Skip to main content

Advertisement

Log in

On the interpolation of precipitation data over complex terrain

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

The aim of this paper is to test the ability of the Vienna Enhanced Resolution Analysis Scheme (VERA) to estimate areal precipitation over complex terrain in real-time. The investigation has been performed for two severe flooding episodes in the Alpine region within three domains. The areas of the domains differ by a factor of 10 approximately. An inverse distance weighting (IDW) approach has been used to compare the VERA-fields against the results of a common interpolation scheme. Beside the routinely and in real-time available SYNOP data, the precipitation data from the dense hydrological network have been utilized on a post event basis. Efficiency and root mean square error have been used as statistical measures to characterize the quality of the results. The mean areal precipitation can be well estimated for the two cases in view from the routine available SYNOP network in the largest domain (∼170,000 km2). Additional stations from the hydrological network increase the variance in the field but do not change the mean value substantially. This finding changes for smaller domains when the mean areal precipitation increases by a factor of two by using the dense hydrological network. The two interpolation methods used show quite similar results. It seems that the nature of precipitation (large-scale versus convective) has the strongest impact on the quality of the results. For example, the efficiency drops from 0.84 (for large scale event) to about 0.47 (for convective event).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • B Ahrens (2006) ArticleTitleDistance in spatial interpolation of daily rain gauge data Hydrol Earth Sys Sci 10 IssueID2 197–208

    Google Scholar 

  • B Ahrens K Jasper J Gurtz (2003) ArticleTitleOn ALADIN precipitation modelling and validation in an Alpine watershed Ann Geophys 21 627–637 Occurrence Handle10.5194/angeo-21-627-2003

    Article  Google Scholar 

  • K Arpe E Roencker (1999) ArticleTitleSimulation of the hydrological cycle over Europe: model validation and impacts of increasing greenhouse gases Adv Water Res 23 105–119 Occurrence Handle10.1016/S0309-1708(99)00015-9

    Article  Google Scholar 

  • Bica B, Steinacker R (2005) High resolution analysis over complex terrain by using physical a priori knowledge. Proc., 28th Int. Conf. on Alpine Meteorology (ICAM), Zadar, Hrv Meteor časopis 40: 145–8

  • GP Cressman (1959) ArticleTitleAn operational objective analysis system Mon Wea Rev 87 367–374 Occurrence Handle10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2

    Article  Google Scholar 

  • R Daley (1991) Atmospheric data analyses Cambridge University Press Cambridge 475

    Google Scholar 

  • C Daly RP Neilson DL Phillips (1994) ArticleTitleA statistical-topographic model for mapping climatological precipitation over mountainous terrain J Appl Meteorol 33 140–158 Occurrence Handle10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2

    Article  Google Scholar 

  • C Frei C Schär (1998) ArticleTitleA precipitation climatology of the Alps from high-resolution rain-gauge observation Int J Clim 18 873–900 Occurrence Handle10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9

    Article  Google Scholar 

  • C Frei J Christensen M Déqué D Jacob P Vidale (2003) ArticleTitleDaily precipitation statistics in regional climate models: Evaluation and intercomparisons for the European Alps J Geophys Res 108 4124–4142 Occurrence Handle10.1029/2002JD002287

    Article  Google Scholar 

  • JM Fritsch (1971) ArticleTitleObjective analysis of a two-dimensional data field by the cubic spline method Mon Wea Rev 99 379–386 Occurrence Handle10.1175/1520-0493(1971)099<0379:OAOATD>2.3.CO;2

    Article  Google Scholar 

  • Gandin L (1965) Objective analysis of meteorological fields. Israeli Program for Scientific Translations, 242 pp

  • RB Grayson G Blöschl (Eds) (2000) Spatial patterns in catchment hydrology: observations and modelling Cambridge University Press Cambridge, UK 404

    Google Scholar 

  • C Häberli I Groehn R Steinacker W Pöttschacher M Dorninger (2004) ArticleTitlePerformance of the surface observation network during MAP Meteorol Z 13 IssueID2 109–121 Occurrence Handle10.1127/0941-2948/2004/0013-0109

    Article  Google Scholar 

  • Habersack H (ed) (2004) Analyse der Hochwasserereignisse vom August 2004 – Floodrisk Synthesebericht. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien (in German)

  • M Hagen H-H Schiesser M Dorninger (2000) ArticleTitleMonitoring of mesoscale precipitation systems in the Alps and the northern alpine forelands by radar and rain gauges Meteorol Atmos Phys 72 87–100 Occurrence Handle10.1007/s007030050008

    Article  Google Scholar 

  • MF Hutchinson (1995) ArticleTitleInterpolating mean rainfall using thin plate smoothing splines Int JGIS 9 IssueID4 385–403

    Google Scholar 

  • MF Hutchinson (1998) ArticleTitleInterpolation of rainfall data with thin plate smoothing splines – Part I: Two-dimensional smoothing of data with short range correlation J Geographic Information Decision Analysis 2 IssueID2 139–151

    Google Scholar 

  • Jenne R, Joseph D (1985) Sensitivity experiments with different 1 to 500 km scale networks (NCAR). World Meteorological Organisation, WMO/TD-No. 115

  • A Kann T Haiden (2005) ArticleTitleThe August 2002 flood in Austria: sensitivity of precipitation forecast skill to areal and temporal averaging Meteorol Z 14 IssueID3 369–379 Occurrence Handle10.1127/0941-2948/2005/0042

    Article  Google Scholar 

  • DG Krige (1951) ArticleTitleA statistical approach to some mine valuations problems at the Witwatersrand J Chem Metal Mining Soc South Afr 52 119–138

    Google Scholar 

  • Kubát J, Sercl P, Coufal L (2003) Preliminary summary report on hydrometeorological situation during the August 2002 floods. 4th version, Czech Hydrometeorological Institute

  • A Lanzinger R Steinacker (1990) ArticleTitleA fine mesh analysis scheme designed for mountainous terrain Meteor Atmos Phys 43 213–219 Occurrence Handle10.1007/BF01028124

    Article  Google Scholar 

  • DB Michelson (2004) ArticleTitleSystematic correction of precipitation gauge observations using analyzed meteorological variables J Hydrol 290 161–177 Occurrence Handle10.1016/j.jhydrol.2003.10.005

    Article  Google Scholar 

  • JE Nash JV Sutcliffe (1970) ArticleTitleRiver flow forecasting through conceptual models Part I – A discussion of principles J Hydrol 10 282–290 Occurrence Handle10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • F Rubel M Hantel (1999) ArticleTitleCorrection of daily rain gauge measurements in the Baltic Sea drainage basin Nordic Hydrol 30 191–208

    Google Scholar 

  • Rudolf B, Rapp J (2003) The century flood of the river Elbe in August 2002: synoptic weather development and climatological aspects. Quarterly Report of the Operational WP-Models of the Deutscher Wetterdienst No. 2, 1 Dec 2002 until 29 Feb 2003, Part 1. Business Area Research and Development, Deutscher Wetterdienst, pp. 8–23

  • Rudolf B, Hauschild H, Rueth W, Schneider U (1994) Terrestrial precipitation analysis: operational method and required density of point measurements. In: Desbois M, Desalmand F (eds) NATO ASI Series I: Global environmental change, Vol. 26, pp 173–86

  • J Schmidli C Frei (2005) ArticleTitleTrends of heavy precipitation and wet and dry spells in Switzerland during the 20th century Int J Climatol 25 753–771 Occurrence Handle10.1002/joc.1179

    Article  Google Scholar 

  • S Schneider B Ahrens R Steinacker A Beck (2003) ArticleTitleHochaufgelöste Niederschlagsanalysen. Startprojekt Klimaschutz des Umweltbundesamtes, Endbericht StartClim 13 1–37

    Google Scholar 

  • D Shepard (1968) A two-dimensional interpolation function for irregularly spaced data SeriesTitleProc. 23rd ACM Nat. Conf. Brandon/Systems Press Princeton, NJ 517–524

    Google Scholar 

  • RB Smith (1979) ArticleTitleThe influence of mountains on the atmosphere Adv Geophysics 21 87–230

    Google Scholar 

  • RB Smith I Barstad (2004) ArticleTitleA linear theory of orographic precipitation J Atmos Sci 61 1377–1391 Occurrence Handle10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2

    Article  Google Scholar 

  • G Skok T Vrhovec (2006) ArticleTitleConsiderations for interpolating rain gauge precipitation onto a regular grid Meteorol Z 15 IssueID5 565–573 Occurrence Handle10.1127/0941-2948/2006/0159

    Article  Google Scholar 

  • Steinacker R (2002) Synoptische Beschreibung der Hochwasserkatastrophe vom August 2002. Institut für Meteorologie und Geophysik, Universität Wien, www.univie.ac.at/IMG-Wien/VERA/synsit.html

  • R Steinacker C Häberli W Pöttschacher (2000a) ArticleTitleA transparent method for the analysis and quality evaluation of irregularly distributed and noisy observational data Mon Wea Rev 128 2303–2316 Occurrence Handle10.1175/1520-0493(2000)128<2303:ATMFTA>2.0.CO;2

    Article  Google Scholar 

  • R Steinacker M Dorninger F Wölfelmaier T Krennert (2000b) ArticleTitleAutomatic tracking of convective cells and cell complexes from lightning and radar data Meteorol Atm Phys 72 101–110 Occurrence Handle10.1007/s007030050009

    Article  Google Scholar 

  • R Steinacker M Ratheiser B Bica B Chimani M Dorninger W Gepp C Lotteraner S Schneider S Tschannett (2006) ArticleTitleA mesoscale data analysis and downscaling method over complex terrain Mon Wea Rev 134 2758–2771 Occurrence Handle10.1175/MWR3196.1

    Article  Google Scholar 

  • AH Thiessen (1911) ArticleTitlePrecipitation averages for large areas Mon Wea Rev 39 1082–1084

    Google Scholar 

  • H Volkert (2000) ArticleTitleHeavy precipitation in the alpine region (HERA): Areal rainfall determination for flood warnings through in-situ measurements, remote sensing and atmospheric modelling Meteorol Atmos Phys 72 73–85 Occurrence Handle10.1007/s007030050007

    Article  Google Scholar 

  • G Wahba J Wendelberger (1980) ArticleTitleSome new mathematical methods for variational objective analysis using splines and cross validation Mon Wea Rev 108 1122–1143 Occurrence Handle10.1175/1520-0493(1980)108<1122:SNMMFV>2.0.CO;2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dorninger.

Additional information

Correspondence: Manfred Dorninger, Department of Meteorology and Geophysis, University of Vienna, Althanstrasse 14, 1090 Wien, Austria

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorninger, M., Schneider, S. & Steinacker, R. On the interpolation of precipitation data over complex terrain. Meteorol Atmos Phys 101, 175–189 (2008). https://doi.org/10.1007/s00703-008-0287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-008-0287-6

Keywords

Navigation