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Abstract

Since the description of some peculiar symptoms by James Parkinson in 1817, attempts have been made to define its cause or
at least to enlighten the pathology of “Parkinson’s disease (PD).” The vast majority of PD subtypes and most cases of sporadic
PD share Lewy bodies (LBs) as a characteristic pathological hallmark. However, the processes underlying LBs generation
and its causal triggers are still unknown. a-Synuclein (a-syn, encoded by the SNCA gene) is a major component of LBs, and
SNCA missense mutations or duplications/triplications are causal for rare hereditary forms of PD. Thus, it is imperative to
study a-syn protein and its pathology, including oligomerization, fibril formation, aggregation, and spreading mechanisms.
Furthermore, there are synergistic effects in the underlying pathogenic mechanisms of PD, and multiple factors—contributing
with different ratios—appear to be causal pathological triggers and progression factors. For example, oxidative stress, reduced
antioxidative capacity, mitochondrial dysfunction, and proteasomal disturbances have each been suggested to be causal for
a-syn fibril formation and aggregation and to contribute to neuroinflammation and neural cell death. Aging is also a major
risk factor for PD. Iron, as well as neuromelanin (NM), show age-dependent increases, and iron is significantly increased in
the Parkinsonian substantia nigra (SN). Iron-induced pathological mechanisms include changes of the molecular structure
of a-syn. However, more recent PD research demonstrates that (i) LBs are detected not only in dopaminergic neurons and
glia but in various neurotransmitter systems, (ii) sympathetic nerve fibres degenerate first, and (iii) at least in “brain-first”
cases dopaminergic deficiency is evident before pathology induced by iron and NM. These recent findings support that the
a-syn/LBs pathology as well as iron- and NM-induced pathology in “brain-first” cases are important facts of PD pathol-
ogy and via their interaction potentiate the disease process in the SN. As such, multifactorial toxic processes posted on a
personal genetic risk are assumed to be causal for the neurodegenerative processes underlying PD. Differences in ratios of
multiple factors and their spatiotemporal development, and the fact that common triggers of PD are hard to identify, imply
the existence of several phenotypical subtypes, which is supported by arguments from both the “bottom-up/dual-hit” and
“brain-first” models. Therapeutic strategies are necessary to avoid single initiation triggers leading to PD.
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Parkinson’s disease and its major
pathological hallmarks

PD is the second most common neurodegenerative dis-
order after Alzheimer’s disease (Poewe et al. 2017) and
is a debilitating neurological disease. It is chronic and
categorized by the progressive loss of particular motor
functions exhibiting symptoms such as resting tremor,
rigidity, bradykinesia, akinesia, gait and posture disorders,
risk of falling, problems with fine motoric skills (e.g. writ-
ing, facial expression), coupled with non-motor features,
including depression, REM-sleep disorder, problems with
smell and taste and gastrointestinal disturbances (Obeso
et al. 2010; Coelho and Ferreira 2012). These hallmark
symptoms develop in stages, as recognized by Braak et al.
(2003, 2004). Experimental and neuropathological studies
demonstrate that the pathology either is triggered in the
gut (Braak et al. 2003) or in the brain (Engelender and
Isacson 2017; Foffani and Obeso 2018; Borghammer and
Van Den Berge 2019). Alarmingly, several studies have
reported an upward trend in the incidence of neurologi-
cal diseases such as PD in many countries over the past
30 years (GBD Collaborators 2016; Feigin et al. 2019;
Ou et al. 2021), thereby highlighting the urgent need to
diminish this trend. This presumably could be achieved
by understanding the pathogenesis of PD. However, the
etiology of the illness remains an enigma. In addition,
these elevations in prevalence are further compounded by
the aging tendency of the population, because aging is a
chief risk factor for PD (Tanner et al. 1996). Interestingly,
studies conducted in non-human primates (Collier et al.
2017) have demonstrated an elevation in indicators of mid-
brain dopamine neuron degeneration with advancing age,
including inflammation, mitochondrial dysfunction, oxida-
tive/nitrative destruction, and dysfunctional protein lyso-
somal system. Furthermore, Collier et al. (2017) reported
that these parameters in non-human primates were espe-
cially marked in the ventral tier of the SN pars compacta
(pc), a region that exhibits a predilection to degenera-
tion in PD in humans (Gibb and Lees 1991; Fearnley and
Lees 1991). Extrapolation of these findings suggests that
increasing age—accompanied by age-related increases of
iron and NM in the SNpc (Zecca et al. 2001)—produces
a precondition of the disease and that the illness may
manifest in an early PD state if confronted with specific
trigger factors (Kouli et al. 2018). These trigger factors
may include genetic predisposition, environmental influ-
ences (e.g. exposure to metals, smoking, carbon monox-
ide or pesticides), pathogens (bacteria, viruses) and other
unknown culprits (Forsyth et al. 2011; Perez-Lloret et al.
2014; Brenner 2013; Javed et al. 2019; Bekkering et al.
2013; Yamamoto 2013; Reichmann et al. 2022; Ball et al.
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2019; Ascherio and Schwarzschild 2016). Still, the precise
pathomechanisms underlying the interactions of these fac-
tors are unclear. For example, the number of life events
was not different between recent onset parkinsonism, PD
patients, and healthy controls (Paez-Maggio et al. 2023).
Also, there is evidence that smoking may even be protec-
tive and/or of beneficial symptomatic efficacy in PD due to
nicotinic receptor stimulation (Quik et al. 2009). Despite
the advances in discovering many cytotoxic mechanisms
and other related factors that may be operating, the precise
etiology of the disorder remains intangible. However, it is
highly likely to be multifactorial (Pang et al. 2019).

The pathological hallmarks of PD exhibited in the SNpc
include neuroinflammation, and the destruction of mainly
pigmented dopaminergic neurons coupled with the develop-
ment and appearance of intra-cytoplasmic inclusions called
Lewy bodies (LBs) that are primarily a consequence of
aggregates of misfolded a-synuclein (a-syn). These aggre-
gates, alone or in combination, may interfere with the central
nervous system’s processing (Kouli et al. 2018).

Table 1 lists several factors believed to promote PD. None
of them is always associated with (mild stages of) PD or nec-
essarily leading to PD, supporting the multifactorial concept.

The compensatory phase
of neurodegeneration in early PD

The destruction of the dopaminergic neurons in the SNpc
depletes striatal dopamine. This contributes to the cardinal
motor symptoms in PD. A loss of 60% or more of the NM-
containing dopaminergic neurons is warranted for the mani-
festation of the motor dysfunction characteristic of the dis-
ease (Bernheimer et al. 1973; Hirsch et al. 1988). However,
more recent data suggest a reduction of only 30% of dopa-
minergic neurons in the SNpc but about a 60% loss of its
dendrites (Cheng et al. 2010). Regardless of the precise per-
centages, the fact that the brain copes and adapts to maintain
physiological function despite the progressive loss of dopa-
minergic cells and dendrites for a long time is a phenomenal
demonstration of brain plasticity (Riederer and Wuketich
1976; Mahlknecht et al. 2015; Amoroso et al. 2018). Deplet-
ing dopamine levels in the basal ganglia in PD prompts many
adaptive alterations at molecular, cellular, and synaptic lev-
els including an increased dopamine turnover—as indicated
by the ratios of DOPAC/dopamine and HVA/dopamine (Pifl
et al. 2014)—which serve in stabilizing network tasks (Tur-
rigiano 2012). These mechanisms illustrate the operation of
homeostatic plasticity in response to a change in the internal
basal ganglia environment, particularly in the striatum and
the subthalamic nucleus, respectively, the motor loop. Spa-
tiotemporal changes in dopamine, NM, and iron demonstrate
that striatal dopaminergic denervation occurs first, followed
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Table 1 Factors in the pathology of Parkinson's disease

Factor Association with PD Reference examples

Age Sporadic PD is mostly restricted to the elderly, but only a few percent of the elderly get Moisan et al. (2016)
PD

Gender PD is ~ 1.5 X more prevalent in men than women Moisan et al. (2016)

Heavy metals/toxins

Lewy bodies (LB)

Neuromelanin (NM)

Iron

Oxidative stress

Inflammation

Subjects with a history of high exposure to manganese and hydrocarbon solvent had a
significantly younger onset age (mean age: 50.33 years) than unexposed subjects (mean
age: 60.45 years)

Striatal dopamine activity was lower in three of four individuals exposed to 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) than in seven controls

In 81% of 132 patients diagnosed antemortem with PD a-synucleinopathy was observed
in the brain

About 10% of the unimpaired elderly population display a-S-positive LBs to some extent
in the SN

NM concentrations in the SN and LC are higher in the elderly

In PD, NM-positive neurons preferentially die, but: (i) also NM-negative neurons die, (ii)
not all neurons with high NM concentration die, and (iii) there is conflicting informa-
tion as to whether NM concentrations per cell are increased in PD

Iron concentrations in the SN increase in elderly people

Iron concentrations in the SN of patients with mild PD are not significantly different from
age-matched controls; however, iron concentrations in the SN of patients with severe
PD are, on average, much higher than in age-matched controls

Glutathione concentrations in the brain, on average, decrease markedly with increas-
ing PD severity, and even in mild PD cases there is a significant decrease compared to
controls

Gluthatione concentrations in melanized nigral neurons on average, but not in all cases,
are much lower in PD patients than in controls

In the blood serum of PD patients compared to age-matched controls, interleukin-6 con-
centrations on average, but not always, are higher

In the caudate of PD patients, on average, the concentrations of interleukin-1f and inter-

Ratner et al. (2014)

Calne et al. (1985)
Dickson (2018)
Parkkinen et al. (2005)

Zecca et al. (2004)

Mann and Yates (1983)
Kastner et al. (1992)

Halliday et al. (2005)
Carballo-Carbajal et al. (2019)
Zecca et al. (2004)

Riederer et al. (1989)

Guan et al. (2017)

Riederer et al. (1989)

Pearce et al. (1997)
Dobbs et al. (1999)

Mogi et al. (1994a, b)

leukin-6 are much higher than in controls

by abnormal iron metabolism and finally NM changes in the
SNpc (Biondetti et al. 2020). In addition, it has been sug-
gested that the progression of the pathology of neurodegen-
eration adopts a time-linked sequence of anatomic distribu-
tion (Alafuzoff and Hartikainen 2017; Luk and Lee 2014).
The importance of spatiotemporal developments in PD is
demonstrated also in the development of gait disturbances
(Doyle et al. 2022).

The loss of dopamine elicits a disbalance of the direct path-
way and the indirect pathway in PD (Alexander et al. 1986;
Ikemoto et al. 2015; Fieblinger et al. 2014). Therefore, the
depletion of dopamine rewires the striatal circuit, increasing
the GABAergic inhibitory action and reducing the synapses
of the cortico-striatal pathway (Shen and Johnson 2005a, b).
Indeed, PET and fMRI studies have endorsed the correlation
between depleted synaptic dopamine and the reorganization of
the dopamine processes in the brain (Rodriguez-Sabate et al.
2019). As a consequence, upregulation of the postsynaptic
dopamine D2 receptors in the striatum was reported to be the
highest in the contralateral side to the predominant motor fea-
tures in unmedicated early PD (Kaasinen et al. 2000, 2021).

Interestingly, studies using PET and single-photon emission
computed tomography have shown that the increase in stri-
atal D2 receptors is selective to PD and not observed in other
basal ganglia disorders that share a marked loss of dopamine,
such as multiple systems atrophy and progressive supranuclear
palsy (Kaasinen et al. 2021).

Subsequently, after an average of 4.4 years after the onset
of motor symptoms, this D2 upregulation is reversed and
is directly related to treatment with dopaminergic-related
drugs (Kaasinen et al. 2021; Thobois et al. 2004). In con-
trast, D1-receptors densities are not changed compared to
controls (Cropley et al. 2008; Shinotoh et al. 1993; Rinne
et al. 1991).

Lewy bodies and their staged appearance
in PD

LBs are inclusion bodies—aggregates—of which the major
component is a-syn protein oligomerized into fibril for-
mations. The toxic potential of LBs is demonstrated by
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experimental studies showing that LB extracts from PD
brains obtained post mortem trigger a-syn pathology and
neurodegeneration in mice and monkeys, which naturally
do not show symptomology of PD (Recasens et al. 2014).
According to Braak et al. (2003, 2004), in the PD pathology
stages 1 and 2, which are pre-symptomatic, LBs are gener-
ated in the gut and spread via the vagus nerve/dorsal motor
nucleus of the vagus to the brain. From stages 3 and 4, such
observations are also made for the locus coeruleus (LC), the
raphe nuclei and the SNpc, and in stages 5 and 6, cortical
and limbic areas additionally get involved. Thus, according
to this hypothesis, PD neuropathology does not start in the
SNpc itself, despite that SNpc pathology is the dominant
immediate cause of many PD symptoms.

The vagus nerve is the major direct route for the “gut-
brain-axis” through which the gut and brain communicate
and affect each other (Menozzi et al. 2021). Because the first
PD symptoms usually arise in the dorsal motor nucleus of
the vagus, and because in PD patients LBs were found in the
Auerbach's and Meissner's plexuses in the enteric nervous
system (Wakabayashi et al. 1988), it was hypothesized that
PD is initiated by stressors from the enteric system (Braak
et al. 2004; Przuntek et al. 2004; Forsyth et al. 2011). It
has been suggested that peripheral immune cells such as
T lymphocytes infiltrate the brain, gather in the SN, and
release pro-inflammatory cytokines that induce dopaminer-
gic cell death (MacMahon Copas et al. 2021). Indeed, gas-
trointestinal disturbance and especially constipation are a
significant non-motor complaint in many patients with PD
(Berg et al. 2015; Camerucci et al. 2022). Gastrointestinal
disturbance is suggested for the initiation of a PD subgroup,
whereby inflammatory agents [such as lipopolysaccharides
(LPS)] produced by some gut pathogen may be a trigger that
induces misfolding of a-syn and its resulting aggregation in
the enteric nervous system. Subsequently, these inclusions

Table 2 Hypotheses underlying the onset of Parkinson’s disease

may be transported through the gut—brain axis via the vagus
nerve to the dorsal motor nucleus of the vagus and the brain
regions, either through direct microbe mediation or indi-
rectly via microbe interaction with enteroendocrine cells and
gesturing afferent neurons (Bellono et al. 2017) (Table 2).

Animal studies also support the transportation role played
by the vagus nerve, as demonstrated by the absence of spread
of a-syn fibrils from the gut to the brain after the adminis-
tration of a-syn fibrils into the gut muscularis of mice that
had undergone truncal vagotomy (Kim et al. 2019). The
“communication” between resident gut flora and the brain,
also called the microbiome—gut-brain axis, is vital for its
neural development and functioning (Klann et al. 2022).
This has been demonstrated by Pan-Montojo et al. (2010)
showing that the mitochondrial toxin rotenone injected into
the gastro-intestinal tract of mice induced a-syn dependent
pathology and spread to the brain. Vagotomy completely
interrupted this a-syn spreading.

It has been suggested that a “leaky” intestinal epithelial
barrier of the colon in PD patients may allow pathogenic
components from the gut lumen or their induced pro-inflam-
matory cytokines to directly stimulate a-syn aggregation in
the enteric nervous system (Van Ijzendoorn and Derkinderen
2019).

However, recent evidences indicate several possible
routes of PD pathology. Besides (I) the “bottom-up hypoth-
esis” (the gut-brain axis hypothesis) created by Braak et al.
(2003), (IT) Braak realized that pathology could be triggered
also via the olfactory system. He called this the “dual-hit-
hypothesis” (Braak et al. 2003). The bottom-up-hypothe-
sis has been challenged soon after its publication and the
major argument was that only for about 50% of PD patients
neuropathological and clinical examinations accounted for
this hypothesis (Parkkinen et al. 2008; Attems and Jell-
inger 2008). Criticism on Braak’s bottom-up-hypothesis, as

Model Characteristics

Reference examples

Brain-first
under debate:

Cortico-striatal excitation stress causing retrograde striato-

nigral degeneration

“Threshold-hypothesis”, suggesting various factors adding

up to cause pathology in the brain
Pathology may show laterality
Bottom-up/body-first Pathology is triggered in the gut

Spreads via vagus nerve/dorsal motor nucleus of the vagus

to the brain
Symmetrical brain pathology
Dual-hit

PD pathology may be triggered through the olfactory sys-
tem and the motor nucleus of the vagus at the same time

Pathology is triggered in the brain, several mechanisms are

Foffani and Obeso (2018) and Cheng et al. (2010)
Engelender and Isacson (2017)

Riederer et al. (2018)

Braak et al. (2003), Przuntek et al. (2004) and Forsyth et al.
(2011)

Borghammer and Van Den Berge (2019)

Braak et al. (2003), Braak et al. (2006) (https://doi.org/
10.1007/s00441-004-0956-9) and Hawkes et al. (2007)
(https://doi.org/10.1111/j.1365-2990.2007.00874.x)
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summarized by Rietdijk et al. (2017), is several-fold: (1)
Braak and coworkers developed this hypothesis only by
detecting LBs in the gut, the dorsal motor nucleus of the
vagus as well as a number of brain regions without proving
a link between the observations; (2) these authors did not
correlate their findings to clinical protocols; (3) they did not
follow the cases that did not show LBs in the vagus nerve but
did show LBs in various brain areas (Attems and Jellinger
2008; Parkkinen et al. 2008; Kalaitzakis et al. 2008; Jellinger
2003, 2019a; Zaccai et al. 2008; Beach et al. 2009); (4) there
is no correlation between the severity of LBs pathology in
the dorsal motor nucleus of the vagus and in limbic and
neocortical brain areas (Kingsburg et al. 2010), while LBs
pathology in the dorsal motor nucleus of the vagus does
not correlate to olfactory dysfunctions and 27-33% of PD
patients did not show LBs pathology in the peripheral nerv-
ous system (Lebouvier et al. 2011); (5) LBs pathology has
been detected in the olfactory system only in the early phase
of PD (Beach et al. 2009), thus not supporting the dual-
hit-hypothesis; (6) a number of studies point to the view
that LBs pathology occurs in the brain, including the SN
but not in the dorsal motor nucleus of the vagus (Jellinger
2003; Parkkinen et al. 2003; Orimo et al. 2007); (7) more
and more evidences suggest that the cardiac (NM-free) sym-
pathetic nerves are already affected in the early stages of
PD (Orimo et al. 2007; Borghammer and Van Den Berge
2019), findings which have not been addressed by Braak
et al. (2003). The review by Rietdijk et al. (2017) reflects
all this in detail and is an elegant study exploring additional
hypotheses, which nowadays concentrate on a “brain-first”
model of LBs pathology (Borghammer and Van Den Berge
2019) (Table 2).

Indeed, several hypotheses (III) have been put forward
to explain these discrepant views. (Illa) Foffani and Obeso
(2018) postulate a cortico-striatal excitation stress to be
responsible for a retrograde striato-nigral degeneration.
Support for this is given by data from Cheng et al. (2010),
showing that in early PD only 30% of nigral dopaminer-
gic neurons are degenerated but about 60% of its dendrites.
(IIIb) Another causal pathology is the “threshold-hypothe-
sis” put forward by Engelender and Isacson (2017) favouring
a variety of vulnerability factors, of which the sum trigger
PD pathology starting in the brain. (Illc) Borghammer and
Van Den Berge (2019) claim a PNS-first subtype and a CNS-
first subtype of PD. While the former is characterized by a
marked autonomic damage before the involvement of the
dopaminergic system, the latter is characterized by nigro-
striatal dopaminergic dysfunction prior to involvement of the
autonomic PNS (Borghammer and Van Den Berge 2019);
imaging studies of REM-sleep disorder positive and nega-
tive PD patients as well as histological studies support this.

In summary, there is recent evidence to support the idea
that various routes of pathology exist, which may be causal

for various subtypes of PD. However, the variety of hypoth-
eses are also indicative for (1) an insufficiency of experi-
mental as well as human post-mortem studies, (2) a lack of
knowledge regarding the PD patients’ genetic and environ-
mental background and (3) a lack of knowledge regarding
the interactions of the patients metabolic, immunological
and genetic factors that may correspond to a vulnerability
level causal for PD.

Familial PD mutations agree well
with observations of protein aggregation
and oxidative stress in sporadic PD

For helping to understand the causes of sporadic PD, those
of familial PD should be studied. Familial PD is character-
ized by genetic mutations that increase the chance of PD,
and can also affect young people. There are about 20 dif-
ferent of these mutations known, and although they cause
different kinds of cellular stress some general biochemical
principles are recognizable.

The mechanism(s) underlying the appearance of the
a-syn inclusions could be related to an overexpression due
to some genetic defect or/and a malfunction in its protein
breakdown system and misfolding and accumulation of
a-syn may be linked to some defect in its gene, SNCA. In
1997, the first pathogenic SNCA mutation was reported in
PD families (Polymeropoulos et al. 1997). Subsequently, the
same mutation was found in familial PD patients mainly of
Greek descent (Athanassiadou et al. 1999). Over the years
that followed, several other mutations in the SNCA gene have
been identified, including A53V, AS3E, A30P, A30G, E46K,
G51D and H50Q (Zarranz et al. 2004; Lesage et al. 2013;
Pasanen et al. 2014; Liu et al. 2021). Moreover, mutations in
SNCA and other PARK genes (including LRRK2 and VPS35)
have been linked to autosomal dominant PD (Chelban et al.
2018). It could be undeniably concluded that point mutations
in the SNCA gene promote early-onset PD characterized by
a rapid progression and marked cognitive deterioration (Li
et al. 2001; Gialluisi et al. 2021).

It has been suggested that overexpression of SNCA/a-syn
may impact microRNA expression (Recasens et al. 2016).
This may induce the neuro-destruction cycle characteristic
of PD since microRNA can influence the accumulation of
toxic proteins, which can affect neuronal survival (Eacker
et al. 2009). However, the notion is important that only some
of the carriers of PD susceptibility alleles do get the disease
(Pankratz and Foroud 2007; Langmyhr et al. 2021).

Alternatively, some dysfunction in a-syn degradative pro-
teolytic mechanisms may ascribe to protein accumulation.
It has been suggested that the mutated protein serves a role
in autophagy and the destruction of neurons. Thus, it is con-
ceivable that genetic defects in the SNCA gene may ascribe
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to misfolding, and in addition, the abnormal protein may
impede its breakdown by affecting destructive autophagic
mechanisms. Indeed, oxidation of the methionine compo-
nent of aggregated a-syn by agents such as hydrogen per-
oxide leads to the inhibition of its proteasomal destruction
(Alvarez-Castelao et al. 2014) and lysosomal dysfunction
(Thara et al. 2012; Koh et al. 2019).

Among the mutations that cause increased risks for PD
development, some directly promote abnormal protein
aggregation, such as for example mutations or copy number
increases in the a-syn gene SNCA and mutations in the ubiq-
uitin ligase Parkin gene PARK?2 (Kitada et al. 1998); other
mutations directly enhance oxidative stress or interfere with
the proper functioning of mitochondria, such as for example
mutations in the antioxidant DJ-1 gene PARK7 (Chen et al.
2022; Di Nottia et al. 2017; McCoy and Cookson 2011) and
the kinase PINK1 gene PINKI (Barodia et al. 2017; Ge et al.
2020; Gautier et al. 2008). This agrees well with observa-
tions for sporadic PD, as it was found to be associated with
mitochondrial deficits (Mizuno et al. 1989; Reichmann and
Riederer 1989; Shapira et al. 1989). The reasons for a loss
of respiratory chain activity is not known but might be due
to endogenous neurotoxins, like aldehydes or environmental
toxins like MPTP (1-Methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridin; Langston 2017), TaClo (1-trichloromethyl-1,2,3,4-
tetrahydro-beta-carboline; Sontag et al. 1995; Riederer et al.
2002), pesticides etc., overexpression of a-syn (Riederer
et al. 2019 for review), iron accumulation in the SN lead-
ing to oxidative stress (Riederer et al. 2021 for review),
and loss of antioxidative capacity by loss of antioxidative
molecules such as glutathione or even heat shock proteins
(Riederer et al. 1985; Sian et al. 1994; Dexter et al. 1994;
Gruenblatt et al. 2004; Mena et al. 2015). In addition, the
transcriptional co-activator PGC-1a has been found to con-
trol the mitochondrial function of nigral neurons accumu-
lating a-syn, which may be critical for gender-dependent
vulnerability to PD (Cirion et al. 2015). Furthermore, sev-
eral types of age-, disease-, or lifestyle-related toxins can
stimulate these processes (Forsyth et al. 2011; Perez-Lloret
et al. 2014; Brenner et al. 2013; Javed et al. 2019; Bekkering
et al. 2013; Yamamoto et al. 2013; Reichmann et al. 2022;
Ball et al. 2019). Moreover, oxidative stress—through oxi-
dative deamination—Ileads to an increase in free aldehydes,
which in combination with a PD-characteristic decrease in
aldehyde dehydrogenase 1A1 leads to free aldehydes chang-
ing the structure of a-syn and thereby contributing to LBs
formation (Molochnikow et al. 2012; Michel et al. 2014).
Indeed, DOPAL has been found to be even more toxic than
dopamine in experimental designs (Lamensdorf et al. 2000;
Goldstein 2021). Often considered the most critical for PD
development, increased levels of free iron, derived from out-
side the cell and increasing in the brain with age (Markes-
bery et al. 1984), enhance the production of reactive oxygen
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species (ROS). These ROS in turn then can change a-syn
structure (Xiao et al. 2018; Li et al. 2001; Ruf et al. 2019).

In summary, both familial and sporadic PD involve oxida-
tive stress and/or protein aggregation as the likely causes,
and these two pathological processes promote each other.
The third player that can join this pathological cascade
is inflammation, with a role for glial cells (Bernaus et al.
2020; Kumar et al. 2012; Hashioka et al. 2021). Although
the different possible PD causes do promote each other, their
relative contributions differ per case and can help explain
the large differences in PD pathologies and symptoms from
patient to patient. For example, in some types of familial
and non-familial PD, LBs are not commonly detected (Sch-
neider and Alcalay 2017; Marras et al. 2016; Pont-Sunyer
et al. 2017; Jellinger 2019b). From a broader viewpoint, it
should be realized that there is overlap in the stressors and
pathologies of different neurodegenerative diseases (e.g. PD,
Alzheimer’s disease, and Lewy body dementia) that prohibit
their simplistic interpretation as pure synucleinopathies,
tauopathies, or amyloidopathies, and these different types
of protein aggregation are often found in the same patient
(Jellinger 2012).

A closer look at a-synuclein and LBs

a-Syn has an important function for synaptic vesicles and
for synaptic processes (Spillantini et al. 1997). For example,
it interacts with synapsin (Bieri et al. 2018) and transports
proteins and lipids (Oliveira et al. 2021; Rebelo et al. 2021;
Taoufik et al. 2018; Verma et al. 2022). However, it has a
propensity for forming aggregates, for example under con-
ditions of increased iron concentration or lipid peroxida-
tion (Xiao et al. 2018; Li et al. 2011). LBs contain a-syn as
their major component, but in addition contain at least 70
different components including metals, various (phospho-)
proteins, and (phospho)-lipids. Many of the proteins in LBs
are highly ubiquinated (Wakabayashi et al. 2007; Beyer et al.
2009).

a-Syn is 140 amino acids long and has four tyrosine resi-
dues. Tyrosines can easily be oxidized and efficient peroxi-
dative oxidation of a-syn requires its tyrosines (Olteanu and
Pielak 2004; Ulrih et al. 2008; Ruf et al. 2019). In particular,
the three tyrosines in the C-terminal of a-syn were found
critical for its propensity for aggregation/fibrillation (Ulrih
et al. 2008). As for tyrosine oxidation in regard to a-syn and
PD, it is also relevant that the oxidation of free tyrosine pro-
duces L-DOPA. Indeed, DOPAnization of tyrosine in a-syn
by tyrosine hydroxylase (TH) leads to the formation of oli-
gomers (Jin et al. 2022). L-DOPA has pro-oxidant properties
and can modify a-syn (Post et al. 2018) and so increase the
sensitivity to oxidative stress and degeneration of catecho-
laminergic neurons (Lipski et al. 2011). Interestingly, a-syn
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also has a ferrireductase capacity that promotes the conver-
sion of Fe** into Fe>* and thereby ROS production, and so
may additionally contribute to oxidative stress, a-syn fibril-
lation and neurodegeneration (Olivares et al. 2009; Rogers
et al. 2011; Davies et al. 2011; McDowal and Brown 2016;
Sian-Huelsmann and Riederer 2021).

Tyrosines are not the only amino acids of which the oxi-
dation may contribute to a-syn cytotoxicity. Namely, the N
terminus of a-syn is essential for its efficient degradation by
the proteasome, but oxidation of the methionines at a-syn
positions 1 and 5 as observed in LB can reduce this degra-
dation (Alvarez-Castelao et al. 2014).a-syn transfer occurs
in two different steps: the release of pathogenic a-syn spe-
cies from infected cells and their uptake into healthy cells
via passive or active endocytic pathways in a stereotypical
spatiotemporal spreading across different tissues and brain
areas (Neupane et al. 2022). The presence of misfolded/
altered a-syn structures in the neurons and glial cells of
the brain is not specific for PD and common to a group of
neurodegenerative disorders called a-synucleinopathies.
This group includes PD, PD with dementia, Lewy body dis-
ease dementia, multiple systems atrophy, and rare neuronal
axonal dystrophies (Kaufmann and Goldstein 2010; McCann
et al. 2014). Although the precise pathways have not been
clarified, it appears that a-syn is a key player in the intricate
labyrinth of the pathogenesis of PD. However, this inclusion
is not specific to PD only. In addition, PD occurs in some
instances in the absence of LBs, for instance, PD without
nigral degeneration-SWEDD (Ling et al. 2016; Milber et al.
2012), post-encephalitic PD (Jellinger 2009), acute MPTP-
induced parkinsonism (Burns et al. 1984), PINK 1 autoso-
mal early PD (Takanashi et al. 2016; Schneider and Alcalay
2017) and LRRK2 (PARK 8) late-onset PD (Pont-Sunyer
et al. 2017).

It is unclear whether a-syn/LBs formation is a primary or
a secondary event to oxidative stress since both features—
depletion of reduced glutathione (Dexter et al. 1994) and
the presence of LBs (Gibb and Lees 1988)—are present in
the SN of early asymptomatic PD and incidental Lewy body
disease. As a-syn has the propensity to exacerbate the dis-
turbing cellular redox equilibrium by its ability to function
as the enzyme ferrireductase (Sian-Hulsmann and Riederer
2020, 2021) it can therefore contribute to the ironII/III dys-
homeostasis observed in the symptomatic phase of PD (Sofic
et al. 1988; Dexter et al. 1989).

Despite the plethora of evidence relating the aggregated
a-syn inclusions/LBs to the pathomechanisms in PD, it is
unclear whether it is a cause or consequence of the disease.
Multiple studies have proposed that LB production marks a
protective role; however, if aberrantly folded a-syn is enclosed
in LB structures it may contain its harmful, detrimental cellu-
lar effects (Olanow 2004). In contrast, others using biochemi-
cal, integrative omics, and imaging, have hypothesized that the

formation of LBs is not merely an a-syn fibril production but
rather a principal factor related to a-syn neurotoxicity (Mahul-
Mellier et al. 2020). The cellular havoc produced by the toxic
form includes mitochondrial dysfunction and cellular and syn-
aptic disturbances (Sian-Hulsmann et al. 2015).

The question arises whether there is a link between LBs
pathology, neuronal loss, and PD symptoms (Rietdijk et al.
2017). While there are strong evidences put forward by genetic
studies that LBs pathology is of major importance for PD
pathology, Rietdijk et al. (2017) summarize critical aspects
which are commonly neglected like: (1) diagnosis of motor
symptoms or dementia correlates to wide-spread brain LBs
pathology only in about 34% of PD patients (Parkkinen et al.
2008); (2) only about 10% people with LB pathology in the
SN, dorsal motor nucleus of the vagus and/or basal forebrain
are diagnosed with PD (Parkkinen et al. 2005); (3) neurode-
generation in the SN might precede LB pathology (Milber
et al. 2012). Unfortunately, Braak et al. (2003) lack both clini-
cal documentation and information about the neuronal cell
loss especially in the SN. However, the latter correlates with
motor symptoms (Greffard et al. 2006). Moreover, LBs pathol-
ogy (Beach et al. 2009) is not correlated to dopaminergic cell
loss in the striatum and it has been questioned whether it may
be correlated to that of the SN (Beach et al. 2009; Parkkinen
et al. 2011). Experimental studies using long-term application
of MPTP in mice show accumulation of LB-like aggregates—
in contrast to when using acute MPTP application—and this
seems to indicate that LBs pathology is secondary to a meta-
bolic process triggering PD (Fornai et al. 2005; Meredith and
Rademacher 2011). Of interest, streptozotocin, which dysregu-
lates the insulin/insulin receptor pathway, leads to amyloid-like
aggregates in rats only after about 6 months post-application
and thus mimics pathology associated with Alzheimer disease.
Therefore, also in this model, pathological aggregates are only
late signs of pathology (Knezovic et al. 2015).

The reviews on these topics by Rietdijk et al. (2017),
Visanji et al. (2013), Riederer et al. (2019, 2021), Jellinger
(2019b), and Urban et al. (2020) point to the conclusion, that
LBs pathology is an important factor but at least in sporadic
PD is rather a disease progression as well as pathological
multiplication factor. In addition, the “brain-first-hypothe-
ses” are able to explain the laterality (Riederer et al. 2018)
of early PD pathology as the pathology may start predomi-
nantly in one hemisphere, while the bottom-up-hypothesis
rather suggests a symmetrical brain pathology (Borghammer
and Van Den Berge 2019).

Therole of iron
Iron performs critical functions in the human brain for

processes such as oxygen transport, oxidative phospho-
rylation, myelin synthesis, production and metabolism of
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neurotransmitters, nitric oxide metabolism, neuromelanin
storage in the SN and LC, and ferritin binding in oligo-
dendrocytes and microglia (for a review see Riederer et al.
2021). However, in PD SNpc, large increases in iron are
found compared to age-matched healthy controls (Sofic et al.
1988; Dexter et al. 1987; Hirsch et al. 1991; Faucheux et al.
2003; Foley et al. 2022), and within dopaminergic neurons
this contributes to oxidative stress and cell death (Youdim
et al. 1989; Zecca et al. 2004; Hare and Double 2016; Mochi-
zuki et al. 2020; Riederer et al. 2021; Foley et al. 2022).
The increases of especially ferric iron (Fe**) in PD SN are
more or less linearly correlated with the decreases in dopa-
mine production. The reasons for the increased iron levels
in PD brain may, for example, be an increase in iron uptake
through the blood-brain barrier (Oestreicher et al. 1994)
and/or a decreased release from cells because of deficiencies
in the transmembrane iron transporter molecule ferroportin
(Foley et al. 2022). The toxicity of iron was proven in rats,
as the intranigral injection of iron induced a reduction in
dopaminergic activity, and this effect could be attenuated
by treatment with an antioxidant (Ben-Shachar and Youdim
1991; Wesemann et al. 1994). Furthermore, experimental
animal studies showed, that reduced cerebral blood flow
(cerebral oligemia) flow PLUS enhanced iron concentra-
tion within striatal tissue potentiated cognitive deficits and
reduced reaction times (Sontag et al. 2006), suggesting, that
normal cerebral blood flow is a requirement for reducing the
risk for PD. In this regard, the notion is of interest that weak
but significant iron peaks similar to those of a synthetic—
iron (3) complex were seen only in the intraneuronal highly
electron-dense granules of SNpc cells of PD brains with the
highest levels in a case of PDD (Jellinger et al. 1992).

The antioxidant enzyme superoxide dismutase converts
superoxide radicals into hydrogen peroxide, which can
cause grave cellular harm in elevated nigral iron levels in
PD (Sofic et al. 1988) via catalyzing the Fenton reaction
to produce highly reactive and toxic hydroxyl radicals. The
imbalance between the production of reactive free radicals
and the depletion of antioxidant defenses such as nigral
glutathione (Sofic et al. 1992; Sian et al. 1994) contributes
to these destructive cellular processes (Dias et al. 2013) in
PD. Indeed, many in vitro studies suggest that reactive oxy-
gen species released by oxidative stress can diminish brain
plasticity and synaptic signaling (O’Dell et al. 1991; Salim
2016). Thus, oxidative stress contributes to the accumulation
of the misfolded a-syn by impeding its breakdown and the
extent of LBs pathology. Furthermore, it has been impli-
cated as a major contributor to the neurodegeneration in PD
(Gotz et al. 1990; Jenner 2003) or, for that matter, other
a-synucleinopathies (Giasson 2000). Iron as an important
pathological player is demonstrated by experimental work
showing that pathology induced by MPTP or 6-OHDA is
antagonized by iron-chelators (Ben-Shachar et al. 1991a, b;
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Shachar et al. 2004; Wesemann et al. 1995; Youdim et al.
2004a, b, 2005; Griinblatt et al. 2000, 2006; Mandel et al.
2004, 2006; Haskova et al. 2022).

In summary, iron-induced pathology is an important fact
in the cascade of toxicity underlying PD. This is substanti-
ated by the fact, that (1) iron injected into the SN of rats
affect the dopaminergic nigro-striatal system similar as
in PD and (2) iron-induced oxidative stress contributes to
destructive cellular processes as well as to accumulation of
misfolded a-syn, thus contributing to the progression of the
disease.

The role of neuromelanin

In the SNpc of PD patients, Hirsch et al. (1988) found a 77%
reduction compared to healthy controls in the number of cat-
echolaminergic tyrosine hydroxylase-positive neurons. The
reduction was higher in NM* neurons than in NM ™ neurons,
and the authors concluded an increased vulnerability asso-
ciated with NM production at both the tissue and cellular
level. Other than the high amount of NM, another possible
reason for the vulnerability of the SNpc might be its high
cell density (Ma et al. 1995; Ross et al. 2004), which as such
could promote the spreading of pathologies. In PD SNpc
NM™ neurons, frequently, LBs are found in close proximity
to both NM granules and the neural membrane (Sian-Huls-
mann et al. 2015). Ultimately, the LBs appear to destroy the
neurons by breaking them open. LBs are largely proteina-
ceous and can easily be metabolized from the extracellular
environment. In contrast, the released NM complexes are
more inert and some observations suggest that they may
be transported out of the brain by the immune system and
could even end up in the spleen (E. Csanda, personal com-
munication). As such, the notion is of interest, that mel-
aninomacrophages (phagocytic cells) have been detected in
ectothermic vertebrates in spleen, liver and kidney cells as
reviewed by Dubey and Roulin (2014; see also Michalczyk
et al. 2009). From these vague evidences, we propose that
the metabolism of NM requires further experimental studies.

NM efficiently binds and inactivates iron, which should
help to reduce intracellular oxidative stress (Ben-Shachar
et al. 1991; Jellinger et al. 1992; Good et al. 1992; Ben-
Shachar and Youdim 1993; Youdim et al. 1993; Faucheux
et al. 2003; Gerlach et al. 2003). The iron-binding protein
L-ferritin was also found bound to NM (Tribl et al. 2009).
As mentioned above, NM-positive—compared to NM-
negative—dopaminergic neurons are more susceptible to
PD-induced death but also NM-negative neurons die. NM-
negative cells show low iron levels (Hirsch et al. 1994).
Investigation of the surviving cells of both types led to the
conclusion that the expression of calbindin D28K is posi-
tively associated with their survival (Hirsch et al. 1994;
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Saper 1999). Calbindin D28K controls synaptic calcium
dynamics and blocks proapoptotic actions of mutant a-syn/
presenilin 1. As a consequence, oxidative stress reduction
and preservation of mitochondrial functions follow (Hirsch
et al. 1994; Saper 1999).

NM is found in granular vesicles which have alterna-
tively been proposed to be of lysosomal (Tribl et al. 2005;
Plum et al. 2016; Wulf et al. 2022a)/auto-lysosomal origin
(Zucca et al. 2018). Besides NM pigment, various pro-
teins, iron and other metals, these vesicles can also contain
toxins such as MPTP and may have a general function in
the isolation of harmful substances. Very recent proteomic
analysis showed that NM granules also include proteins
typical of stress granules and it was suggested that stress
granules might be one of the sources of NM granules
(Wulf et al. 2022a, b). In addition, Wulf et al. (2022b)
detected a-syn and the protein SI00A9 to be enriched in
NM granules of Dementia with Lewy Bodies (DLB) cases,
while the abundance of several ribosomal proteins was sig-
nificantly decreased. As S100A9 enhances the formation
of a-syn fibrils, this points towards an involvement of NM
granules in the pathology of DLB (Mensikova et al. 2022).

While all the above is known about NM, it is not known
whether NM essentially is neuroprotective or toxic, or both
(Zucca et al. 2008, 2023; Zecca et al. 2015) or why NM-
expression in dopaminergic neurons is associated with
their increased vulnerability in PD. The increased con-
centrations of neuronal a-syn, NM cross-linked to a-syn
(Fasano et al. 2003) and NM in normal SN neurons may
already predispose these neurons to precipitate a-syn
around NM-associated lipid under oxidative conditions
(Halliday et al. 2005). Therefore, it is not farfetched to
assume that the interaction of NM and its iron-induced
oxidative stress favors a-syn aggregation leading to LBs,
thus causing a toxic cellular environment guilty for the
high vulnerability of dopaminergic NM-containing cells
of the SNpc.

As mentioned above, the elevated iron levels may
induce the production of free radicals, which overwhelms
the cellular defense mechanisms ensuing in ferroptosis
(Li et al. 2020) or iron-dependent cell destruction in PD
(Van Do et al. 2016; Wang et al. 2022). The pathological
destruction of the NM-containing dopaminergic neurons
leads to a deficit of the iron chelator NM, leading to an
elevation of unbound iron and a tide of related cellular
damaging events.

NM loss due to the destruction of neurons could have
other consequences since it contains about 15% protein
in the form of special lysosomal/endosomal (Zecca et al.
2015; Plum et al. 2016) and autophagy proteins (Zucca et al.
2018). This may result in a lysosomal "debt," particularly
if there is an underlying genetic fault in the cellular protein

homeostasis, which may further heighten the overall burden
of misfolded a-syn.

In summary, multiple factors have been published demon-
strating a protective role of NM in NM-containing dopamin-
ergic neurons of the SN (Capucciati et al. 2021). However,
under certain circumstances, NM binding capacity might
be overloaded with toxic compounds, like iron or organic
compounds leading to their release when the cytoplasmic
fluid composition changes due to metabolic disturbances.
The role of granular vesicles in healthy and degenerative
phases is under current investigation to enlighten their role
as risk factors for neurodegenerative processes, especially
the interaction with proteins, incl. a-syn.

Neuroinflammation in PD

The occurrence of neuroinflammation in the SN of PD was
first reported by McGeer et al. (1988) and others (Roca et al.
2011). It may serve as a key player in the pathogenesis or
in exacerbating the progression of the illness. However, it
is unclear whether it is a cause or consequence of dopamin-
ergic neuronal degeneration. Physiologically, microglia are
vital for the protection of the central nervous system via
the process of gliosis. Indeed, gliosis is a neuropathological
finding in PD post-mortem (Jellinger 2019b). A disturbance
in glial cells can unsettle homeostasis and secrete pro- and
anti-inflammatory components, resulting in a chronic state
of pro-inflammation and deleterious cellular consequences
(Ho 2019). Indeed, activated microglia can synthesize and
release cytotoxic factors such as cytokines, reactive oxygen/
nitrogen species, and prostaglandins.

Furthermore, the cytokines, tumor necrosis factor, and
interleukin 1 and 6 (Mogi et al. 1994a, b; Nagatsu et al. 2000
for review) may transform astrocytes into proliferative cells
that are summoned to the inflamed brain region (Kettenmann
et al. 2011; Fan et al. 2017). Astrocytes (Verkhratsky et al.
2019) play an ambivalent role in physiologically maintain-
ing brain homeostasis. In contrast, they can also adopt a
sinister and pathological role by serving as mediators of
a-syn neurotoxicity and initiating an inflammatory reaction
and defective mitochondrial and proteolytic function (Wang
et al. 2021).

A disrupted blood-brain barrier (BBB) may also promote
the free passage of the pro-inflammatory mediators from
the gut to the brain to induce disruption of cellular mecha-
nisms. The BBB permeability and reduced cerebral blood
flow especially in PD with cognitive decline (Derejko et al.
2006; Firbank et al. 2003) involve the neurovascular compo-
nent managed by endothelial cells that is necessary for the
healthy operation of neurons and their pathways. Indeed,
BBB leakage has been reported to contribute to cell destruc-
tion in the SNpc in animal models of PD (Barcia et al. 2005;
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Table 3 Factors in the pathology of sporadic Parkinson’s disease

Risk factors: Susceptibility genes, aging, gender, ethnicity, environmental toxins, viral/bacterial infections

Single initiation triggers of PD: Either a-synuclein, iron, oxidative stress, carbon monoxide, viral infections, reduced antioxidative capac-
ity, mitochondrial dysfunction, proteasomal dysfunction, mitophagy/autophagy or lysosomal dysfunction etc

Spreading factors: a-syn, (B-amyloid, tau-protein in subtypes of PD)

Upstream progression factors: Multiple pathological combination factors like: oxidative stress+-reduced antioxidative capacity+-mito-
chondrial dysfunction+-proteasomal dysfunction+-mitophagy+-autophagy-+-lysosomal dysfunction or any other combination

Chao et al. 2009), and this establishes the vascular hypoth-
esis for neuronal destruction (Grammas et al. 2011). More
importantly, a recent study (Al-Bachari et al. 2017; 2020)
has reported a marginal disturbance in the BBB in chief
brain regions exhibiting pathology, namely, SN, posterior
cortical areas, and white matter. Indeed, a “leaky” BBB is
associated with cellular catastrophe, primarily due to the
entry of neurotoxins, like iron, and hypoxia, resulting in
neurodegeneration (Oestreicher et al. 1994; Faucheux et al.
1999; Montagne et al. 2018). Iron is not only important in
the functioning of neurons but also in that of glia (Xu et al.
2018; Song et al. 2018; Reinert et al. 2019). Therefore, it is
not farfetched to assume that iron—e.g. taken-up through a
leaky BBB at the site of the SN and/or released from both
NM and tyrosine hydroxylase (TH) in degenerating DA neu-
rons of the SN—induces pathology resulting in neuroinflam-
mation (Zecca et al. 2008; Zhang et al. 2013; Vila 2019;
Salami et al. 2021; Borquez et al. 2022; Ward et al. 2022;
Liu et al. 2022).

In summary, evidence supports that neuroinflammation
is an early sign of PD. However, the reasons are not well
understood and may be based on several confounding pathol-
ogies including disturbances in glial functions, like the syn-
thesis of glutathione, cytokines, chemokines, iron-induced
oxidative stress, NM released from degenerating neurons,
toxins transported through an open BBB, and disturbed
immunological reactions. The enigma of neuroinflammation
has recently been reviewed by Hirsch and Standaert (2021)
and Rolli-Derkinderen et al. (2020).

Conclusion

Although knowledge from both, basic research and clini-
cal studies has considerably accumulated, the pathology of
PD is still an enigma. The reasons for this are manyfold
and include lack of information regarding the individual’s
multiple genetic risks (which cause specific disturbances in
the biochemical/neurobiological metabolic pathways) and—
depending on this personal vulnerability for PD—the lack of
knowledge regarding the personal triggers that are respon-
sible for the special subtype of this disease. Evidence pre-
sented here accumulates to assume (Table 3) that (1) a-syn
is a key factor to spread the pathology in a spatiotemporal
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manner, but (2) seems to be a secondary factor rather than a
causal one to trigger sporadic PD, while (3) metabolic initia-
tion factors, like iron, carbon monoxide, viral infections, oxi-
dative stress, reduced antioxidative capacity, mitochondrial
dysfunction, proteasomal dysfunction, mitophagy/autophagy
and lysosomal dysfunction seem to be of importance to trig-
ger and/or (4) to contribute in a concerted action to PD pro-
gression in their multiple combinations.

Further studies are necessary to enlighten the genetic and
epigenetic risk factors leading to sporadic PD. Therapeutic
strategies have to be developed to avoid single initiation trig-
gers leading to PD.
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