencies. The frequent occurrence of these 
extreme weather events can be alluded to be driven by cli-
mate change and other anthropogenic causes (IPCC AR6 
2022). This trend of continuous wet and hot scenario is 
projected to remain the same in the future (Ochieng et al. 
2022). Therefore, there is a need to have resilience mecha-
nisms adopted to minimize these uncertain climate hazards 
which have a high potential of causing both environmental 
and socio-economic destructions.

3.2  Time evolution and process analysis for Kenya’s 
2013–2015 drought

The failure of the 2013 short rains resulted in a devastating 
drought that lasted through the 2014 long rains and short 
rains long rains. A long-term lack of precipitation directly 
caused the 2014–2015 drought. Figure 3 illustrates the cli-
matological distribution of the seasonal rainfall over Kenya. 
Higher rainfall intensity is observed during the MAM and 

Table 2  The duration, severity, 
intensity and inter-arrival of 
occurrence of some of the major 
historical (1980–2018) dry 
events (scPDSI ≤ − 1) in Isiolo 
County, Kenya

Period of occurrence Duration 
(months)

Peak Severity Intensity Inter-
arrival 
(months)

Jan 1980–Feb 1981 12 Feb 1981 33.294 2.774500 20
Nov 1981–Mar 1982 5 Mar 1982 10.759 2.151800 16
Mar 1983–Mar 1988 61 Jun 1984 126.412 2.072328 97
Apr 1991–Dec 1992 21 Apr 1992 45.837 2.182714 23
Mar 1993–Sep 1994 19 Jun 1994 37.510 1.974211 35
Feb 1996–Mar 1997 14 Feb 1997 29.174 2.083857 32
Oct 1998–Oct 2001 37 Jun 2001 117.092 3.164649 53
Mar 2003 1 Mar 2003 1.402 1.402000 25
Apr 2005–Feb 2006 11 Feb 2006 17.582 1.598364 33
Jan 2008 1 Jan 2008 1.007 1.007000 4
May 2008–Jul 2009 15 Jun 2008 17.895 1.193000 29
Oct 2010–Aug 2012 23 Apr 2012 38.609 1.678652 36
Oct 2013–Feb 2015 17 Jun 2014 24.718 1.454000 36
Oct 2016 1 Oct 2016 1.081 1.081000 7
May 2017–Jul 2017 3 Jun 2017 3.511 1.170333 20

Fig. 2  Probability Density 
Function (PDF) of the annual 
drought categories histograms 
represents the frequency (%), 
while the red and green lines 
represent the cumulative fre-
quencies (%) and the probability 
of exceedance (%)
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OND seasons when Kenya receives long and short rains. 
During these seasons, the western zones and the central 
highlands record higher rainfall amounts than other loca-
tions. Rainfall is suppressed during the DJF (Fig. 2d), with 
the climatologically rainfall received being less than 40.mm/
month. The seasonality of rainfall is influenced by the ITCZ 
with the two latter-mentioned rainfall maxima being experi-
enced when the ITCZ is over Kenya during MAM and OND 
(Ongoma et al. 2015). The rainfall displays great spatial 
heterogeneity due to the varied geography, including steep 
mountains and valleys, as well as huge water basins like 
Lake Victoria along the Kenya-Uganda-Tanzania border and 
the adjacent Indian Ocean (Hession and Moore 2011). The 
fluctuations in global Sea Surface Temperatures (SSTs) have 
the most significant effect on the inter-annual precipitation 
patterns. ENSO (Indeje et al. 2000b) and the Indian Ocean 
Dipole (IOD) (Owiti et al. 2008; Owiti and Ogalo 2014) are 
some of the outcomes of SST anomalies in the Pacific and 
Indian Oceans. The complexity of droughts’ spatial–tem-
poral characteristics is determined by atmospheric tele-
connection patterns and Intra-Seasonal Oscillations such as 
MJO (Kalisa et al. 2020; Le et al. 2019; Vicente-Serrano 
2005). The linkages between drought conditions and MJO 
can be observed at a seasonal scale (Dai 2011; Trenberth 
et al. 2014).

Figure 4 illustrates the spatial distribution of the percent-
age departure of the seasonal rainfall determined based on 
Yang and Wu (2010) for 2013/2014. The failure of the short 
rains of 2013 forms the drought genesis. It is evident that 
during the latter season, the central and eastern locations 
of the country are adversely affected by rainfall deficiency, 
with below more than 40% rainfall being observed. This was 
followed by poor rainfall performance during MAM 2014 
season (Fig. 4b); it is inherent that most western parts of 
the country received less rainfall than the long-term mean 
values, with these regions recording 50% fewer rainfall 
amounts. Even though 2014 JJA (Fig. 4c) appears to have 
positive percentage departures, the spatial distribution is 
poor. Since drought is aggravated by the persistence of water 
deficit caused by an imbalance in the water system, failure 
of the subsequent OND 2014 (Fig. 4d) rains shown by the 
negative percentage departures over the central, eastern and 
north-eastern zones led to a humanitarian crisis of 2015.

3.3  Seasonal dependancy of MJO

To identify ISO-related variability in raw OLR, we employ 
wavenumber-frequency spectrum analysis. Approaches com-
parable to Wheeler and Kiladis (1999) are used in this study. 
OLR outgoing long-wave radiation (OLR) data show power 

Fig. 3  Distribution of mean 
seasonal rainfall over Kenya 
(mm/month) a MAM, b JJA, c 
OND, d DJF
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spectrum maxima that are equivalent to Kelvin waves, equa-
torial Rossby waves, mixed Rossby gravity (MRG) waves, 
and inertia gravity (IG) waves’ dispersion features (Roundy 
2018; Roundy et al. 2009; Roundy and Frank 2004; Wheeler 
and Kiladis 1999) For deep tropical convective activity, the 
spectral distribution of the daily raw OLR can be utilized 
as a proxy (Fig. 5). As a further inspection of the figures 
shows, a constant frequency of around 0.25 Cpd and zonal 
wavenumbers of zero to nine symmetrically around longi-
tude 0°, which is not along any of the theoretical equatori-
ally limited wave dispersion curves, is shown to reflect the 
MJO. Findings from these studies are consistent with those 
of Roundy et al. (2009) and Kiladis et al. (2005). There is a 
low frequency of MJO occurring in these eastward propa-
gating atmospheric disturbances with a periodic cycle of 
20–100 days, which is analogous to the results found by 
Okello et al. (2021) for the convectively coupled equato-
rial Kelvin waves (CCEKWs) with a periodic cycle of 
2.5–18 days. To illustrate the seasonal differences in MJO 
activity, the intensity of the red background colour is used. 
While the OND and DJF seasons have the least amount of 
activity, the seasonal distribution of the eastward propagat-
ing ISOs suggests that MJO activities are more prominent 
during the MAM season. It has been found that MJO activity 

accounts for 20% of intraseasonal rainfall variability during 
the MAM and OND seasons over equatorial East Africa’s 
western areas, which include Kenya and Uganda. Berhane 
and Zaitchik (2014) found out that the regional and magni-
tude of MJO influence over East Africa varies from month 
to month and thus is seasonal as in Figs. 4 and 5. They con-
cluded that the regions that MJO significantly impacts are 
located within the proximity of the meridional arm of the 
ITCZ. Enhanced rainfall is experienced when the MJO con-
vective centre is between 20° E and 140° E and dry anoma-
lies prevail when the MJO is located in the region from 140° 
E to 10° W.

3.4  Geographic distribution of MJO‑filtered OLR 
variance

Figure 6 depicts the seasonal distribution of the fraction of 
daily total OLR variance falling inside the MJO filter band 
in Kenya over the four main seasons from 1980 to 2018 (as 
averaged). These maps, which were generated following 
the procedures outlined in Sect. 2.3.3, show where MJO 
activity can be found. During the JJA and OND seasons 
Fig. 6b, c, respectively, the most significant OLR power 
is observed over the Arabian Gulf, India, and the Bay of 

Fig. 4  Distribution of rainfall 
percentage departures from nor-
mal over Kenya in 2013/2014 
a 2013 OND, b MAM 2014, c 
JJA 2014 and d OND 2014
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Bengal. In contrast, the peak values shift eastward during 
the monsoon season (MAM) as in Fig. 6a, with the west-
ern equatorial Pacific region being the focal point. During 
DJF, the MJO’s epicentre is dispersed, with the highest 
OLR values reported over the Australian continent. MJO’s 
OLR signal (Fig. 6a–d) is cantered in the Indian Ocean 
and the northern coast of the Australia subcontinent; this 
is coherent with previous findings (Klotzbach 2014; Masu-
naga 2007; Roundy 2014; Roundy and Frank 2004; Wilson 
et al. 2013).

For much of DJF, tropical intra-seasonal convection 
tends to move east; but, during JJA, it tends to go northeast 
(Schreck et al. 2013). The boreal summer intra-seasonal 
oscillation is another name for this phenomenon (BSISO: 
Kikuchi et al. 2012). The BSISO controls the monsoon 
activity, which is where the OLR signals are still focused 
in the Indian Ocean. Tropical cyclone activity in the eastern 
North Pacific and the Gulf of Mexico is influenced by a 
secondary signal that appears over the eastern North Pacific 

(Aiyyer and Molinari 2008; Kossin et al. 2010; Schreck et al. 
2013).

3.5  MJO dispersion in equatorial waves during dry 
and wet weather events

Individual events’ time–longitude sections show the westward 
group velocity of the MJO without the requirement for com-
positing. Using the (Wheeler and Kiladis 1999) and (Kiladis 
et al. 2005) techniques, OLR anomalies of the 20–100-day 
filtered and MJO-filtered OLR anomalies are shown in Fig. 7. 
There are three strongest occurrences in each column, and they 
are located in three different continents and oceans: the Indian 
Ocean (5° N–5° S, 60°–100° E), the Maritime Continent (5° 
N–5° S, 100°–120° E), (5° N–5° S, 30°–120° W), eastern 
Pacific and the western Pacific (15° N–15° S, 140° E–180°). 
Waves in several of these sequences are grouped in westward-
migrating packages. Beginning with the first wave at or east 
of the Maritime Continent, between 120° E and the dateline, 

Fig. 5  Wavenumber–frequency power spectrum a MAM, b JJA, c 
OND, d DJF for15° S to 15° N, omitting the equator, divided by a 
red background. The base-10 logarithm of the power has been plot-

ted. Filter bands used in this study are indicated by the cyan boxes. 
Black lines denote shallow-water dispersion curves for MRG, Kelvin, 
ER, and inertio-gravity waves with equivalent depths of 8 and 90 m
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subsequent waves move westward. Mid-latitude Rossby waves 
and dispersive equatorially trapped waves like the mixed 
Rossby–inertial and inertial-gravity modes (Figs. 12, 16, and 
20) exhibit similar eastward dispersion. The most conspicuous 
difference in the features observed in Fig. 6a, b is the Rossby 
wave signatures over the Atlantic and the Indian Ocean basin 
is more pronounced during the dry year compared to the wet 
year. While the MJO and Kelvin waves propagates eastwards 
the dominant Rossby waves propagates westwards. Figure 6 
further suggests that Kelvin waves play a more significant role 
in rainfall variability compared to MJO during both dry and 
wet year.

3.6  Physical mechanisms associated with MJO 
and associated atmospheric circulation 
anomalies

By applying composites, Berhane and Zaitchik (2014) 
confirm that there is a relationship between precipitation 
and MJO indices and that the association is widespread 
in November–December, March, and May, covering large 
portions of Equatorial East Africa. The relationship is 
weaker in October and April. Therefore, this study exam-
ined the influence of MJO on convective activities during 
the rainy MAM season and compared it with the dry DJF 
season.

Fig. 6  Geographical distribution of Seasonal MJO band of daily filtered OLR (shading;Wm−2)
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850hpa wind anomalies and regressed OLR (shading) and 
geopotential height (contours) during the lead time of 0 days 
during MAM are shown in Fig. 8. There are wind vectors 
when the difference between the values of u/v exceeds the 
95 per cent confidence level. It appears that deep convec-
tion or enhanced convection is taking place over Kenya’s 
designated base point (39° E, 1° N). The negative 850 hpa 
geopotential anomalies in the southern Indian Ocean depicts 

a low-pressure system over the Mascarene region and the 
Mozambique Channel; this condition is favourable for the 
meridional movements of the ITCZ due to the resultant 
east–west pressure gradient created. The latter also leads 
to moisture flux from the Atlantic Ocean and the moist 
Congo Air Mass (CAM), enhancing rainfall over Kenya. 
The difference in OLR power for positive and negative MJO 
phases are clearly shown in Fig. 8a, b. Negative/positive 
OLR anomalies are observed during negative and positive 
events, respectively. A westerly flow may be visible across 
the western Congo. In the eastern Congo, westerlies are 
also likely to form. According to positive 850 hPa velocity 
potential anomalies, 850 hPa flow convergence occurs in 
the eastern Congo Mountains and the mountains east of the 
Lake Victoria basin. During DJF (not shown), similar pat-
terns are observed except for negative 850 hPa geopotential 
anomalies observed during mean adverse events.

Velocity potential was used as a signature for lower 
(850 hPa) and upper (200 hPa) tropospheric convergence 
and divergence motions. At upper levels, divergence is 
usually associated with updrafts from towering cumulus 
clouds within the proximity of the tropopause as a result 
of condensational heating. During MAM, positive veloc-
ity potential anomalies are observed over east Africa at 
lag-5 days with easterly lower tropospheric (850 hPa) 
winds (see Fig.  9c), at lag + 5  days and lag + 10  days 
positive velocity potential anomalies are observed to have 
shifted eastwards to the tropical central Indian ocean and 

Fig. 7  Time-Longitude section of equatorial waves averaged from 5° 
N to 5° S during a Dry year 2014 and b Wet year 2018. The black 
contours are regions with 95% significant MJO activities, Magenta-
Equatorial Rossby and green-Kelvin waves, with the contours are 
drawn at an interval of 4Wm−2 . The negative contours are dashed 
while the positive contours are continuous

Fig. 8  a Lag-0 regression patterns as compared with the mean of 
MJO band filtered OLR anomalies (shading;Wm−2 ), 850hpa wind 
vectors referenced at point (39° E, 1° N-Green asterisk) for winds 
≤ 1 m−2s . The contours of 850 hpa geopotential height anomalies (m) 
are plotted every 1 m with the contours beginning from − 10 to 10 m. 
The zero contour is omitted. b and c represent the composite means 
of the positive and negative events, respectively



Linkages between Madden–Julian oscillation and drought events over Kenya  

1 3

Page 15 of 23 9

the eastern Indian Ocean, respectively. These regions are 
characterized by low-level convergence. Comparatively, 
at 200 hPa during the MAM season, upper-level diver-
gence is observed over the central pacific region at lag0 
days (Fig. 10d). However, the zones of upper tropospheric 
divergence are spread over the South American conti-
nent, Atlantic at lag + 5 days (Fig. 10e); this is elongated 
to the entirety of the African continent at lag + 10 days 
(Fig. 10f). The upper-level winds depict a clear Matsuno-
Gill type wave signature with easterly flows on the convec-
tively active zones' western sections and westerly flows on 
the eastern sections.

Compared with the MAM season, during the DJF season 
at lag-5 days (Fig. 11c), positive velocity potential anomalies 
(convergence) are observed over the Gulf of Mexico and 
East Africa region. Similar observations are also made at 
lag0 days (Fig. 11d) over the central tropical Indian Ocean 
during DJF instead of MAM season. The 200 hPa velocity 
potential at lag + 15 days (Fig. 12g) during DJF shows a dif-
ferent pattern than MAM (Fig. 11g).

All over the Atlantic and African continents, there are 
areas of convergence at the higher level. Omeny et al. (2008) 
study statistical relationships between the MJO and Ken-
yan rainfall from an operational approach. According to the 

Fig. 9  Lagged regressed MJO filtered OLR anomalies (shad-
ing;Wm−2 ), patterns of mean fields of 850hpa winds vectors refer-
enced at point (39° E, 1 °N), and 850 hpa velocity potential 

(
m2s−1

)
 

contours during MAM drawn from − 10 to 10

Fig. 10  Lagged regressed Lancoz filtered MJO-OLR anomalies 
(shading;Wm−2 ), patterns of mean fields of 200hpa winds vectors ref-
erenced at point (39° E, 1° N), and 200hpa velocity potential (m2s−1) 
contours during MAM drawn from − 10 to 10
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researchers, a strong association between highland rainfall 
and the MJO occurs when the MJO centre of convection is 
located in the Indian Ocean. When the MJO advances into 
the Western Pacific, rainfall in western Kenya decreases. 
For both short and long rains, the results are the same. For 
long-range forecasts of 10 days or more, they advocate com-
bining MJO information with other diagnostics to explain a 
larger portion of the variability in the weather. Omeny et al. 
(2008) found no significant links between MJO and rainfall 
in eastern Kenya. Several possible processes of MJO influ-
ence are supported by the above-mentioned high precipi-
tation, OLR, and low-level wind anomalies. For example, 

increased moisture transport to the region, stronger low-level 
convergence, and diminished stability in the lower tropo-
sphere could increase EA precipitation.

MJO over the tropical Atlantic and Indian Oceans has 
a vertical wind structure with upper-tropospheric winds 
(200  hPa) in opposition to lower tropospheric winds 
(850 hPa) (recall Figs. 9d and 10d). As a result, the vertical 
wind shear patterns over Kenya and the greater East African 
region are predicted to be affected by the MJO. Figures 13, 
14 show the lagged regression patterns of the MAM and DJF 
vertical wind shear pattern over the tropical East Pacific, 
sections of the South American continent, tropical Atlantic, 

Fig. 11  Lagged regressed MJO filtered OLR anomalies (shad-
ing;Wm−2 ), patterns of mean fields of 850hpa winds vectors refer-
enced at point (39° E, 1° N), and 850hpa velocity potential 

(
m2s−1

)
 

contours during DJF drawn from − 10 to 10

Fig. 12  Lagged regressed Lancoz filtered MJO-OLR anomalies 
(shading;Wm−2 ), patterns of mean fields of 200hpa winds vectors ref-
erenced at point (39° E, 1° N), and 200hpa velocity potential 

(
m2s−1

)
 

contours during DJF drawn from − 10 to 10
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Africa, and the Indian Ocean. This variation in shear direc-
tion represents an angle between 850 and 200 hPa. This pic-
ture illustrates that the tropical Atlantic is characterized by 
two different background vertical wind shear states, which 
agrees with Aiyyer and Thorncroft (2011). Subtropical west-
erly jets in the western tropical Atlantic are responsible for 
westerly vertical wind shear, while tropical easterly jets are 
responsible for the easterly vertical wind shear in the eastern 
tropical Atlantic.

At positive lags during MAM season, easterly shear vec-
tor anomalies occur within and to the west of the active 
phase of the composited MJO over the west tropical 

(Fig. 13d–g), while the westerly wind shear vector anomalies 
appear to the east of tropical East Africa during the nega-
tive lags (Fig. 13a–c). The westerly shear vector anomalies 
over the tropical Indian Ocean migrate eastward with time 
as the MJO transitions between the leading convectively 
suppressed and convectively active phases (Fig. 13a–c). 
Figure  13f, g depict the development of an anomalous 
anticyclonic shear signature within the convectively active 
phase of the MJO at lags of 10 and 15 days, respectively. 
This anomalous anticyclonic shear signature highlights the 
atmospheric response to adiabatic heating associated with 
deep convection (e.g., Dias and Pauluis 2009; Ferguson 

Fig. 13  Lagged regression patterns of the mean field of 850-200hpa 
wind shear vectors 

(
ms−1

)
 and wind shear vector magnitudes anoma-

lies (shading;ms−1) during MAM

Fig. 14  Lagged regression patterns of the mean field of 850-200hpa 
wind shear vectors 

(
ms−1

)
 and wind shear vector magnitudes anoma-

lies (shading;ms−1) during DJF
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et al. 2009; Ventrice et al. 2013). In terms of wind structure, 
this anomalous anticyclonic signature is similar to the wind 
structure of the MJO across the Atlantic and parts of South 
America at lag 5 (Fig. 13c).

During the MAM season, easterly shear vector anoma-
lies occur inside and to the west of the active phase of the 
composited MJO over the tropics (Fig.13d–g), while west-
erly wind shear vector anomalies occur east of tropical East 
Africa during the negative lags (Fig.13e–h) (Fig. 13a–c). 
Westerly shear vector anomalies move eastward over the 
tropical Indian Ocean with time, from MJO's leading con-
vectively inhibited phase to its active convective phase. 
Figures 11f, g show the atmospheric response to adiaba-
tic heating associated with deep convection at lags of 10 
and 15 days, respectively, in MJO convectively active phase 
(e.g., Dias and Pauluis 2009; Ferguson et al. 2009; Ven-
trice et al. 2013). Wind patterns over the Atlantic and South 
America at lag-5 of the MJO are similar to this aberrant 
anticyclonic characteristic (Fig. 13c).

At lag0 during MAM (Fig. 13d) and DJF (Fig. 14d), the 
anomalous shear signature directions are predominantly 
westerly to the west and easterly to the east of the active 
convective MJO zone (see Figs. 9, 10, 11, 12), is coherent 
with the Gill–Matsuno-type model response to deep convec-
tion (Gill 1980). The notable difference between the wind 
shear patterns is that during DJF, the shear vectors are gener-
ally inclined to NW–SE orientation over the Indian Ocean 
basin (Fig. 14e–g), while during MAM the orientation is 
mainly Easterly (Fig. 13e–g). Over the east pacific region 
during MAM westerly shear vectors were observed from 
lag 10–15 days (Fig. 13f, g), during DJF 10–15 days after 
the passage of convective MJO band (Fig. 14f, g), over the 
eastern Pacific and South American regions are character-
ized by cyclonic flows. Anticyclone shear signatures are also 
observed over the southern Indian Ocean 5–15 days after 

the passage of the MJO during MAM (Fig. 13e–g). For this 
paper, it is unlikely that tropical cyclone intensity and struc-
ture will significantly impact our understanding of climate 
change. When cyclones are prevalent in the southwest Indian 
Ocean, Ethiopia can experience drought conditions. Shanko 
and Camberlin (1998) demonstrated this previously.

EEA convection occurs when the MJO low-pressure 
centre is in the western Indian Ocean due to westerly wind 
intrusions are drawn into the region (Pohl and Camberlin 
2006). In the mountains and coastal plains of the EEA, the 
MJO and rainfall have a special relationship, according to 
the authors of the paper. The MJO has a substantial link 
with coastal rainfall anomalies, but this correlation is out of 
phase with respect to the highlands, with enhanced coastal 
rainfall occurring before the MJO arrives in the EEA region. 
As a result of MJO-associated low pressure in the Atlantic 
sector, more significant easterly trade winds may bring moist 
air from the Indian Ocean into the coastal EEA, resulting in 
increased coastal rainfall. According to Pohl and Camberlin 
(2006a), this anomaly in coastal rainfall is strati form in type 
and does not reflect strong OLR anomalies associated with 
deep convection.

The temporal all-year relationship of sc-PDSI, MJO index 
and rainfall extracted at base point 39° E, 1° N is presented 
in Fig. 15. The most intriguing observation is that the MJO 
and rainfall are either in phase or out of phase. It is observed 
that MJO is in phase mainly during El-Nino years, with 1997 
being the most notable. A weak correlation exists between 
MJO and rainfall/sc-PDSI of 0.27 and − 0.29, respectively. 
Previous studies have found that the influence of MJO over 
the East coast of Africa is not direct but indirect through 
the modulation of atmospheric circulation anomalies. For 
instance, Okello et al. (2021) found a Walker circulation-
type air-sea interaction pattern associated with the active 
phase of convectively coupled Kelvin waves (CCKWs). 

Fig. 15  Time series plot of 
yearly averaged (1980–2018) 
values of sc-PDSI (black solid 
line), OLR-MJO filtered band 
(red solid line) and the annual 
total rainfall (mm/year)
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Since CCKWs are embedded within the MJO structure, this 
may also be similar to MJOs. There may be a halt in the 
MJO’s effect in the middle of the long rainy season, based 
on the low correlation between MJO indices and Kenyan 
precipitation. Even if this is the case, our data reveals that 
the MJO's features change from month to month and decade 
to decade and that the apparent hiatus may be a product of 
this variability (Suhas and Goswami 2010).

Research by JunMei et al. 2012 revealed that MJO var-
ies the atmospheric circulation by creating a situation for 
descending motions that is not favourable for convective 
activities. MJO phase over the global Ocean basins can 
alter the Sea Surface Temperatures (SSTs) gradients, conse-
quently changing the teleconnection patterns like the ENSO 
and IOD (Shimizu and Ambizzi 2016; Shimizu et al. 2017).

4  Conclusion

Droughts and floods have a significant impact on the lives of 
millions of people in East Africa, delaying progress toward 
the United Nations Millennium Development Goals. Devel-
oping weather and short-term climate forecasting systems to 
limit the effects of deviations from average weather in the 
region requires knowledge of variability on intra-seasonal 
periods. Our results show generally that the influence of 
MJO on drought variability is seasonally dependent. This 
influence is visible in the atmospheric circulation patterns 
and shown by the regression analysis. Thus, the modulation 
of drought patterns associated with the MJO might somehow 
regulate the propagation and structure of the atmospheric 
phenomena responsible for convention such as ENSO, 
Walker circulation, ITCZ among others.

Even while the impact of MJO on rainfall variability in 
eastern tropical Africa has long been recognized, no in-
depth studies have been conducted on the effects of MJO 
on abnormalities in atmospheric circulation and extreme 
weather events. This study addresses this void and estab-
lishes the groundwork for a complete and systematic evalua-
tion of the impact on rainfall in Kenya. We used the sc-PDSI 
index to classify drought events and the convective MJO 
index filtered from the OLR climate data record to examine 
how MJOs affect rainfall intensity in Kenya. Both of these 
indexes were found to be helpful in this study.

Regression analysis (Figs. 8, 9, 10, 11, 12, 13) shows that 
some eastward migrating signals with wavenumbers 3–8 and 
periods less than 20 or 25 days also exhibit spatial patterns 
compatible with the MJO, even though the MJO is generally 
associated with planetary sizes and periods of 30–60 days 
(shown in Fig. 4). During MAM and DJF, the MJO con-
tributes a more significant percentage of the variance than 
during JJA and OND (Fig. 5).

There is a strong correlation between the presence of 
these cyclones and anticyclones in wind shear structures 
inside the MJO and their arrival at that place by similar 
mechanisms (Aiyyer and Molinari 2008; Klotzbach 2014; 
Schreck 2015). This study has demonstrated that regions 
of positive shear magnitudes are conducive for the forma-
tion of subtropical westerly jet streams, while the negative 
shear magnitude is associated with easterly jet streams in 
the tropics. The subtropical westerly jet may be responsi-
ble for moisture flux through the advection of the Conga 
air mass to the east, consequently leading to enhanced 
rainfall. Likewise, a stronger subtropical easterly Jetstream 
is conducive to forming strong easterly winds, which leads 
to an advection of the dry Indian Ocean air mass, causing 
extreme dry conditions (Finney et al. 2020). The increase 
of dry extreme events is a matter of grave concern due to 
the effects on the population and for the survival of the 
entire ecosystem. MJO influence on rainfall over a given 
location is phase dependent (Schreck 2015), this was not 
factored in this study and therefore the drought.

These results of this study can be used to improve 
drought early warning system by strengthening drought 
prediction. Further progressive research is needed to 
understand the linkages between the MJO and drought, and 
other convective disturbances such as convective Kelvin 
waves and Rossby waves are, therefore, certainly required 
based on robust statistical comparisons of their kinematic 
and thermodynamic structures along with theoretical and 
simple modelling over the study region.
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