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Abstract
Alternative splicing is a co-transcriptional process that significantly contributes to the molecular landscape of the cell. It plays 
a multifaceted role in shaping gene transcription, protein diversity, and functional adaptability in response to environmental 
cues. Recent studies demonstrate that drugs of abuse have a profound impact on alternative splicing patterns within differ-
ent brain regions. Drugs like alcohol and cocaine modify the expression of genes responsible for encoding splicing factors, 
thereby influencing alternative splicing of crucial genes involved in neurotransmission, neurogenesis, and neuroinflammation. 
Notable examples of these alterations include alcohol-induced changes in splicing factors such as HSPA6 and PCBP1, as 
well as cocaine's impact on PTBP1 and SRSF11. Beyond the immediate effects of drug exposure, recent research has shed 
light on the role of alternative splicing in contributing to the risk of substance use disorders (SUDs). This is exemplified by 
exon skipping events in key genes like ELOVL7, which can elevate the risk of alcohol use disorder. Lastly, drugs of abuse 
can induce splicing alterations through epigenetic modifications. For example, cocaine exposure leads to alterations in levels 
of trimethylated lysine 36 of histone H3, which exhibits a robust association with alternative splicing and serves as a reli-
able predictor for exon exclusion. In summary, alternative splicing has emerged as a critical player in the complex interplay 
between drugs of abuse and the brain, offering insights into the molecular underpinnings of SUDs.
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Introduction

Alternative splicing is a crucial co-transcriptional process 
that allows for a single gene to produce multiple protein 
isoforms with distinct functional properties. This phenom-
enon plays a significant role in regulating transcription and 
increasing protein diversity in various tissues and cell types. 
Evidence from many species indicates that substance use 
can lead to alternatively spliced transcripts in different brain 

regions, contributing to the complex molecular changes 
associated with the transition to substance misuse. This 
review explores the relationship between alternative splic-
ing and SUDs, shedding light on the molecular mechanisms 
of drug-induced changes in the brain that contribute to 
these disorders. The exploration of drug-induced changes 
in alternative splicing represents a recent and evolving field 
of study. The primary goal of this review is to provide a sum-
mary of the literature in this burgeoning research area and 
highlight new technologies that have expanded our knowl-
edge of mechanisms involved in alternative splicing.

RNA splicing

Most genes in higher eukaryotes are transcribed as pre-mes-
senger RNA (pre-mRNA), which undergoes splicing as it is 
transcribed from the DNA template. The process of RNA 
splicing involves the removal of introns and the ligation of 
exons to form mature mRNA (Wilkinson et al. 2020). RNA 
splicing is enabled by the spliceosome, a megadalton machine 
composed of uridine-rich small nuclear RNA (snRNA: U1, 
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U2, U4, U5, and U6), proteins from the NineTeen complex 
(NTC), the NTC-related complex (NTR), RNA binding pro-
teins (RBPs) and RNA-dependent ATPase/helicases (Wilkin-
son et al. 2020; Ule and Blencowe 2019). RBPs in the spliceo-
some are commonly referred to as splicing factors and play a 
pivotal role in determining the specificity of splice site selec-
tion and the formation of the exon definition complex (the 
complex of RNA binding proteins and regulatory elements 
that define exon boundaries) by recognizing specific sequences 
within the precursor mRNA. These sequences are known 
as splicing enhancers or silencers. RBPs bound to splicing 
enhancers stabilize the assembly of the spliceosome and pro-
mote exon splicing (Wan et al. 2019; Matera and Wang 2014). 
Conversely, when RBPs bind to splicing silencers, they impede 
the assembly of the spliceosome, leading to the inhibition of 
exon definition complex formation.

Alternative splicing involves the use of alternative splice 
sites to join exons in various combinations, thereby gener-
ating multiple transcripts from a single gene. Alternatively, 
spliced transcripts can generate diverse protein isoforms with 
distinct cellular functions through the inclusion of alternative 
functional domains (Sibley et al. 2016). Alternative splic-
ing results in events such as exon skipping, in which an exon 
is excluded in the mature mRNA (Wan et al. 2019), the use 
of mutually exclusive exons, in which only one exon from a 
cluster is included, intron retention, in which the intron is not 
spliced out (Galante et al. 2004), and the use of alternative 
3′ and 5′ splice sites located within an intron or exon (Blen-
cowe 2006). Alternative splicing is a fundamental cellular 
process with dual implications for health, serving as a crucial 
mechanism for normal physiological functions but also play-
ing a role in the pathogenesis of disease. Alternative splicing 
enhances genomic and protein diversity, which is essential for 
tissue-specific functions and overall cellular homeostasis. For 
instance, in the nervous system, alternative splicing ensures 
proper neuronal development, neuronal migration, axon guid-
ance, and synaptogenesis (Zhou et al. 2018; Raj and Blencowe 
2015). However, when alternative splicing becomes dysregu-
lated, it may lead to the production of dysfunctional proteins 
or disrupt vital cellular processes, contributing to the onset 
and progression of neurological and psychiatric diseases (Nik 
and Bowman 2019). Studies indicate that exposure to drugs 
of abuse results in alternatively spliced transcripts in different 
brain regions, potentially contributing to the development of 
SUDs (Van Booven et al. 2021; Xu et al. 2014, 2021; Piltonen 
et al. 2021; Huggett et al. 2022; Li et al. 2023; Krapacher et al. 
2022).

Drug‑induced changes in RNA splicing

In recent years, researchers have been exploring how 
repeated drug exposure can influence splicing patterns and 
how these alterations might contribute to the physiological 
and behavioral effects associated with drug use. Table 1 
lists studies on drug-induced changes in RNA splicing. 
One way in which drugs of abuse can impact RNA splicing 
is by altering the expression of genes encoding splicing 
factors (Van Booven et al. 2021; Carvalho et al. 2023). 
Psychotropic drugs exert their effects by targeting synap-
tic elements, ion channels, and neurotransmitter receptors, 
subsequently modifying intracellular signaling cascades 
(Nestler and Lüscher 2019; Robison and Nestler 2011). 
The activation or inhibition of these specific signaling 
pathways, in turn, leads to the upregulation or downregu-
lation of genes encoding splicing factors. Altered protein 
levels of splicing factors can then exert regulatory control 
over alternative splicing in genes responsible for encoding 
neurotransmitter receptors, transporters, and other essen-
tial proteins involved in synaptic transmission or glial cell 
function, ultimately contributing to drug-related changes 
in neuronal signaling and function, and behavior (Fig. 1).

Alcohol

A growing number of studies have reported that alcohol 
exposure results in differential alternative splicing across 
different species (Lusk et  al. 2022; Saba et  al. 2021). 
For example, Signor and Nuzdin (Signor and Nuzhdin 
2018) demonstrated, using RNA sequencing (RNA-Seq) 
in the fruit fly Drosophila melanogaster, that alterations 
in alternative splicing actively occur and are subject to 
regulation or modulation in response to acute alcohol 
exposure. Another RNA-Seq study in fruit flies found 
that associative training of alcohol exposure with an odor 
cue switched usage of specific isoforms of dopamine 2 
receptor (Dop2R) within Drosophila memory-encoding 
mushroom body neurons (Petruccelli et al. 2018). RNA-
Seq from human fetal cortical tissue exposed to ethanol 
showed significant changes in alternative splicing of genes 
associated with cell death and apoptosis (Kawasawa et al. 
2017). In mice, acute ethanol treatment altered the exon 
usage of genes that significantly overlapped with changes 
observed in mice treated with an NMDAR antagonist, Ro 
25-6981. As alcohol and Ro 25-6981 can both have rapid 
antidepressant effects, these results implicate alternative 
splicing as a potential mechanism for the behavioral effects 
(Wolfe et al. 2019).

Recently, a genome-wide RNA sequencing (RNA-Seq) 
study was conducted in different human postmortem brain 
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regions from individuals diagnosed with alcohol use dis-
order (AUD). The superior frontal cortex, nucleus accum-
bens (NAc), basolateral amygdala and central nucleus of 
the amygdala were examined for differential RNA splic-
ing between control and AUD subjects using bioinformat-
ics tools (Van Booven et al. 2021). The study revealed a 
higher number of differential splicing events compared to 
changes in mRNA levels. Specifically, most of these splic-
ing events resulted from exon skipping and alterations in 
the levels of mutually exclusive exons. To elucidate the 
underlying mechanism behind these differential splicing 
events, the authors first examined whether snRNA tran-
scripts (U1, U4, U6, and U7) were changed in the brains 
of AUD subjects compared with controls, but they did not 
find differences in levels of snRNAs. Next, they measured 

levels of the mRNAs encoding protein components of the 
spliceosome. Notably, they observed a substantial increase 
in the transcript for splicing factor heat shock protein 
family A (Hsp70) member 6 (HSPA6) (Van Booven et al. 
2021). The differentially spliced RNA targets of HSPA6 
in AUD have yet to be identified, but this is an important 
area for future investigation.

In rat hippocampus, withdrawal from chronic alcohol 
exposure in males increased levels of mRNAs for genes 
encoding components of the RNA splicing machinery 
and changed RNA splicing (Carvalho et al. 2023). Spe-
cifically, mRNA levels of the splicing factor poly r(C) 
binding protein 1 (PCBP1) increased in the hippocam-
pus of alcohol-withdrawn rats compared with controls. 
Remarkably, PCBP1 mRNA was also increased in the 

Table 1  Published studies 
reporting drug-induced changes 
in RNA splicing

Drug Organism Brain region References

Alcohol Human Fetal cortical slices Kawasawa et al. (2017)
Alcohol Drosophila melanogaster Mushroom body Petruccelli et al. (2018)
Alcohol Drosophila melanogaster Whole body Signor and Nuzhdin (2018)
Alcohol DBA/2J mice Prefrontal cortex O'Brien et al. (2018)
Alcohol C57BL/6NCrl mice Hippocampus Wolfe et al. (2019)
Alcohol Cell culture Human fetal neuronal culture Donadoni et al. (2019)
Alcohol Rhesus macaques

C57BL/6J mice
Medial prefrontal cortex Bogenpohl et al. (2019)

Alcohol Drosophila melanogaster Mushroom body Petruccelli et al. (2020)
Alcohol Human Superior frontal cortex

Nucleus accumbens
Basolateral amygdala
Central nucleus of the amygdala

Van Booven et al. (2021)

Alcohol Lrap transgenic Wistar rat Whole brain Saba et al. (2021)
Alcohol HXB/BXH Recombinant 

Inbred Rat Panel
Whole brain Lusk et al. (2022)

Alcohol Rhesus macaques
Human

Human:
Superior frontal cortex
Nucleus accumbens
Basolateral amygdala
Central nucleus of the amygdala
Rhesus macaques:
Nucleus accumbens
Central nucleus of the amygdala

Huggett et al. (2023)

Alcohol Human Dorsolateral prefrontal cortex Li et al. (2023)
Alcohol Sprague Dawley rats Dorsal hippocampus Carvalho et al. (2023)
Cocaine C57BL/6J mice Nucleus accumbens Feng et al. (2014)
Cocaine C57BL/6J mice Nucleus accumbens Cates et al. (2018)
Cocaine Gad67Cre mice

Nkx2.1Cre mice
Gpr101Cre mice
Alk4fl/fl mice

Nucleus accumbens Krapacher et al. (2022)

Cocaine C57BL/6J mice Nucleus accumbens Xu et al. (2021)
Morphine C57BL/6J mice Trigeminal ganglia

Nucleus accumbens
Zhang et al. (2021)

Fentanyl
Heroin
Oxycodone

Human Dorsal-lateral prefrontal cortex
Nucleus accumbens
Ventral midbrain

Huggett et al. (2022)
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postmortem hippocampus of human subjects diagnosed 
with AUD compared to control subjects (Carvalho et al. 
2023). RNA immunoprecipitation demonstrated enriched 
PCBP1 binding around an alternative splice site in exon 
4 of the Hapln2 pre-mRNA in both ethanol-withdrawn 
rats and individuals diagnosed with AUD (Carvalho et al. 
2023). Ethanol withdrawal also resulted in increased usage 
of the alternative splice site in Hapln2 exon 4. The use 
of this splice site is predicted to introduce a frameshift 
and stop codon, which could result in the expression of a 
truncated protein or nonsense-mediated decay of the tran-
script. HAPLN2 is an extracellular matrix protein located 
at the nodes of Ranvier in myelinated white matter. Its role 
is to maintain the extracellular diffusion barrier, ensur-
ing proper nerve conduction velocity (Bekku et al. 2010; 
Rasband and Peles 2021). Differential alternative splicing 

of Hapln2 in response to chronic alcohol exposure could 
therefore negatively impact neurotransmission.

One concern with chronic alcohol exposure is neurotoxic-
ity, leading to cognitive deficits and increased risk of devel-
oping neurodegenerative conditions such as Alzheimer's and 
Parkinson's diseases (Visontay et al. 2021). Interestingly, 
alcohol-mediated toxicity appears to be linked with differ-
ent splice variants. In neuroblastoma cells, alcohol exposure 
reduced protein levels of serine/arginine-rich splicing factor 
1 (SRSF1) and shifted the alternative splicing of the MCL1 
antiapoptotic protein towards the shorter isoform (Mcl-1S) 
over the long isoform (Mcl-1L) (Sariyer et al. 2017). The 
longer isoform enhances cell survival by inhibiting apop-
tosis, while the shorter isoform may promote apoptosis in 
response to alcohol exposure. To confirm the role of SRSF1 
downregulation in the suppression of the longer MCL-1L 

Fig. 1  Drug-induced changes in RNA splicing. Illustrations depict 
neuronal signaling in the A absence and B presence of drugs of 
abuse. Generally, drugs of abuse can regulate intracellular neuronal 
signaling cascades by targeting synaptic components, including neu-
rotransmitter receptors and reuptake mechanisms (B-I). The acti-
vation or inhibition of these specific signaling pathways, through 
second messengers and protein kinases, leads to the upregulation or 
downregulation of genes encoding splicing factors (such as PCBP1, 
HSP70, SRSF11, and PTBP1) and chromatin modifiers (such as 

SET2) (B-II). Altered levels of splicing factors and histone modifica-
tions can further impair splicing, for example, by influencing splice 
site selection or altering splice site accessibility (B-III). Ultimately, 
alternatively spliced transcripts are translated into proteins, which 
may or may not be functional, further contributing to drug-induced 
long-lasting changes in behavior (B-IV). In contrast, in the absence of 
drugs of abuse, optimal levels of splicing factors and chromatin modi-
fications (A-III) lead to canonical splicing and the translation of func-
tional proteins (A-IV). Figure created with Biorender.com
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isoform, the authors showed that overexpression of SRSF1 
recovered the expression of MCL-1L, suggesting that eth-
anol-mediated suppression of SRSF1 expression is indeed 
involved in MCL-1L downregulation and may contribute to 
ethanol-induced toxicity (Sariyer et al. 2017).

In a follow-up study, Donadoni et al. (2019) showed that 
neuronal progenitors and immature neurons cultured from 
fetal brain tissue are highly sensitive to the toxic effects of 
ethanol, wherein a significant decrease in the Mcl-1L/Mcl-
1S ratio in a dose- and time-dependent manner was observed 
in comparison to mature neurons (Donadoni et al. 2019). 
Interestingly, ectopic expression of Mcl-1L isoform in neural 
progenitors was able to recover the viability loss and apop-
tosis induced by alcohol exposure (Donadoni et al. 2019). 
Together, these results raise the possibility that alternative 
splicing of Mcl-1 may play a role in the mechanism under-
lying ethanol-induced neurotoxicity (Donadoni et al. 2019; 
Sariyer et al. 2017).

Alterations in the expression of splicing factors may con-
tribute not only to neurotransmission impairment and neuro-
toxicity during alcohol exposure but also to the development 
of ethanol-related behaviors. Repeated alcohol exposure can 
lead to the formation of long-lasting memories associated 
with sensory cues related to intoxication, which can trig-
ger relapse in individuals attempting to quit drinking. In 
Drosophila melanogaster, differential transcript isoforms 
were found in the mushroom body of flies trained with 
odor cues associated with ethanol compared with ethanol 
exposure alone, and with odor cues alone. The importance 
of alternative splicing in ethanol-associated memory was 
demonstrated by the knockdown of spliceosome-associated 
proteins in mushroom body neurons, which prevented the 
formation of ethanol-associated memories (Petruccelli et al. 
2020).

These findings raise questions about whether alcohol-
induced changes in splicing factors might also influence 
other behaviors like craving and negative affective states 
related to alcohol consumption and withdrawal, such as 
anxiety and depression in humans. This prompts a broader 
discussion regarding whether our studies are overly focused 
on transcriptional changes at the expense of examining the 
functional role of RNA splicing on behavior.

Finally, recent studies have highlighted that alternative 
splicing may contribute to the risk of AUD, in addition to 
being altered by alcohol exposure (Li et al. 2023; Lusk et al. 
2022; Huggett et al. 2022). In a recent study, Huggett et al. 
(2023) utilized RNA-Seq data from three brain regions (pre-
frontal cortex, nucleus accumbens, and amygdala) in indi-
viduals diagnosed with AUD (n = 56; ages 40–73; 100% 
‘Caucasian’). They also employed genome-wide associa-
tion data on AUD (n = 435,563, ages 22–90; 100% European 
American) to explore the genetic mechanisms of alterna-
tive splicing in AUD. The findings revealed more than 700 

differentially spliced genes between individuals with AUD 
and controls, along with over 6000 splicing quantitative trait 
loci (sQTL) associated with 170 of the 700 genes (Hug-
gett et al. 2023). Some of these genes are involved in drug 
metabolism (CYP2C19 and CYP2C9), intracellular signaling 
(GRK4, GRK6, HDAC3, PRKACB, and MAPK3K6), and ion 
channels (CACNA1A, CACNA1G, CACNB2, and KCNMA1). 
The authors reported specific SNPs linked to altered splicing 
events and suggested that DNA variants in and around these 
differentially spliced genes could contribute to the heritabil-
ity of AUD.

In a separate study, a Mendelian randomization-based 
approach applied to the Collaborative Studies on the Genet-
ics of Alcoholism (COGA) data identified 27 exon-skipping 
events predicted to influence AUD risk. For instance, the 
skipping of the second exon within the ELOVL fatty acid 
elongase 7 (ELOVL7) gene showed strong associations with 
alcohol dependence and problematic drinking (Li et al. 
2023). This exon was also found to contribute to alterations 
in gray matter volumes across various brain regions, includ-
ing the visual cortex, a region implicated in AUD (Li et al. 
2023). In rats, a predisposition to voluntary alcohol con-
sumption trait in the two-bottle choice paradigm was asso-
ciated with specific isoforms from genes related to brain 
inflammation and the immune response (e.g., Lrap, Ift81, 
and P2rx4) (Lusk et al. 2022). Collectively, these findings 
indicate a genetic contribution of alternative splicing to 
AUD.

Cocaine

Studies have demonstrated that repeated exposure to cocaine 
can lead to changes in RNA splicing and to changes in iso-
form abundance within the nucleus accumbens (Feng et al. 
2014; Cates et al. 2018; Krapacher et al. 2022; Xu et al. 
2021). Through transcriptomics, Cates et al. (2018) demon-
strated increased mRNA levels of E2f3a, an isoform of the 
E2f3 transcription factor, in the mouse nucleus accumbens 
after repeated cocaine injections. Interestingly, when E2F3a 
was overexpressed in the nucleus accumbens, it resulted in 
similar patterns of both mRNA transcript levels and alter-
native splicing events as seen after chronic cocaine treat-
ment. One of the genes that underwent alternative splicing 
in this context was Ptbp1, which encodes the splicing factor 
polypyrimidine tract binding protein 1. Overexpression of 
E2F3a increased the inclusion rate of Ptbp1 exon 8, lead-
ing to the insertion of 26 amino acids into its RNA binding 
domain. Notably, E2F3a DNA binding was enriched at the 
Ptbp1 splice site, suggesting that E2F3a can regulate alterna-
tive splicing, but the exact mechanism is currently unknown. 
These results indicate that PTBP1 may mediate the effects of 
E2F3a on cocaine-induced alternative splicing in the nucleus 
accumbens.
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In addition to its role in alternative splicing during with-
drawal from chronic alcohol exposure (Carvalho et al. 2023), 
PCBP1 also appears to play a role in the alternative splicing 
of the FosB gene in response to cocaine (Krapacher et al. 
2022). Following repeated dopamine receptor stimulation 
mimicking cocaine sensitization in vitro, the activation of 
the dopamine D1 receptor signaling pathway synergized 
with the activin/ALK4/Smad3 pathway, resulting in an 
amplified production of ΔFosB mRNA within medium 
spiny neurons (MSNs) (Krapacher et al. 2022). Notably, 
this enhancement was mediated through the activation of 
PCBP1. When PCBP1 and SMAD3 were simultaneously 
activated by D1 and ALK4 signaling, they translocated into 
the cell nucleus, where they bound to specific sequences 
within exon 4 and intron 4 of the FosB mRNA, as detected 
by the RNA-proximity ligation assay. The disruption of 
either ALK4 or PCBP1 function in MSNs attenuated ΔFosB 
mRNA induction and the nuclear translocation of ΔFosB 
protein (Krapacher et al. 2022). These findings highlight 
the important role of PCBP1 in the alternative splicing of 
ΔFosB mRNA induced by dopamine D1 receptor agonism.

Taking into consideration the large repertoire of RBPs 
and their functional diversity during the splicing process, 
studies elucidating how drugs of abuse can affect the RBP-
RNA regulatory network and how this impacts RNA splic-
ing are essential. In this context, RNA immunoprecipitation 
(RIP) followed by high-throughput sequencing can reveal 
targets to which a particular type of RBP binds. The key 
question is whether exposure to substances such as alcohol, 
cocaine, or opioids alters these interactions. By generating 
a comprehensive pre-RNA binding and functional map of 
RBP changes in the presence and absence of these sub-
stances, we can identify the RBPs and their targets affected 
by drug exposure. Finally, functional studies that identify 
genes whose expression or splicing responds to perturba-
tions in RBPs will generate hypothesis on the role of specific 
splice variants and splicing factors in behavior.

Epigenetic modifications that influence RNA 
splicing

It has now become recognized that since splicing is a co-
transcriptional process, chromatin can significantly impact 
the final splicing outcome (Agirre et al. 2021). The kinetic 
model suggests that chromatin states can slow down RNA 
polymerase II, thus increasing the time during which splic-
ing regulators can bind to nascent RNA (Agirre et al. 2021). 
The recruitment model proposes that chromatin modifica-
tions, such as histone modifications and DNA methylation, 
can modulate the binding of splicing factors to pre-mRNA 
by recruiting chromatin-binding proteins that serve as adap-
tors between the chromatin and the splicing machinery 

(Luco et al. 2011). Drugs of abuse, such as cocaine and 
alcohol alter histone modifications and DNA methylation in 
key brain regions by altering the expression of histone- and 
DNA-modifying enzymes and metabolites required for his-
tone acetylation and DNA methylation (Walker et al. 2015; 
Pandey et al. 2008; Feng et al. 2014; Lev Maor et al. 2015; 
Mews et al. 2019; Gatta et al. 2017). Therefore, another way 
in which drugs of abuse can potentially impact splicing is 
through the changes in epigenetic modifications at specific 
genes (Xu et al. 2021; Kyzar et al. 2019).

Epigenetic modifications can influence alternative splic-
ing through various mechanisms. For instance, DNA meth-
ylation can impact splicing through promoter and intragenic 
methylation, influencing the recruitment of splicing regula-
tors (Maunakea et al. 2013; Yearim et al. 2015). Histone 
modifications, such as acetylation, methylation, and ubiqui-
tination, affect splicing by influencing splice site selection 
(Rahhal and Seto 2019; Hu et al. 2017). Chromatin remod-
eling complexes can directly alter splice site accessibility 
(Casteels et al. 2022). Non-coding RNAs, like microRNAs 
and lncRNAs, can act as splicing regulators or compete with 
splicing factors (Statello et al. 2021; Romero-Barrios et al. 
2018; Stanek 2021). RNA modifications, such as N6-Meth-
yladenosine (m6A), can influence splicing by recruiting 
or repelling splicing factors (Yang et al. 2018; Wang et al. 
2022).

Feng et al. (2014) had previously examined combinations 
of histone modifications associated with transcript variant 
expression and found specific “chromatin signatures” corre-
lated with cocaine-induced alternative splicing in the nucleus 
accumbens (NAc), a crucial brain region associated with 
cocaine-reward behavior. A subsequent study conducted in 
mice reported that cocaine injections induced changes in 
the enrichment of specific histone modifications in relation 
to various types of alternatively spliced exons within the 
nucleus accumbens (NAc) (Hu et al. 2017). Specifically, 
cocaine led to genome-wide differences in the enrichment 
of histone H3 lysine 36 trimethylation (H3K36me3), histone 
H3 lysine 27 trimethylation (H3K27me3), histone H3 lysine 
9 dimethylation (H3K9me2), and histone H3 lysine 4 mono-
methylation (H3K4me1). Notably, H3K36me3 enrichment 
showed the strongest association with alternative splicing 
and served as a robust predictor for exon exclusion (Hu et al. 
2017).

In another study, it was observed that both cocaine 
self-administration and the overexpression of SET2, a his-
tone methyltransferase catalyzing the addition of methyl 
groups to H3K36, resulted in an overlap of alternative 
exons enriched for H3K36me3 and containing the binding 
motif for Srsf11, a serine and arginine-rich splicing factor 
11 (Xu et al. 2021). Interestingly, the authors found that 
Srsf11 mRNA itself underwent differential splicing and 
was enriched in H3K36me3 in mice treated with cocaine or 
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SET2 overexpression. Targeted enrichment of H3K36me3 
at Srsf11 was achieved using a CRISPR-Cas9 method, by 
expressing nuclease-deficient Cas9 fused to the histone 
methyltransferase SET2 (dCas9-SET2) and Srsf11 single 
guide (sg)RNA in the NAc. This replicated the cocaine-
induced alternative splicing patterns and enhanced cocaine-
reward behavior. These findings highlight the intricate rela-
tionship between drug-induced epigenetic modifications, 
their impact on splicing processes, and the subsequent 
effects on drug-related behavior.

While it has been established that alcohol exposure trig-
gers changes in histone modifications and DNA methylation, 
the specific relationship of these epigenetic alterations to 
alcohol-induced alternative splicing remains to be deter-
mined (Pandey et al. 2008; Palmisano and Pandey 2017; 
Berkel and Pandey 2017). Similarly, it is known that chronic 
alcohol consumption alters the RNA methylome (m6A mod-
ification) (Liu and Zhang 2022), however, the contribution 
of this modification to changes in splicing and drug-related 
behavior remains to be investigated. Epigenetic marks can 
crosstalk, modulate transcription factor binding, alter 3D 
chromatin structure, exhibit cell-type-specific patterns, and 
collectively shaping context-dependent alternative splicing. 
Thus, this field of research is critical for understanding the 
complexity of gene regulation and its implications for behav-
iors related to addiction.

Conclusions and future perspectives

Recent studies have highlighted that changes induced by 
drugs of abuse occur not only at the transcriptional level but 
also during RNA splicing. Current literature suggests that 
the impact of drugs of abuse on splicing can vary depend-
ing on factors such as the specific drug used, the duration 
and pattern of use, and individual genetics. Despite the 
progress made, numerous avenues for future exploration 
remain open. While genome-wide studies provide an over-
view of the components of the spliceosome altered due to 
drug exposure, there is a need for a deeper understanding 
of the precise molecular mechanisms through which drugs 
of abuse influence the splicing machinery and splicing fac-
tor expression. Furthermore, it is necessary to elucidate the 
functional consequences of drug-induced splicing changes 
for synaptic function and behavior. This can be achieved 
by knocking down targets via RNA interference (RNAi) or 
CRISPR/Cas9 methods followed by behavioral tests. Ques-
tions arise regarding whether alternative splicing contrib-
utes to drug-seeking behavior or anxiety and depression 
during drug withdrawal. Additionally, there is a need to 
examine the differences between acute and chronic effects 
of drug-induced splicing alterations. Understanding the con-
sequences of drug exposure during developmental periods, 

such as adolescence, on alternative splicing in adulthood is 
essential. Moreover, exploring whether exposure to drugs of 
abuse leads to differential RNA splicing between males and 
females and whether this sex difference influences the risk 
of developing a SUD remains to be investigated.

Methods to study RNA splicing have undergone a trans-
formative evolution. In the past, classical techniques pri-
marily relied on PCR/RT-PCR and gel electrophoresis to 
analyze splicing patterns, often limiting the simultaneous 
examination of multiple splicing events. However, the emer-
gence of high-throughput sequencing technologies, such as 
RNA-Seq, allows for a comprehensive and genome-wide 
analysis of alternative splicing events. Moreover, the recent 
integration of long-read sequencing technologies generates 
full-length transcripts, overcoming the challenges posed by 
short-read technologies in accurately identifying transcript 
isoforms (Leung et al. 2021; Pepke et al. 2009). Chromatin 
immunoprecipitation followed by sequencing (Chip-Seq), 
allows the investigation of the physical interactions between 
splicing regulators and chromatin regions associated with 
specific splicing events (Busch et al. 2020). Finally, RNA 
binding assays, such as RNA immunoprecipitation (RIP) 
or cross-linking immunoprecipitation (CLIP), followed by 
sequencing, allow researchers to identify the RNA mole-
cules directly bound by splicing regulators at the whole tran-
scriptome level. We predict that our knowledge of alternative 
splicing changes induced by drug exposure, and the behav-
ioral consequences of these changes, will rapidly increase 
in the next several years.
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