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the evidence suggests that levodopa has no significant short-
term effects on speech (Skodda et al. 2010; Cavallieri et al. 
2021). Longitudinal studies (Rusz et al. 2016; Tykalova 
et al. 2015) revealed that levodopa administration in the 
early stages of PD may improve consonant articulation but 
also lead to more dysfluent speech. A recent study (Rusz et 
al. 2021) found variable responses to long-term levodopa 
administration among early PD patients depending on spe-
cific HD phenotypes.

Speech findings after the deep brain stimulation (DBS) 
also vary (Skodda et al. 2014; Baudouin et al. 2023). Previ-
ous research showed that DBS may improve voice tremor 
or voice intensity (Tripoliti et al. 2011; Tsuboi et al. 2014), 
but at the same time, it may worsen speech intelligibility 
(Tripoliti et al. 2011, 2014; Pinto et al. 2014; Tsuboi et al. 
2014). Predictive factors of this deterioration include longer 
disease duration and lower speech intelligibility before sur-
gery (Tripoliti et al. 2014; Pinto et al. 2023). Taken together, 
the effects of pharmacological and surgical interventions 
on HD are limited and varied. Therefore, there is a need to 

Introduction

Approximately 90% of individuals with PD experience 
hypokinetic dysarthria (HD) as the disease progresses 
(Ramig et al. 2008). HD is defined by decreased variability 
in pitch and volume, imprecise articulation, impaired speech 
prosody, and inappropriate silences (Brabenec et al. 2017).

Studies examining the effect of dopaminergic medication 
on HD report mixed results (Brabenec et al. 2017). Most of 
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Introduction: Hypokinetic dysarthria (HD) is a common motor speech symptom of Parkinson’s disease (PD) which does 
not respond well to PD treatments. We investigated short-term effects of transcranial direct current stimulation (tDCS) 
on HD in PD using acoustic analysis of speech. Based on our previous studies we focused on stimulation of the right 
superior temporal gyrus (STG) - an auditory feedback area. Methods: In 14 PD patients with HD, we applied anodal, 
cathodal and sham tDCS to the right STG using a cross-over design. A protocol consisting of speech tasks was performed 
prior to and immediately after each stimulation session. Linear mixed models were used for the evaluation of the effects 
of each stimulation condition on the relative change of acoustic parameters. We also performed a simulation of the mean 
electric field induced by tDCS. Results: Linear mixed model showed a statistically significant effect of the stimulation 
condition on the relative change of median duration of silences longer than 50 ms (p = 0.015). The relative change after 
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tion (mean = 12.8), p = 0.014. We also found a correlation between the mean electric field magnitude in the right STG 
and improvement of articulation precision after anodal tDCS (R = 0.637; p = 0.019). Conclusions: The exploratory study 
showed that anodal tDCS applied over the auditory feedback area may lead to shorter pauses in a speech of PD patients.
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explore other methods that target different aspects of speech 
and could potentially be used also in later stages of PD.

We focused our research on non-invasive brain stimula-
tion methods (NIBS). In PD patients with HD, repetitive 
transcranial magnetic stimulation (rTMS) has been mostly 
applied over a primary orofacial area (OFSM1) with incon-
sistent results (Brabenec et al. 2017). However, previous 
research showed that particularly the right posterior superior 
temporal gyrus (STG), a cortical region involved in audi-
tory speech feedback (Liu et al. 2023), plays an important 
role in modulation of motor aspects of speech production in 
PD patients (New et al. 2015; Klobusiakova et al. 2021). In 
our previous study (Brabenec et al. 2019), we demonstrated 
that a single session of 1 HZ rTMS over the right STG may 
lead to significant improvement of articulation in PD. The 
improvements were significantly higher than improvements 
after 10 Hz stimulation over the left OFSM1, and more pro-
nounced than the stimulation of a control stimulation site 
(Brabenec et al. 2019). A subsequent study also showed 
that multiple sessions of active rTMS over the right STG, 
as compared to sham stimulation, had long-lasting positive 
effects on HD, particularly on perceptual measures of artic-
ulation, prosody, and speech intelligibility. These effects 
were supported by remote stimulation-induced brain plas-
ticity changes within the articulatory networks (Brabenec 
et al. 2021).

In our current project, we aim to develop a program for 
remote treatment of HD. To achieve our goal, we chose 
transcranial direct current stimulation (tDCS) that can be 
used remotely by patients at home together with a concur-
rent Lee Silverman Voice Treatment (LSVT), i.e., the best 
documented therapy for symptoms of HD in PD (Yuan et 
al. 2020). In PD patients, tDCS and other modes of tem-
poral electrical stimulation (tES) have mostly been used to 
modulate gait speed, freezing of gait, limb bradykinesia, 
attention and executive functions, and brain excitability 
(Ni et al. 2022). Studies also provided evidence that home-
based tDCS treatment is feasible and safe for PD patients 
(Dobbs et al. 2018). To our knowledge, research on the 
effects of tDCS/ tES on HD symptoms in PD has not yet 
been conducted.

In this pilot study, we particularly concentrated on identi-
fying a suitable electrode montage and examined immediate 
aftereffects of a single session of tDCS on HD symptoms. 
These acute effects could last up to an hour (Nitsche et al. 
2008; Brunoni et al. 2012). Studies have also shown that 
different current flow directions may result in different after-
effects, and the direction of the excitability shift might be 
divergent, dependent not only on stimulation polarity, but 
also on the specific electrode montage (Nitsche et al. 2008). 
Therefore, we applied both anodal and cathodal tDCS to the 
right STG. We also used SimNIBS (Thielscher et al. 2015) 

software for simulation of the mean electric field induced by 
tDCS. Regarding behavioral outcomes, we focused on the 
acoustic parameters that were responsive to non-invasive 
brain stimulation methods in our previous studies (Brabenec 
et al. 2017, 2019).

Methods

Participants

The inclusion criteria for enrolment into the study were 
as follows: (1) clinically established PD (criteria by Pos-
tuma et al. 2016), (2) right-handedness, (3) presence of 
HD symptoms based on the assessment of a speech thera-
pist and the results of a 3F Test Dysarthric profile total 
score (Kostalova 2013), (4) Czech as their first language. 
Exclusion criteria were (1) alcohol or drug abuse, (2) hal-
lucinations, (3) any diagnosed psychiatric disorder (4) 
dementia, based on the Montreal Cognitive Assessment 
(MoCA) test for dementia, MoCA > 20 (Biundo et al. 
2014), and on a clinician’s interview with a caregiver (5) 
cardio pacemaker or any MRI-incompatible metal in the 
body, (6) epilepsy.

The disease severity was assessed using the Unified Par-
kinson’s Disease Rating Scale (UPDRS), part III (Motor 
Examination) scale. All participants were on a stable dopa-
minergic medication at least 4 weeks prior to baseline 
assessment and during the whole study. The patients were 
tested in the ON medication state without dyskinesias since 
we wanted to modulate HD symptoms in a real-life scenario 
in patients on dopaminergic medication. All patients signed 
an informed consent form that was approved by the local 
ethics committee.

Study design

Participants underwent tDCS over the right posterior 
STG. At the baseline visit, each participant underwent a 
speech assessment using the 3F Test Dysarthric profile 
(Kostalova 2013) (for details see Table S1 in Supple-
mentary materials). Structural MRI scans (T1 MPRAGE) 
were performed for frameless stereotactic navigation of 
the electrode placement. After the baseline visit, each 
participant underwent three stimulation sessions (anodal, 
cathodal, and sham stimulation), separated by one day 
without stimulation. A crossover double-blind design was 
used, and stimulation protocols were randomized across 
subjects and sessions.

A protocol consisting of speech tasks lasted up to 10 min 
and was performed prior to and immediately after each 
stimulation session.
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Acoustic analysis of speech

The speech protocol contained a special reading task (read-
ing a phonetically balanced paragraph containing 150 
words; patients were allowed read the text in advance). HD 
symptoms were assessed using speech parameters of inter-
est based on our previous research.(Brabenec et al. 2019) 
More specifically, we quantified tongue and jaw rigidity 
(relF1SD and relF2SD), monopitch (relF0SD), duration of 
silences (DurMED), and irregular speech rhythms (SPIR) 
(see Table 1 for detailed description of the parameters).

TDCS protocol

Stimulation was applied through a battery-driven device 
(DC-Stimulator Plus, neuroConn GmbH, Germany). Both 
electrodes were positioned over the right and left posterior 
superior temporal gyrus (STG) (MNI coordinates: X = 40, 
Y = − 38, Z = 14; X = − 40, Y = − 38, Z = 14; based on our 
previous research) (Brabenec et al. 2021). We used the T1 
MRI scan-based frameless stereotactic neuronavigation to 
specify the exact location of the electrode center in each 
individual. For anodal stimulation, the anode was placed 
over the right STG and the cathode over the left STG. For 
cathodal stimulation, the cathode was placed over the right 
STG and the anode over the left STG.

A current of 2 mA was delivered using two rubber elec-
trodes (5 × 5 cm) for 20 min. The electrode was held in place 
by a conductive gel. The sham stimulation was applied with 
the same settings, but the stimulator was turned off after 
30 s.

Statistical analysis

We used linear mixed models (LMM) to evaluate the effects 
of each stimulation condition on the relative changes in 
acoustic parameters. The stimulation condition was a fixed 
factor in LMM. Post-hoc pairwise comparisons of estimated 
marginal means were made with the Bonferroni correction. 
Age, gender, and levodopa equivalent dose (LED) were 
used as covariates in all LMMs. Wilcoxon signed-rank tests 
were used to compare the values of these parameters prior 
to and after each stimulation condition. A Spearman cor-
relation analysis was used to assess associations between 
the tDCS-induced changes and the simulation of the electric 
field in right STG. These statistical procedures were per-
formed with IBM SPSS Version 25.0 (IBM Corp., Armonk, 
NY, USA).
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Results

We enrolled 14 right-handed patients with clinically estab-
lished PD. All had mild to moderate HD based on the 
assessment of a speech therapist and the results of a 3F Test 
Dysarthric total score (Kostalova 2013). The maximum 
total score is 90 (normal speech), and the minimum score is 
0. See Table 2 for demographic and clinical data.

Using linear mixed model analysis (LMM) (see Table 3), 
we observed a significant effect of the stimulation condi-
tion on changes in the median duration of silences longer 
than 50 ms (F(2,21.8) = 5.1, p = 0.015), i.e. inappropriate 
silences that negatively impact speech rhythm and speech 
fluency (Brabenec et al. 2017). The relative decreases in 
long pauses after anodal stimulation (mean = -5.9) were 
significantly higher than the changes after the sham stimula-
tion (mean = 12.8), p = 0.014, and non-significantly higher 
than the changes induced by the cathodal stimulation (mean 
= -0.5), p = 0.111 (see Fig. 1). Results of Post-hoc Wilcoxon 
test showed that anodal stimulation induced a significant 
decrease of this parameter (p = 0.047) (see Table 4).

Electric field simulation, as assessed by SimNIBS, (Thiel-
scher et al. 2015) indicated a significant correlation between 
the mean electric field in the right STG and relative changes 
in the standard deviation of the second formant after anodal 
tDCS (R = 0.637; p = 0.019) (see Table 5 and Fig. 2). This 
parameter describes the tongue and jaw movements, and it 
is used for evaluating articulation precision (Brabenec et al. 
2017). However, this parameter did not significantly change 
due to the stimulation.

Electric field simulation in SimNIBS

SimNIBS software (version 4.0.1) was used to calculate the 
electric field induced by tDCS, based on the finite element 
method and individualized tetrahedral head meshes gener-
ated from the structural T1 images of the participant. Elec-
tric field simulations were computed for both cathodal and 
anodal montages. Both electrodes were positioned based 
on the MNI coordinates mentioned previously. The mean 
electric field in the right STG (sphere radius = 10 mm) was 
calculated using a MATLAB script.

Table 2 Demographic and clinical variables
Gender Female/Male 7/7
Age (years) Mean 70.78 (SD 7.84)
Duration of PD (years) Mean 5.03 (SD 4.18)
LED (mg/day) Mean 1014.04 (SD 343.16)
UPDRS III Mean 11.21 (SD 4.24)
3F Test Total score Mean 74.42 (SD 7.41)
MOCA Mean 25.43 (SD 2.14)
M - Mean; SD - Standard deviation; PD - Parkinson’s disease; LED - 
Levodopa equivalent dose; UPDRS III - Unified Parkinson’s disease 
rating scale; MOCA - Montreal Cognitive Assessment

Table 3 Acoustic analysis - Results of linear mixed models
Acoustic parameter F p value
relF1SD 5.136 0.211
relF2SD 2.528 0.104
relF0SD 1.657 0.214
SPIR 0.759 0.481
DurMED 5.135 0.015

Fig. 1 Relative changes in the median duration of silences longer than 50 ms after distinct active and sham tDCS
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Discussion

This exploratory cross-over randomized study found that 
anodal tDCS targeting the auditory feedback area in the 
right hemisphere can significantly improve motor speech 
fluency in PD patients. Moreover, the electric field in this 
region was positively correlated with anodal tDCS-induced 
changes in articulation precision.

These results are in partial accord with the results of our 
rTMS study in which low-frequency stimulation was used. 
Notably, rTMS-induced BOLD signal increases of the right 
STG were associated with changes of the same articulation 
parameter as in the current study (Brabenec et al. 2019). 
Therefore, it seems plausible that both stimulation proto-
cols may lead to similar neural changes, but unlike in our 
rTMS study the effect of anodal tDCS alone was probably 
too weak to translate into significant behavioral improve-
ments in articulation. Improved motor speech fluency was 
not identified in our single session rTMS study; however, 

Table 4 Results of Wilcoxon test; p values
Acoustic 
parameter

Median before 
stimulation

Median after 
stimulation

p 
value

Anodal
tDCS

relF1SD 0.560 0.586 0.463
relF2SD 0.249 0.249 0.650
relF0SD 0.162 0.160 0.087
SPIR 2.011 1.913 0.861
DurMED 0.110 0.110 0.047

Cathodal
tDCS

relF1SD 0.589 0.559 0.064
relF2SD 0.249 0.237 0.039
relF0SD 0.156 0.158 0.311
SPIR 2.031 1.834 0.087
DurMED 0.105 0.100 0.670

Sham
tDCS

relF1SD 0.579 0.557 0.136
relF2SD 0.249 0.256 0.695
relF0SD 0.170 0.166 0.272
SPIR 1.991 1.971 0.638
DurMED 0.110 0.110 0.127

Table 5 Correlations between stimulated electric fields in the right STG and relative changes in acoustic parameters after stimulation
relF1SD relF2SD relF0SD SPIR DurMED

Anodal tDCS Spearman R 0.231 0.637 -0.192 -0.159 -0.450
P value 0.448 0.019 0.529 0.603 0.123

Cathodal tDCS Spearman R 0.165 0.033 0.099 -0.407 0.093
P value 0.590 0.915 0.748 0.168 0.762

Fig. 2 Correlation between the mean electric field in the right STG and relative changes in the standard deviation of the second formant after 
anodal tDCS
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