
Vol.:(0123456789)1 3

Meteorology and Atmospheric Physics (2021) 133:163–179 
https://doi.org/10.1007/s00703-020-00736-3

ORIGINAL PAPER

Characterizing mesoscale variability in low‑level jet simulations 
for CBLAST‑LOW 2001 campaign

Ken Tay1 · Tieh‑Yong Koh2 · Martin Skote3

Received: 31 July 2019 / Accepted: 7 April 2020 / Published online: 30 April 2020 
© The Author(s) 2020

Abstract
A low-level jet (LLJ) event observed during a frontal passage in the 2001 Coupled Boundary Layers and Air–Sea Transfer 
Experiment in Low Winds campaign was simulated using the Weather Research and Forecasting model (WRF). The sensi-
tivity of the modeled LLJ characteristics, such as formation time, height and the strength of the LLJ core, to the choice of 
initial and boundary conditions, planetary boundary layer (PBL) schemes and vertical resolution was evaluated with a suite 
of diagnostic tools. The model simulations were compared against available soundings from the campaign observations as 
well as with surface observations from the Automated Surface Observing Systems. The simulation initialized with ERA-
interim reanalysis and using the Mellor–Yamada–Nakanishi–Niino PBL scheme gave the best mix of diagnostic scores for 
surface temperature and wind speed predictions. The choice of boundary conditions introduced a stronger variability in the 
LLJ characteristics than the changes in PBL schemes or vertical resolution. The variability emerged primarily due to the 
timing of the frontal passage in the boundary condition datasets.

1  Introduction

A low-level jet (LLJ) can be described as accelerated winds 
aloft, confined within the atmospheric boundary layer. Such 
events are characterized by strong surface shear and wind 
speed maximum of more than 10 m s−1 . LLJs have been 
frequently documented in many regions of the world (Bon-
ner 1968; Doyle and Warner 1993; Whiteman et al. 1997; 
Banta et al. 2002; Song et al. 2005; Lundquist and Miro-
cha 2008; Colle and Novak 2010; Rife et al. 2010; Hu et al. 
2013; Berg et al. 2015; Du et al. 2015; Vanderwende et al. 
2015; Smith et al. 2019) and have an impact on the trans-
portation of momentum, moisture and pollutants (Angevine 
et al. 2006). Furthermore, LLJs can be a source of strong 
winds for wind power production. However, the associated 

strong wind shear and veer have significant influences on the 
stresses experienced by a wind turbine (Kelley et al. 2004). 
A better understanding of LLJ interaction with wind turbines 
can advance optimal wind turbine design strategies.

The traditional approach for wind resource modeling is 
based on Jackson–Hunt-type linear flow models such as 
WAsP, MS3DJH and MS-Micro (Brower 2012). Linear flow 
models solve steady-state linearized Navier–Stokes equa-
tions with simplified assumptions for terrain effects (Jackson 
and Hunt 1975). They are computationally efficient and are 
able to provide a suitable first approximation for the wind 
climate of a chosen site. However, the increased availabil-
ity of computational resources and power has made it more 
attractive to consider more complex models to be used for 
wind resource assessment. Higher-order models are able 
to better resolve nonlinear effects and hence provide bet-
ter approximation of the available wind resource (Mahoney 
et al. 2012; Badger et al. 2015; Beaucage et al. 2014; Gopa-
lan et al. 2014).

Numerical weather prediction models (NWP) are used 
as operational weather forecast models although the inter-
est in using NWP for wind resource assessment is growing 
(Storm et al. 2009; Badger et al. 2015; Beaucage et al. 
2014; Hahmann et al. 2014; Wilczak et al. 2015). NWP 
models are typically compressible, non-hydrostatic models 
that are able to simulate a wider scale of meteorological 
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phenomena driven by atmospheric stability such as low-
level jets and barrier jets.

With increased focus on offshore wind power (Dvorak 
et al. 2010; Archer et al. 2014; Gryning et al. 2014; Hah-
mann et  al. 2014), NWP provides a larger spatial and 
temporal coverage for wind climate studies compared to 
in situ offshore measurements. Few long-term measure-
ments of offshore wind are available due to the cost and 
difficulty in setting up mast towers. NWP can bridge this 
gap and provide better approximations of the wind climate 
at a potential offshore site before further commitment into 
costly long-term measurement campaigns.

Despite the greater accuracy of NWP models in wind 
prediction, the modeling outcome requires familiarity with 
both the geographic region of interest and the available 
model parameterization schemes (Storm et al. 2009; Talbot 
et al. 2012; Nunalee and Basu 2014; Vanderwende et al. 
2015; Berg et al. 2015). No universal model set-up per-
forms optimally in all geographic regions and mesoscale 
conditions. Hence, it would be useful to be able to objec-
tively quantify the performance of mesoscale simulations 
and pinpoint the sources of the prediction uncertainties. 
This is the major motivation for the present investigation.

One of the most common NWP models is the Weather 
Research and Forecasting model (WRF), which is a non-
hydrostatic mesoscale numerical weather prediction model 
used extensively for both operational and research pur-
poses (Skamarock et al. 2008). WRF allows for either 
idealized or real-data simulation studies and uses nested 
domain runs that can be one-way or two-way coupled.

WRF has been shown to simulate LLJs reasonably well 
for the US Great Plains (Storm et al. 2009; Vanderwende 
et al. 2015) and for coastal cases (Nunalee and Basu 2014). 
These studies have shown that the timing of LLJ forma-
tion, as well as the height and strength of the jet core, 
is dependent on the WRF model configurations. In this 
study, we seek to characterize the variability of the results 
related to the model configurations. We utilize WRF (ver-
sion 3.4.1) to simulate a coastal LLJ observed in August 
2001 during the Coupled Boundary Layers and Air–Sea 
Transfer Experiment in Low Winds (CBLAST-LOW) 
field campaign, which was conducted in the New England 
coastal region. We employ a diagnostics suite (Koh et al. 
2012) to quantify the variability between different model 
configurations. We address the following questions in our 
work:

–	 How sensitive are the timing of LLJ formation, and 
height and strength of the LLJ core, to the model param-
eters such as choice of initial/boundary conditions, plan-
etary boundary layer schemes and vertical resolution?

–	 How can we quantify the influence that the model param-
eters have on the simulated LLJ?

The simulation domain and the different model parameters 
tested in this case study are presented in Sect. 2 together 
with a description of the data sets used. In Sect.  3, we 
introduce the diagnostic suite used to evaluate the models. 
The results of the simulations and the performance evalu-
ation are presented in Sect. 4. Lastly, a discussion on the 
implication of the choice of model parameters is offered in 
Sect. 5, while conclusions are drawn in Sect. 6.

2 � Domain description and simulation set‑up

The CBLAST-LOW campaign was conducted over the 
summer months of 2001–2003 in the North Atlantic, 
south of Martha’s Vineyard Island, MA, USA (Edson et al. 
2007). The objectives of the campaign were to understand 
air–sea interaction and the dynamics of the coupled atmos-
pheric–oceanic boundary layer. To achieve these goals, 
direct measurements of vertical fluxes of momentum, heat 
and mass were made across these coupled boundary layers. 
A combination of radiosondes and remote sensing of the 
vertical structure of the coastal boundary layer yielded fur-
ther insights into the dynamics of the coastal LLJ and the 
influence of synoptic events on its formation and structure 
(Mahrt et al. 2014; Helmis et al. 2015).

A strong LLJ was captured by a Woods Hole Oceano-
graphic Institution (WHOI) sounding at approximately 07 
August 2001 0030 UTC (1930 LST) (Fig. 1). The radio-
sonde data provided temperature, wind speed and wind 
direction profiles which showed the characteristics asso-
ciated with a LLJ: a temperature inversion up to 350 m 
above sea-level, supergeostropic wind just above the tem-
perature inversion, as well as wind veer of ∼20◦ . A warm 
frontal passage occurred during this observational period 
and is believed to have contributed to the formation of this 
coastal LLJ (Helmis et al. 2015).

2.1 � WRF model domain

The domain consists of three nests, centered upon Mar-
tha’s Vineyard Coastal Observatory (Fig. 2). The hori-
zontal resolutions from the outermost domain, d01 to 
the innermost domain, d03 are 30 km, 6 km and 1.2 km, 
respectively. The grid sizes (Nx × Ny) are 100 × 100, 300 
× 300 and 300 × 300, respectively. All simulations used 
the same Noah Land surface model (Dudhia 1989) and 
RRTM radiation scheme (Mlawer et al. 1997), with the 
cumulus scheme switched off for d03. All simulations 
ran from 07 August 2001 0000 UTC (1900 LST) until 09 
August 2001 0000 UTC (1900 LST) with the first 12 h 
discarded.



165Characterizing mesoscale variability in low-level jet simulations for CBLAST-LOW 2001…

1 3

2.2 � Model configuration

For the sensitivity studies, we choose to vary the initial 
and boundary conditions, planetary boundary layer (PBL) 
schemes, vertical resolution and sea-surface temperature 
(SST) fields. Table 1 summarizes the model configurations 
used in this study.

2.2.1 � Boundary conditions

Previous studies have shown that the choice of initial and 
boundary condition datasets heavily influences the charac-
teristics of the modeled LLJ (Nunalee and Basu 2014; Van-
derwende et al. 2015). The LLJ formation is dependent on 
multiple factors that include baroclinicity, topography and 
synoptic events such as fronts (Ostdiek and Blumen 1997; 
Banta et al. 2002; Van de Wiel et al. 2010; Vanderwende 
et al. 2015). Differences exist between various reanalysis 
datasets in their representation of synoptic events, depend-
ing on the methods used to produce them. Hence, it would 
be prudent to test the sensitivity of the modeled LLJ due to 
such differences.

We have explored two options for the boundary condi-
tions, ERA-Interim and NARR. ERA-Interim is a third-
generation global atmospheric reanalysis dataset from 
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Fig. 1   Sounding profiles for wind speed (red), wind direction (green) 
and temperature (blue) measured with a rawinsonde launched on 08 
August 2001 0030 UTC (1930 LST) at 41.52◦ N, 70.67◦ W from the 
WHOI Ship. No wind data was available between 3 and 226 m from 
the available sounding archive. (Retrieved from ftp://ftp.whoi.edu/
pub/users/cblast/2001/rawinsonde/01080720.CAP)

Fig. 2   WRF domain set-up 
showing three nested domains 
centred on the location of the 
Martha’s Vineyard Coastal 
Observatory. d01 is the outer-
most domain, d02 is the nested 
intermediate domain and d03 
is the innermost domain nested 
within d02
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1979 to 2019 (Dee et al. 2011). It contains global atmos-
pheric and surface parameters at T255 spectral resolu-
tion ( ∼ 80 km) on 60 vertical levels, with 12 levels below 
850 hPa. It uses 4D-VAR for data assimilation to produce 
atmospheric fields on model pressure levels at 6-h inter-
vals and surface fields at 3-h intervals. The North-Amer-
ican Regional Reanalysis (NARR) is a second-generation 
regional reanalysis product from 1979 to present, and is 
a high-resolution extension of the NCEP Global Reanaly-
sis, focused over the North American Region (Mesinger 
et al. 2006). It contains regional atmospheric and surface 
parameters at 32-km horizontal resolution on 29 vertical 
levels, with 7 levels below 850 hPa. NARR uses 3D-var 
to assimilate meteorological variables into the NCEP Eta 
model to produce atmospheric fields that are available at 
3-h intervals. These datasets are summarized in Table 2.

2.2.2 � PBL scheme

In mesoscale WRF simulations, the vertical structure of 
the atmosphere is parameterized by PBL schemes, which 
are used to represent sub-grid scale turbulent vertical 
fluxes of momentum, heat and moisture. In contrast to 
a convectively driven boundary layer, a stable boundary 
layer exhibits suppressed buoyancy-driven mixing, while 
the turbulence production due to strong wind shear is 
increased. Thus, the choice of closure schemes suitable 
for convective boundary layers might not be optimal for 
the stable boundary layer (Nielsen-Gammon et al. 2010; 
Shin and Hong 2011).

In this study, we focus on the different results obtained 
by local and non-local closure schemes that differ in how 
the sub-grid fluxes are modeled as a function of mean flow 
quantities. Local closure schemes model these fluxes at each 
grid point based on the mean values of their respective gra-
dients at that point. Non-local closure schemes include an 
additional flux term to account for large-scale vertical trans-
port that is non-local in nature (Troen and Mahrt 1986). As 
such, we have chosen the Mellor–Yamada–Nakanishi–Niino 
(MYNN) local closure scheme and the Yonsei-University 
(YSU) non-local closure scheme (Hong 2010; Hu et al. 
2010; Shin and Hong 2011).

2.2.3 � SST field

The contrast in surface temperature between land and sea can 
contribute to the LLJ formation in coastal regions (Mahrt 
et al. 2014). The land–sea temperature contrast can result 
in baroclinicity that is conducive to the formation of coastal 
LLJ, similar to the role of baroclinicity over the sloping 
Great Plains (Holton 1967). When warm air from the land 
surface advects offshore over cooler water, a strong stable 
marine boundary inversion can form (Smedman et al. 1997). 
The stratification of this marine boundary layer depends on 
the temperature difference between the warm land and the 
cooler sea. The stability profile will then influence the char-
acteristics of the resultant LLJ above the inversion layer.

The standard WRF-ARW model configuration lacks a 
coupled ocean model; hence, the SST field is provided as 
an initial boundary condition and updated in time when pos-
sible. ERA-Interim provides a 6-hourly SST field that can 
be used to update the SST and, thus, the surface temperature 
field (Skamarock et al. 2008). For the NARR dataset, there 
is no explicit SST field available at 3-h intervals. Instead, 
the SST field is derived from the initial air temperature at 
the surface over water bodies from NARR fields and the 
SST field remains constant over the duration of the simula-
tion. To assess the importance of SST on LLJ character-
istics, our simulations include a case where the SST field 
was not updated in an ERA-based run during the simula-
tion period. This simulation also serves as a control against 
which NARR-based runs can be evaluated.

2.2.4 � Vertical resolution

The stable atmospheric boundary layer is characterized by 
smaller turbulent eddies compared to those of the convective 
boundary layer. Increasing the vertical resolution within the 
stable boundary layer would, in theory, increase the accu-
racy of the PBL parameterizations of the eddy fluxes. The 
improved accuracy near the surface and the LLJ core should 
then lead to better estimates of winds within the first 200 m. 
In a study of high-resolution modeling for wind energy 
purposes, Bernier and Bélair (2012) found that increased 
vertical resolution only has modest improvements on wind 
profile predictions. A study on coastal LLJ (Nunalee and 

Table 1   Names and summary of 
all the model configurations in 
the study

Boundary condition PBL scheme SST update Vertical levels

ERAMYNN ERA-Interim MYNN Yes 60
ERAYSU ERA-Interim YSU Yes 60
NOSST ERA-Interim MYNN No 60
ERAMYNN75 ERA-Interim MYNN Yes 75
NARRMYNN NARR​ MYNN No 60
NARRYSU NARR​ YSU No 60
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Basu 2014) corroborated this finding. However, Bernier and 
Bélair (2012) also noted that the prediction of wind shear 
near the surface was improved with higher resolution. To test 
the influence of vertical resolution, we executed a simula-
tion with a finer vertical resolution by increasing the total 
number of vertical levels from 60 to 75 . As a result, the 
effective vertical resolution in the lowest 1000 m increased 
from ∼ 35 to ∼ 25 m.

2.3 � Observation data

To validate our results with observations and to apply the 
diagnostic metrics, we use surface observations from Auto-
mated Surface Observing Systems (ASOS) stations in Mas-
sachusetts and Rhode Island for temperature and wind speed 
(see map in Fig. 3).

The ASOS program is the United States’ primary surface 
weather observation network (NOAA 1998) and measures 
surface wind speed at 10 m, direction, air temperature and 
sea-level pressure, among other variables. Hourly surface 
measurements were used in this study from ASOS stations 
situated in an elevation range between 2 and 52 m above 
sea-level with the average elevation at 22 m.

The main synoptic condition occurring during the period 
of study was a warm front originating from the continental 
land mass to the northwest of the simulation domain d03. 
The front advanced south-east towards the Atlantic coast. 
When the warm air mass advects over the cooler sea surface, 
a temperature inversion is established. The resulting stable 
boundary layer suppresses turbulence mixing and reduces 
the effect of surface roughness. The effect of reduced tur-
bulence leads to an acceleration of the wind field aloft, thus 
forming a LLJ. The LLJ observed was partially a result of 
this frontal passage. Wind direction shifts associated with a 

frontal passage were recorded by some ASOS stations (not 
shown). Observed surface winds generally shifted from 
southerly to northeasterly direction.

Although this LLJ was captured in a rawinsonde sounding 
launched from the WHOI ship (Fig. 1), the single sampling 
of the atmosphere was not sufficient to evaluate the suc-
cess of WRF in modeling LLJ characteristics that we are 
interested in: timing, location, height and speed. Thus, we 
employ the ASOS data to help fill in the gaps in observa-
tions. Even though only surface measurements were avail-
able from ASOS stations, the data will be able to capture 
the frontal passage, which is likely a key modulator of the 
LLJ characteristics (Helmis et al. 2013). Hence, we can use 
the surface measurements to evaluate the ability of WRF to 
simulate the frontal passage by proxy.

3 � Diagnostic suite

To quantify the success of the various model configura-
tions in simulating the LLJ, it is imperative to select a suite 
of diagnostic metrics that is robust and has the ability to 
elucidate the underlying biases and errors. We selected the 
diagnostic suite of Koh et al. (2012), which was designed 
to evaluate NWP performance. A brief description of the 
metrics used in our study will be given in this section.

In the following, � is the defined as the difference (error) 
between forecast ( � ) and observation ( � ). The averaged 
difference, ⟨�⟩ , is also known as the bias; while, �2

D
 is the 

variance of the difference. In the diagnostic framework of 
Koh et al. (2012), the root-mean-squared error (RMSE) is 
normalized by the sum of variances for both observation 
( �2

O
 ) and forecast ( �2

F
 ). The normalized RMSE (NRMSE), 

� , is, thus, defined as

The NRMSE can further be expressed as

where

and

The above relation for NRMSE decomposes the total error 
into two main components—bias and variance. The variance 

(1)�
def
=

√
⟨�2⟩

�
�2

O
+ �2

F

.

(2)�2 = �2(1 + |�|2),

(3)
�

def
=

�
D√

�2

O
+ �2

F

,

(4)�
def
=

⟨�⟩
�
D

.

Fig. 3   Map of d03 with markers indicating positions of ASOS sta-
tions used. Black diagonal line indicates a northwest-southeast tran-
sect referenced in later figures
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error is also referred to as pattern error. Normalized bias 
(NBIAS), � , is the bias, ⟨D⟩ , normalized with the standard 
deviation of the difference. It measures the statistical sig-
nificance of the bias in the dataset. A larger NBIAS implies 
a larger statistical bias. Furthermore, arising from the rela-
tionship between NBIAS and NRMSE, it can be shown that 
a NBIAS of less than 0.3 would contribute to less than 5% 
of the NRMSE, suggesting that the total error is dominated 
by pattern error rather than bias error. Normalized Pattern 
Error (NPE), � , scores the variance error between forecast 
and observation. It can be expressed as

where

The normalized error variance, � , does not depend on 
variability in the observation dataset, which is useful for 
evaluating forecast errors and is bound between 0 and 2. � 
can be decomposed further into two other metrics, � and � , 
which assess the contribution of phase and amplitude errors, 
respectively:

where

and

The correlation coefficient, � , is the familiar Pearson correla-
tion coefficient. For � equal to 1, the variances are perfectly 
correlated; while � equal to −1 means that the variances are 
perfectly anti-correlated; and � equal to 0 means that there 
is no correlation.

Variance similarity, � , scores how similar the standard 
deviation of forecast and observations are. The invariant 
property of the metric penalizes equally the under- or over-
prediction of variability. Good variance prediction, when � 
= 1, means that both �

O
 and �

F
 match exactly. However, poor 

prediction, when � = 0, means that �
O
 and �

F
 match poorly.

For an ideal forecast, for which � = 0, the amplitude and 
phase of forecast variability are predicted perfectly; hence, 
there is no pattern error. On the other hand, � = 1 implies 
that the model performs as well as a random forecast. Lastly, 
� = 2 indicates maximum pattern error between forecast and 
observation, when � = 1 and � = −1 . Although the amplitude 

(5)� =
√
�,

(6)�
def
=

�2

D

�2

O
+ �2

F

, 0 ≤ � ≤ 2.

(7)� = 1 − ��,

(8)�
def
=

Trace[cov(�,�)]

�
O
�
F

, −1 ≤ � ≤ 1,

(9)�
def
=

�
O
�
F

1

2
(�2

O
+ �2

F
)
, 0 ≤ � ≤ 1.

of variability is well predicted in such a situation, observa-
tions and forecasts fluctuate completely out-of-phase, lead-
ing to a negative correlation. The goal of a forecast would, 
thus, be to minimize the pattern error, � . This goal can be 
achieved in various ways. For any non-zero � , improving the 
phase error between forecast and observation, hence increas-
ing correlation, � , will minimize � . For a fixed positive � 
score, maximizing � by matching the amplitude of forecast 
variability to observations will lead to minimizing � . Con-
versely, for a negative � score, � will need to be minimized 
to minimize � . In a scenario when either forecast or observa-
tion is nearly constant and the forecast is varying in opposite 
direction with observation, minimizing � (maximizing the 
amplitude error) would result in least overall disagreement 
between forecast and observation. Furthermore, that � is 
decomposed into amplitude and phase errors allows model 
evaluators to distinguish between models with similar � 
scores, enabling them to decide if small phase or amplitude 
errors are better predictors of their models’ performance.

Table 3 summarizes the diagnostic variables used.

4 � Results

The frontal passage is captured in all simulations although 
the timing and the spatial extent of the front differ between 
simulations. Horizontal cross sections at 200  m above 
sea level of the temperature contours and wind barbs of 
ERAMYNN and NARRMYNN at 6-h intervals depict the 
status of the evolving front (Fig. 4). The simulated frontal 
passage in ERAMYNN (top panels) appears to extend fur-
ther offshore compared to NARRMYNN (bottom panels). 
The acceleration of the south-westerly winds at 2100 UTC 
(1600 LST) is represented in both simulations.

At 1500 UTC (1000 LST), no front is observed in d03 
since westerly winds are fairly steady at 10 m s−1 onshore 
and close to coast with stronger south-westerly winds further 
offshore at approximately 15 m s−1 . At 2100 UTC (1600 
LST), the south-westerly winds have intensified. Westerly 
winds onshore can be seen in the north-west of the domain. 
A distinct wind direction shift between the warmer continen-
tal air mass and the cooler maritime air mass can be noted 
in this north-west region. At 0300 UTC (2200 LST), this 
distinct region of wind direction shift, indicative of a frontal 
passage passing through the domain from the north-west to 
the south-west, advects offshore.

Although each of the simulations described in Table 1 
produces a LLJ, as seen in Fig. 5, the resulting LLJs differ by 
their time of onset, duration, maximum wind speed, height 
of the wind speed maximum, and depth of the acceleration 
layer. Many of these differences emerge from different rep-
resentations of the synoptic situation, specifically the timing 
and shape of the frontal passage discussed above.
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We first explore the impact of boundary conditions on 
the simulations. Comparing ERAMYNN and NARRMYNN 
(top-left and bottom-left panels of Fig. 4), the warm frontal 
passage as evidenced by the band of wind direction shifts 
from the northern region of the domain appears to occur 
earlier in ERAMYNN and extends much further offshore 
compared to NARRMYNN. This difference in frontal pas-
sage timing is corroborated by the difference in LLJ initia-
tion timing (top-left and bottom-left panels of Fig. 5). The 
difference in spatial extent of the warm air mass offshore 
is also shown in Fig. 6, where ERAMYNN and ERAYSU 
exhibit warmer air mass aloft the marine boundary layer 
further offshore compared to NARRMYNN and NARRYSU. 
The intensity of the LLJ is also stronger in ERA-based 
simulations compared to NARR-based simulations, with a 
longer period of sustained wind speeds equal to or greater 
than 20 m s−1 at the jet-core (Fig. 5). Jet-core wind speeds 
exceeded 20 m s−1 for approximately 6 h in ERA-based 
simulations, while only for 2 h in NARR-based simulations.

The differences in boundary-layer parameterizations 
(especially MYNN vs YSU) are constrained to near-surface 
regions, below the nose of the jet. The wind shear is stronger 
below 100 m in both MYNN-based simulations compared 
to both YSU-based simulations (Fig. 5). Wind contours 

offshore reflect this behaviour as well, with stronger wind 
speeds close to the surface within the cooler marine bound-
ary layer for the MYNN simulations (Fig. 6). This observa-
tion holds true regardless of the choice of boundary condi-
tion. The role of the PBL scheme appears to influence the 
depth of the marine inversion layer and, hence, the height 
of the LLJ core.

Although increased vertical resolution was expected to 
improve the representation of the LLJ, this was not evi-
dent in the results. Wind shear below 100 m appears to be 
slightly weaker over the LLJ duration in ERAMYNN75 
compared to ERAMYNN (Fig. 5). However, the difference 
between the two MYNN simulations is not as large as the 
difference between MYNN and YSU. The depth of the LLJ 
(jet-core speeds are greater than 20 m s−1 ) is shallower in 
ERAMYNN75 (from 200 to 350 m above mean sea-level) 
compared to ERAMYNN (from 150 to 400 m). On the other 
hand, the heights of the simulated jet-core are at approxi-
mately 250 m for both.

Lastly, in the NOSST simulation where the SST was not 
updated during the period of simulation, the differences 
in simulated LLJ characteristics are less pronounced. The 
wind shear observed in Fig. 5 (top right) within the low-
est 100 m was more similar to ERAMYNN as compared to 

Fig. 4   Temperature contours at 200  m above mean sea level during 
frontal passage in d03. Wind speed and direction indicated by wind 
barbs in m s−1 . Gray area in plots indicate the presence of terrain at 

200 m above mean sea level. The black pointer marks the center of 
the simulation domain. Top panels ERAMYNN, Bottom panels 
NARRMYNN



170	 K. Tay et al.

1 3

ERAYSU and ERAMYNN75. The jet is slightly elevated 
compared to ERAMYNN but this behaviour is also observed 
in ERAYSU and ERAMYNN75. In Fig. 6, the NOSST wind 
contours within the marine boundary layer are also similar 
to ERAMYNN and the height of the marine boundary is 
approximately 200 m, in concert with the other ERA-based 
simulations.

These qualitative observations offer some insight into 
the variability in the LLJ due to configuration options: the 
choice of the boundary condition exerted the greatest influ-
ence on resulting LLJ variability. However, it is still unclear 
as to which configuration simulated the actual conditions 
the best.

4.1 � Comparison to CBLAST‑LOW sounding profile

To decide which configuration options modeled the actual 
conditions best, we utilize in situ measurements of the 
atmospheric conditions during the LLJ event. The pro-
files for wind speed and temperature from the rawinsonde 

sounding shown in Fig. 1 are compared to all six model 
simulations. The profiles are extracted from the clos-
est grid point to the location of the rawinsonde launch 
(41.52◦ N, 70.67◦ W).

Wind speeds are overestimated by all simulations within 
the first 500 m (left panel of Fig. 7). Wind speeds in ERA-
based simulations are closer in magnitude to the sounding 
compared to NARR-based simulations, particularly around 
the height of the jet wind speed maximum. The heights of 
the wind maxima are approximately similar for all simu-
lations, with the NOSST simulation producing the lowest 
height of 220 m and the ERAMYNN75 the highest height 
of 300 m. However, all six simulations overestimate the 
height of the jet core compared to the sounding.

The NARR-based simulations underestimate the tem-
perature below the inversion layer, while also underesti-
mating the strength of the inversion (right panel of Fig. 7). 
Conversely, the ERA-based simulations match the sound-
ing to a good degree, with the exception of the ERAYSU 
simulation. We conclude that the choice of PBL scheme 

Fig. 5   Time–height cross sections of horizontal wind speed at the center of d03 for all six model configurations. Location is marked with a black 
pointer in Fig. 4. Period is from 07 August 2001 1500 UTC (1000 LST) to 08 August 2001 0300 UTC (2200 LST)
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influences the strength and depth of the marine inversion 
layer.

However, the LLJ varies spatially and temporally 
(Banta et al. 2002; Rife et al. 2010); hence, the single 
sounding profile comparison presented in this section does 

Fig. 6   NW-SE transect of d03 for all six model configurations on 08 August 2001 0030 UTC (1930 LST). Colored contours indicate tempera-
ture. Line contours indicate wind speed

Fig. 7   Comparisons between sounding and simulation profiles on 08 August 2001 0030 UTC (1930 LST) at 41.52◦ N, 70.67◦ W. Left panel hori-
zontal wind speed, Right panel temperature
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not provide a robust basis for assessing which simulation 
performs optimally.

4.2 � Comparison to ASOS observations

Due to the scarcity of observational soundings during the 
simulation period, we utilize available ASOS surface obser-
vations to validate the results and to objectively select the 
optimal combination of model schemes.

We first bin the ASOS surface observations for surface 
temperature and wind speed into the closest 00/30 min for 
the LLJ duration of 1500 UTC (1000 LST) to 0300 UTC 
(2200 LST), then we extract the time-series for tempera-
ture at 2 m (T2) and wind speed at 10 m from the closest 
simulation grid cell for each ASOS station in the simulation 
domain, d03. We perform the diagnostic analysis on these 
multi-station pairs. NBIAS for most stations lies outside 
the strip � = ±0.3 for T2 (Fig. 8) and wind speed (Fig. 9), 

Fig. 8   Error decomposition diagram of surface temperature, T2, for 
all model configurations. NRMSE, � , is the radial distance along the 
bottom of the plot. NPE, � =

√
� , is the upward vertical distance 

from the bottom axis and bound by 
√
2 . NBIAS, � , is labeled for each 

radial line. Bold radial lines mark � = ±0.3 . A � between −0.3 and 
+0.3 indicates that NBIAS contributes to less than 5 % of NRMSE. 
Optimal model with � = 0 is marked with a blue circle

Table 2   Comparison of 
boundary condition datasets

ERA NARR​

Model spatial coverage Global reanalysis 2nd generation reanalysis
Downscaled from NCEP global reanalysis
focusing on North America Region

Spatial resolution Spectral T255 ( ∼80 km) 32 km
Data-assimilation method 4D-VAR 3D-VAR
Total vertical levels 60 29
Vertical levels below 850 hpa 12 7
Temporal resolution 6-h intervals for vertical levels 3-h intervals

3-h intervals for surface
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indicating that the contribution of NBIAS to NRMSE is sig-
nificant and the error is not random.

Changing from ERA to NARR as the boundary condi-
tion generally increased NRMSE and NPE for most stations, 
regardless of PBL scheme chosen (Fig. 8). Stations that 

exhibit larger NRMSE and NPE are common within ERA- 
and NARR-based simulations. ERA-based simulations also 
show lower overall NBIAS compared to the NARR-based 
simulations, which show a strong NBIAS of approximately 
−2 for multiple stations.

The effect of changing MYNN to YSU scheme is less 
pronounced compared to the effect of changing boundary 
conditions. Overall, MYNN-based simulations have smaller 
NRMSE due to decreased NBIAS and NPE as compared to 
YSU-based simulations. This holds true regardless of bound-
ary condition used.

For NOSST configuration, the effect of not updating SST 
in ERAMYNN lead to slight increase in NBIAS for KBID, 
KOQU and KPVC stations but decreased NPE for the same 
stations. This shift is expected as these stations are situated 
in grid points designated as water-bodies in WRF. When 
vertical resolution is increased in ERAMYNN75, there 
are marginal changes in error metrics when compared to 
ERAMYNN.

For all simulations, NPE scores are similar in magnitude 
for surface temperatures, indicating comparable success in 
pattern prediction. In addition, all simulations show a cold 
bias for the surface temperature prediction, while NARR-
based simulations exhibit much stronger significant biases 
compared to ERA-based simulations.

Table 3   Summary of acronyms, symbols and their meanings for diag-
nostic suite variables

Acronym/symbol Meaning

RMSE Root-mean-square-error
� Observed variable
� Forecasted variable
� Difference between forecast from observed 

variable
�
O

Standard deviation of observed variable
�
F

Standard deviation of forecasted variable
�
D

Standard deviation of difference
� Normalized root-mean-square error, NRMSE
� Normalized bias, NBIAS
� Normalized pattern error, NPE
� Normalized error variance, ALPHA
� Correlation
� Variance similarity

Fig. 9   Error decomposition diagram of surface wind speed at 10 m, for all model configurations. Symbols and lines as in Fig. 8
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When the simulations are evaluated based on their predic-
tions of surface wind speeds, the contrast between simula-
tions is much more striking (Fig. 9). ERA-based simula-
tions have in general smaller NRMSE and NPE compared 
to NARR-based simulations, regardless of PBL scheme 
used . This observation is similar to that of surface tempera-
ture comparisons. When the PBL scheme is changed from 
MYNN to YSU, the average NRMSE and NPE increase for 
each configuration. However, it is also interesting to note 
that although average NPE increases, the spread of NPE is 
reduced for both YSU-based simulations. Comparing the 
performance of NOSST and ERAMYNN75, the average 
NRMSE and NPE scores are increased slightly, although it 
is difficult to determine a systematic error associated with 
each station.

It is clear for this offshore LLJ that boundary conditions 
introduce a stronger bias compared to those introduced by 
different PBL schemes, SST field, and vertical resolution.

Based on the above metrics, we choose ERAMYNN as 
the best simulation as a baseline case for inter-model com-
parison diagnostics. ERAMYNN offers the best mix of 
NRMSE/NPE/NBIAS scores for both T2 and wind speed 
amongst all the simulations.

4.3 � Inter‑model comparisons

ERAMYNN is chosen as a reference model based on com-
parisons to ASOS surface observations. The purpose of the 
analysis in this section is to use the diagnostic tools to objec-
tively quantify the variability in prediction introduced by 
different model parameters.

NARR-based simulations exhibit a strong cold bias 
mainly over sea surfaces and strong warm bias over land 
surfaces during the LLJ event (Fig. 10). The spatial extent 
and amplitude of NBIAS are larger than in the other model 
configurations.

Furthermore, NARR-based simulations exhibit strong 
error variance in the south-eastern portion of the domain, 
over the sea surface (Fig. 11). For other model configura-
tions, large error variance is confined mainly to regions just 
off the south-eastern coast. The prominent area of large � 
scores in NARR-based simulations over the sea indicates 
an anti-correlation of temperature between ERA-based and 
NARR-based simulations in this region, which implies a 
phase error. This pattern suggests that the time of frontal 
passage that contributed to the LLJ formation was lag-
ging in NARR-based simulations compared to ERA-based 
simulations.

The LLJ itself and its frontal boundary can be seen in 
the northwest-southeast vertical transect of the domain 
(Fig. 12). The biases are similar to those in the horizontal 
domain in that NARR-based simulations exhibit overall 

stronger biases compared to ERA-based simulations with 
cold bias over the sea and warm bias over land surfaces. 
ERAYSU shows stronger warm biases over land com-
pared to other ERA-based simulations.

The � score in the vertical slice of NARR-based simu-
lations shows a spatial pattern of strong normalized error 
variance that resembles a frontal boundary (Fig. 13). The 
strong � score arises from an anti-correlation of tempera-
tures between the NARR and ERA-based simulations and 
manifests over the sea surface, especially near the marine 
surface layer. This behaviour corroborates the � pattern 
seen in the horizontal plane in Fig. 11, where an associated 
phase error contributed to the variability in the simula-
tions. In contrast, for the ERA-based simulations, the error 
variance is mainly confined to the region of sea surface 
near the coast, with little variation in the vertical profile.

Fig. 10   Contour plot of NBIAS for temperature during LLJ event 
between 07 August 2001 1500 UTC (1000 LST) and 08 August 2001 
0300 UTC (2200 LST) at 200 m cross-section. ERAMYNN is chosen 
as the reference dataset for comparison. NARRMYNN refers to com-
paring NARRMYNN to ERAMYNN. Similarly for ERAYSU, NAR-
RYSU, NOSST and ERAMYNN75
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5 � Discussion

The strong � score ( > 1 ) offshore as seen in both Figs. 11 
and 13 arises from an anti-correlation of the temperature 
in that region. This phase error can be explained by the 
dynamics of the frontal passage. NARR-based simulations 
produce a frontal passage that passes through the domain 
later in time and does not have the same spatial extent as 
in the ERA-based simulations.

Examination of the boundary forcing in ERA and 
NARR dataset shows slight variation in pressure fields 
(Fig. 14). A sharper pressure gradient extends across the 
domain in ERA as compared to NARR, and the low pres-
sure system extends further south in NARR. The resultant 
geostrophic wind from the sharper pressure gradient in 
ERA likely increases the frontal advection, thus influenc-
ing the formation of the LLJ at the frontal boundary (Ost-
diek and Blumen 1997).

In contrast to the role of ERA/NARR boundary condi-
tions, the choice of PBL scheme, vertical resolution and 
role of SST updates are less significant for model variability. 
Furthermore, the variability in the ERA-based simulations 
is more apparent in the vertical profile and is mainly mani-
fested as NBIAS.

The choice of PBL scheme, SST and vertical resolution 
mainly influence the height of the marine boundary layer 
and, hence, the height of the LLJ core. The choice of YSU 
scheme over MYNN results in an overall warmer profile over 
land due to enhanced mixing from the land surface that is 
then advected offshore, which is seen in YSU’s warm bias 
above the marine boundary layer. The role of SST is less 
significant than expected. Of course, SST fields are updated 
every 6 h in ERA and in 0.75◦ × 0.75◦ resolution, which may 
be too coarse in space and time to have a significant impact 
on the land–sea temperature contrast.

6 � Conclusion and future work

In this study, we simulate a LLJ event observed during 
CBLAST-LOW 2001 campaign off the New England coast 
and characterize the variability in the LLJ timing, height and 
speed of the LLJ core due to different model configurations. 
The impact from the choice of initial and boundary condi-
tion dataset, PBL scheme, SST update frequency and vertical 
resolution is investigated.

The timing of the LLJ initiation is most dependent on 
the boundary condition dataset (ERA or NARR) (Fig. 5), 
whereas the height of the LLJ core responds to the choice of 
PBL scheme. We evaluate simulations against observations 
to establish an optimal configuration suitable for this case 
study. Comparison with rawinsonde sounding demonstrates 
that wind speeds are overestimated by all models, although 
ERA-based simulations exhibit the smallest bias. The 
height of the wind speed maximum is also overestimated 
by all models. ERA-based simulations are able to model the 
strength and depth of the temperature inversion layer much 
better than NARR-based simulations, which exhibit a strong 
cool bias of -2 ◦ C below the inversion layer. The influence 
of the PBL schemes on wind speed and temperature profile 
manifests differently in ERA compared to NARR. However, 
a single sounding is not suitable for determining the perfor-
mance in modeling a 4D phenomenon. Thus, we utilize sur-
face observations from ASOS stations for further validation.

To objectively determine model performance, we employ 
the diagnostic suite described in Koh et al. (2012). This 
set of diagnostic tools allows us to decompose errors into 
bias and pattern errors, which provides further insights 
into the the possible sources of variability between model 
configurations.

Fig. 11   Contour plot of � for temperature during LLJ event between 
07 August 2001 1500 UTC (1000 LST) and 08 August 2001 0300 
UTC (2200 LST) at 200  m cross-section. ERAMYNN is chosen as 
the reference dataset for comparison. NARRMYNN refers to com-
paring NARRMYNN to ERAMYNN. Similarly for ERAYSU, NAR-
RYSU, NOSST and ERAMYNN75
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From the diagnostics of surface temperature, we find that 
all simulations tend to exhibit a cold bias error, although 
the majority of stations within each simulation have small 
pattern errors. This led us to conclude that models have 
comparable success in variance prediction but the biases 
are likely driven by differences in boundary conditions 
between ERA and NARR. The wind speed diagnostics dem-
onstrate that the NRMSE is overall higher compared to the 
corresponding error in temperature. While the magnitude 
of NBIAS changes between model configurations, stations 
with |𝜇| > 0.3 retain their significant NBIAS. Based on the 
diagnostic metrics derived from ASOS stations, ERAMYNN 
offers the best mix of NRMSE/NBIAS/NPE performance; 
hence, we chose ERAMYNN as the reference model for the 
inter-model comparison study.

In the inter-model study, we compare the performance 
of all other model configurations to ERAMYNN . The 
diagnostic suite is able to help distinguish the type of 

variability between the simulations. The � score high-
lighted the difference between ERA/NARR simulations 
is due to a phase difference of the frontal passage rep-
resentation as dictated by the boundary conditions. The 
variability between different model configurations arises 
mainly from bias errors which can be explained by the 
parameterization of the PBL scheme and the changes in 
vertical resolution.

The diagnostics suite also provides metrics to diagnose 
wind as vector quantity (see for example the application to 
radiosonde observations in Tieo et al. (2018)), although it 
was not performed in this study. The ASOS surface observa-
tions for wind speed and direction are not robust enough to 
decompose the wind into vectors for analysis. In addition, 
the frontal passage was the major synoptic event that heav-
ily influenced the LLJ formation, hence we diagnose the 
(scalar) temperature change which serves as a proxy for the 
LLJ initiation.

Fig. 12   Contour plot of NBIAS 
for temperature during LLJ 
event between 07 August 2001 
1500 UTC (1000 LST) and 08 
August 2001 0300 UTC (220 
LST) along the NW-SE vertical 
transect across domain 3 shown 
in Fig. 3. ERAMYNN is chosen 
as the reference dataset for com-
parison. NARRMYNN refers 
to comparing NARRMYNN 
to ERAMYNN. Similarly for 
ERAYSU, NARRYSU, NOSST 
and ERAMYNN75
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We conclude by noting that there is a keen interest in 
nesting large-eddy simulations (LES) within mesoscale 
models, such as WRF, to improve weather predictions 
(Talbot et al. 2012), as well as for wind energy applica-
tions (Mirocha et al. 2014; Aitken et al. 2014; Mirocha 
et al. 2015). Field campaigns, such as IMPOWR (Colle 
et al. 2016), XPIA (Lundquist et al. 2017) and WFIP2 
(Shaw et al. 2019), funded under the U.S. Department 
of Energy A2e initiative, provide more comprehensive 
measurements in various conditions that will allow further 
validation and improvement of both mesoscale and LES 
models. The performance of nested LES depends on the 
success of the mesoscale domain in simulating real atmos-
pheric conditions. This study outlines a useful method for 
modelers to evaluate different mesoscale model configu-
rations and select a suitable configuration for future LES 
studies.

Fig. 13   Contour plot of � for 
temperature during LLJ event 
between 07 August 2001 1500 
UTC (1000 LST) and 08 August 
2001 0300 UTC (2200 LST) 
along the NW-SE vertical 
transect across domain 3 shown 
in Fig. 3. ERAMYNN is chosen 
as the reference dataset for com-
parison. NARRMYNN refers 
to comparing NARRMYNN 
to ERAMYNN. Similarly for 
ERAYSU, NARRYSU, NOSST 
and ERAMYNN75

Fig. 14   Pressure field at mean sea-level for d03 from ERA and 
NARR reanalysis dataset used as initial and boundary conditions for 
the simulations
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