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Abstract
Depression, with an estimated prevalence of about 40% is a most common neuropsychiatric disorder in Parkinson disease 
(PD), with a negative impact on quality of life, cognitive impairment and functional disability, yet the underlying neurobiol-
ogy is poorly understood. Depression in PD (DPD), one of its most common non-motor symptoms, can precede the onset 
of motor symptoms but can occur at any stage of the disease. Although its diagnosis is based on standard criteria, due to 
overlap with other symptoms related to PD or to side effects of treatment, depression is frequently underdiagnosed and 
undertreated. DPD has been related to a variety of pathogenic mechanisms associated with the underlying neurodegenera-
tive process, in particular dysfunction of neurotransmitter systems (dopaminergic, serotonergic and noradrenergic), as well 
as to disturbances of cortico-limbic, striato-thalamic-prefrontal, mediotemporal-limbic networks, with disruption in the 
topological organization of functional mood-related, motor and other essential brain network connections due to alterations 
in the blood–oxygen-level-dependent (BOLD) fluctuations in multiple brain areas. Other hypothetic mechanisms involve 
neuroinflammation, neuroimmune dysregulation, stress hormones, neurotrophic, toxic or metabolic factors. The pathophysiol-
ogy and pathogenesis of DPD are multifactorial and complex, and its interactions with genetic factors, age-related changes, 
cognitive disposition and other co-morbidities awaits further elucidation.
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Abbreviations
6-OHDA	� 6-Hydroxydopamine
αSyn	� α-Synuclein
BOLD	� Blood–oxygen-level-dependent
CI	� Cognitive impairment
CSVD	� Cerebral small-vessel disease
DAT	� Dopamine transporter
DPD	� Depression in Parkinson disease
FC	� Functional connectivity
GM	� Gray matter
LB	� Lewy body
LC	� Locus coeruleus
MDD	� Major depressive disorder
MPTP	� 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MRI	� Magnetic resonance imaging
PD	� Parkinson disease

RBD	� REM sleep behavior disorder
SN	� Substantia nigra
SNc	� Substantia nigra compacta
VTA	� Ventral tegmental area
WM	� White matter

Introduction

Parkinson disease (PD), a progressive multi-organ pro-
teinopathy caused by deposition of misfolded α-synuclein 
(αSyn) with variegated motor and non-motor symptoms, 
is clinically characterized by bradykinesia, tremor, rigid-
ity and postural instability (Del Tredici and Braak 2016; 
Jankovic 2008; Jellinger 2012). Although PD is tradition-
ally defined as a movement disorder, depression is a com-
mon neuropsychiatric manifestation, being more prevalent 
than in any other chronic disabling disease (Aarsland et al. 
2011). As one of the most common non-motor symptoms 
in PD (Aarsland et al. 2011; Tsai and Gopalakrishna 2022) 
(Zhu et al. 2016a), it contributes significantly to the disease 
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burden, severely impacts life quality, cognitive impairment 
and disability (Barone et al. 2009; Cong et al. 2020; He 
et al. 2021; Marsh 2013; McKinlay et al. 2008; Menza 
et al. 2009; Reijnders et al. 2008; Schönenberg et al. 2021; 
Schrag et al. 2000; Weintraub et al. 2004). Since depres-
sion in PD (DPD) is poorly responsive to dopaminergic 
medication, it may be long-standing (Balestrino and Mar-
tinez-Martin 2017; Rieu et al. 2016). Depression in PD 
patients was first described by Patrick and Levy (1922). 
The diagnosis is based on standard criteria (Marsh et al. 
2006; Ray and Agarwal 2020), reported in the Diagnos-
tic and Statistical Manual of Mental Disorders (DSM V). 
These criteria include depressed mood, decreased feel-
ings of pleasure, loss or gain in appetite, insomnia or 
hypersomnia, psychomotor agitation or retardation, loss 
of energy, excessive or inappropriate guilt, decreased abil-
ity to think or concentrate, irritability, pessimism about 
future, and recurrent thoughts of death (American Psychi-
atric Association 2013). The profile of depressive symp-
toms in PD differs in some aspects from that in depressed 
subjects without PD, showing significantly less reported 
sadness, anhedonia, feelings of guilt and worthlessness, 
suicidal ideation not being common, while they have more 
concentration problems than depressed control subjects 
(Aarsland et al. 2009; Ehrt et al. 2006). Expert opinion 
and epidemiological, pathophysiological, and therapeutic 
data favor the hypothesis that DPD is a specific clinical 
entity (Magnard et al. 2016). Different types and severity 
of depression are seen in PD patients, including minor and 
major depression, although some symptoms may not fulfill 
criteria for major depression disorder (MDD) (Goodarzi 
et al. 2016; Reijnders et al. 2008). They may manifest in 
two clinical phenotypes, one "anxious-depressive" and 
another "depressed" (Brown et al. 2011).

Depression can precede PD onset (Gonera et al. 1997; 
Nagayama and Kimura 2015; Larsen et al. 2017), appear-
ing five or more years before the onset of motor symptoms 
(Leentjens et al. 2003; Pont-Sunyer et al. 2015; Schrag 
et al. 2015; Shiba et al. 2000; Weintraub et al. 2015), pre-
morbid depression being common (Ishihara and Brayne 
2006; Wu et al. 2011;Frauscher et al. 2014). The pres-
ence of depression in de novo PD often reflects poor 
motor compensation (Lee et al. 2018), and its severity was 
greater in non-tremor-dominant de novo patients (Wein-
traub et al. 2015). Studies demonstrated that neurotoxin-
induced PD models may exhibit depression-like behaviors, 
which sometimes manifest earlier than motor impairments 
(Mou et al. 2022). However, due to an overlap with other 
symptoms primarily related to PD or side effects of medi-
cation, depression frequently remains unrecognized and 
undertreated (Laux 2022; Macías-García et al. 2022; Orayj 
et al. 2021; Politis et al. 2010b; Weintraub et al. 2004).

Prevalence and incidence

The estimated prevalence of DPD ranges from 2.7 to 90% 
(Timmer et al. 2017), as a result of inconsistent valida-
tion, sampling procedures, and disease definitions, but on 
average is around 40% or 46% (Aarsland et al. 2009, 2011; 
McDonald et al. 2003; Storch et al. 2008), and its inci-
dence reaches 1.86% per year (Althaus et al. 2008; Cong 
et al. 2020; Frisina et al. 2009). In a meta-analysis, clini-
cally significant depressive symptoms were present in 35% 
of PD patients, and MDD in 17% (Reijnders et al. 2008), 
while a recent meta-analysis found a global frequency of 
depressive disorders in PD of 30.7%, and a pooled fre-
quency of MDD of 14.0%, mean baseline between PD 
duration and MDD frequency being positively correlated 
(Chendo et al. 2020). Incidental depression occurs in about 
16% of de novo PD patients previously free of depression, 
in addition to 13.8% of those suffering from depression 
at the time of PD diagnosis (Duncan et al. 2014; Ravina 
et al. 2007), while depression was found in 70% of mid-
to-advanced PD outpatients without dementia (Kulisevsky 
et al. 2008). DPD prevalence is higher than in the general 
population and may share pathophysiological mechanisms 
with other psychopathological symptoms (Laux 2022). 
In the last time, there is a slight decrease in depression, 
which could be due to an increase in depression recogni-
tion during the prodromal phase of PD (Orayj et al. 2021). 
On the other hand, a higher prevalence of depression, anxi-
ety, and worries in advanced PD has been observed during 
the COVID-19 pandemic (Montanaro et al. 2022).

PD‑depression and other symptoms

Depression in early PD is regarded a risk factor for worse 
motor and global prognosis (Bega et al. 2015; Marras et al. 
2008; Post et al. 2011), and higher depression scores were 
found in patients with dyskinesias and/or motor fluctua-
tions (Dissanayaka et al. 2011; Wichowicz et al. 2006), 
also correlating with bradykinesia (Papapetropoulos et al. 
2006; Rojo et al. 2003). On the other hand, a history of 
depression is a risk factor for developing PD (Aarsland 
et al. 2011; Bareeqa et al. 2022; Gustafsson et al. 2015; 
Inoue et al. 2010; Jeong et al. 2021; Leentjens et al. 2003; 
Nagayama and Kimura 2015; Schuurman et  al. 2002; 
Shen et al. 2013), and neurological symptoms may worsen 
depression severity in PD (Assogna et al. 2013; Dissan-
ayaka et al. 2011), but depression may also occur after PD 
onset (DeMarco et al. 2022). DPD is also associated with 
cognitive impairment (CI) (Fujishiro et al. 2015; Wert-
man et al. 1993), and has important impact on autonomic 
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symptoms in early and middle stages of PD (Sklerov et al. 
2022), with greater depression being associated with 
severe autonomic dysfunction (Matsubara et al. 2018). 
Non-motor symptoms, poor sleep quality, and cognitive 
dysfunction are independent predictors of depression 
(Zhu et al. 2017). Sleep disorders, including REM sleep 
behavior disorder (RBD) are associated with depression 
at baseline and longitudinally, which is partially mediated 
by early autonomic dysfunctions in prodromal PD (Ma 
et al. 2020).

Depressive symptoms may precede CI in de novo PD 
patients (Jones et  al. 2019), and there is a relationship 
between early depression with motor worsening and cogni-
tive decline (Fernandez et al. 2009; Ng et al. 2015). That, 
however, can also be a precursor of depressive symptoms 
in PD (Han et al. 2021; Petkus et al. 2019; Schroeders et al. 
2022). CI and depressive symptoms are associated with 
increase in the severity of PD, and depressive symptoms 
are associated with an increase in CI (Sinaeefar et al. 2021).

PD‑depression and sex

There are clinical sex differences in PD: in general, there is 
a slight male preponderance in incidence and prevalence of 
PD, starting earlier in males, while women tend to be more 
prone to develop tremor-dominant PD, show better results 
for general cognitive abilities, but more pain symptoms and 
more frequent depression (Georgiev et al. 2017; Nicoletti 
et al. 2017; Song et al. 2014; Xiao-Ling et al. 2021). Depres-
sion and fatigue are the main causes of poorer health-related 
quality of life in women, even in early disease stages (Bal-
ash et al. 2019; Crispino et al. 2020), melancholy featuring 
prominently females, while apathy and loss of libido features 
more predominantly affect men (Perrin et al. 2017).

Depression in genetic PD

Depression is frequent in some genetic PD forms, in particu-
lar mutations in Parkin, known risk factors for early onset 
PD, where relatives with compound heterogenous mutations 
and without diagnosed PD have a higher risk of depression 
compared to relatives without Parkin mutations (Srivastava 
et al. 2011). Among subjects with monogenic early onset 
PD, depression affected 31%, and may precede motor symp-
toms, which was similar to patients with idiopathic PD (Gaig 
et al. 2014; Kasten et al. 2010). Carriers with homozygous 
or compound heterozygous Parkin mutations, compared 
to those without known causative mutations, had younger 
ages at onset, longer disease duration, lower Hoehn and Yahr 
grades, but higher depression index, indicating that the Par-
kin mutation status might be a good predictor of symptoms 

of depression without an impact on executive function (Song 
et al. 2020). Depression and hallucinations were more fre-
quent in carriers of leucine-rich repeat kinase 2 (LRRK2), 
suggesting the prevalence of a greater involvement of the 
limbic system in these patients (Belarbi et al. 2010), while 
others did not find such relations in a large study of famil-
ial PD (Pankratz et al. 2008). Depression severity in GBA 
mutation carriers at risk of PD was found to be similar to 
healthy controls (Simuni et al. 2020), although it increased 
in GBA mutation carriers at high risk of PD (Beavan et al. 
2015). Other studies reported that PD carriers of GBA vari-
ants are at high risk for depression and cognitive decline. 
BDNF (rs6265) and CRY1 (rs2287161) variants have been 
associated with more depressive symptoms in people with 
PD (D'Souza and Rajkumar 2020). Five to 25% of PD 
patients carry GBA gene mutations, and 10–30% of GBA 
carriers will develop PD by age 80, type 1 Gaucher disease 
being associated with a higher risk of PD (Nguyen et al. 
2019). Progression of microsmia and mild CI is more rapid 
compared to controls, and those with worse olfaction show 
more depression (Beavan et al. 2015; Mullin et al. 2019). 
In general, the severity of the PD phenotype, showing more 
severe non-motor symptoms, including depression, is related 
to the severity of the mutation in the GBA gene (Thaler et al. 
2018a).

Overall, these data suggest that depression and PD may 
share common pathophysiological mechanisms, although 
these are multifactorial and complex, related to a variety of 
pathobiological mechanisms associated with the underlying 
neurodegenerative process of PD (Jankovic and Tan 2020; 
Prange et al. 2022; Weintraub et al. 2022), the essential ones 
will be critically reviewed.

Brain structural correlates of DPD

Unlike clinical research and fluid biomarkers, brain imag-
ing studies offer the opportunity to relate neuropsychiatric 
changes to brain structures. Magnetic resonance imaging 
(MRI) studies of cognitive healthy persons with depression 
revealed subtle structural brain changes (gray matter/GM/
volume reductions) in prefrontal, parietal, and temporal 
regions, including the hippocampus (Ballmaier et al. 2004; 
Bremner et al. 2000; Pink et al. 2017). Similar changes 
have been found in patients with mild cognitive impairment 
(MCI) and concomitant depression (Zheng et al. 2017). Cor-
tical thinning in prefrontal areas in drug-naive PD patients 
highlights the critical role of those regions in DPD (Luo 
et al. 2016). Other neuroanatomical correlates of depres-
sive symptoms in de novo PD include decreased bilateral 
limbic and right amygdala volumes (van Mierlo et al. 2015). 
Decreased cortical thickness in left precentral and right 
postcentral gyrus, extending to the middle frontal gyrus, 
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orbitofrontal region and insula, was seen in DPD (Huang 
et al. 2016). It was also associated with cortical thinning 
in left temporal, anterior cingulate, right posterior cingu-
late and hippocampal cortices as well as thalamus volume 
shrinking over time, and higher scores of depressive symp-
toms at baseline correlated with a higher rate of cortical 
thinning longitudinally (Goto et al. 2018; Hanganu et al. 
2017). Precuneus thinning was evident in PD patients with 
mild-moderate depression in early stages of disease (Zanigni 
et al. 2017). Others reported smaller amygdala volumes but 
intact limbic connectivity (Surdhar et al. 2012), and GM 
decrease in bilateral orbitofrontal, right temporal region and 
the limbic system (Feldmann et al. 2008). This is consistent 
with earlier studies demonstrating hypometabolism in the 
medial frontal, orbitofrontal and anterior cingulate cortex, 
suggesting that DPD may be associated with dysfunction of 
the orbital-inferior area of the frontal lobe (Mayberg et al. 
1990; Ring et al. 1994).

Generally, the volume of white matter (WM) lesions 
is greater in PD patients than in healthy controls, but the 
differences are not significant (Grey et al. 2020). MRI in 
DPD revealed more severe WM loss in the right frontal 
lobe including the anterior cingulate bundle and the inferior 
orbitofrontal region, which is a major site for regulation of 
mood and activation (Kostic et al. 2010; Kostic and Filippi 
2011). Greater WM injury was found in DPD associated 
with CI and gait disorders (Bohnen and Albin 2011b). A 
positive correlation with fractional anisotropy in the bilat-
eral inferior fronto-occipital fascicles in early PD but not 
in middle disease stages suggested that the neural basis of 
depression might be distinct in different stages of PD (Li 
et al. 2020a). According to a recent study, depression scores 
in PD are associated with lower right anterior pulvinar vol-
ume and reduced WM tract microstructure across almost 
all fiber tracts connected to the thalamic subnuclei (Bhome 
et al. 2022).

Neuroimaging studies in symptomatic Parkin mutation 
carriers with young onset revealed a reduction of bilateral 
caudate nuclei volumes compared to those without Parkin 
mutations. Despite its relatively benign clinical course, car-
rying the Parkin mutations appeared to be associated with 
greater atrophy of subcortical structures suggesting divers 
patterns of subcortical brain changes among different muta-
tion types (Bilgic et al. 2012). Brain sonography studies in 
Gaucher-related PD showed more frequent SN hyperecho-
genicity and reduced echogenicity of brainstem raphe than 
in controls, which was unrelated to type or severity of GBA 
gene mutations, but correlated with iron-sensitive MRI-T2 
hypointensity of SNc. Hyposmia, higher non-motor symp-
toms score including depression and SN hyperechogenicity 
were characteristic features of Gaucher disease-related PD 
(Böttcher et al. 2013). Assessment of cortical thickness and 
subcortical volumes in a cohort of patients with GBA and 

LRRK2 related PD revealed lower volumes in bilateral hip-
pocampus, nucleus accumbens, caudate, thalamus, putamen 
and amygdala compared to unaffected participants. However, 
no differences in cortical thickness and subcortical volumes 
were detected within each group based on genetic status, 
indicating that mutations in the GBA and LRRK2 genes 
are not important determinants of such lesions, while PD 
is associated with a general reduction in cortical thickness 
and subcortical atrophy even in cognitively intact patients 
(Thaler et al. 2018b).

Dysfunction of neurotransmitter systems

Neuroimaging and neuropathological studies have provided 
insight into important pathobiological mechanisms of DPD, 
suggesting that it is associated with a more widespread neu-
rodegenerative process, involving subcortical dopaminergic, 
serotonergic and noradrenergic nuclei and pathways (Mail-
let et al. 2021; Remy et al. 2005). However, as the loss of 
neural populations also underlies cognitive impairment, it 
may be difficult to differentiate the clinical effects of such 
neurodegeneration in early phases of depression in PD from 
those of early dementias, although both may occur together 
(Di Giuda et al. 2012; Jellinger 2022b). Although the diag-
nosis of PD relies on the effects of dopamine deficiency, it 
is associated with other neurotransmitter deficits that are 
causing various motor and non-motor signs and symptoms, 
e.g., depression (Jones et al. 2019; Schapira et al. 2017).

Dopaminergic system

All patients with PD have a moderate to severe loss of dopa-
minergic neurons in the nigrostriatal pathway. Depressed PD 
patients showed greater neuron loss and gliosis in substantia 
nigra compacta (SNc) than non-depressed ones (p = 0.004) 
(Frisina et al. 2009; Paulus and Jellinger 1991). This impli-
cates that the SN as an important modulator area of mood in 
patient with Lewy body (LB) disorders (Saari et al. 2021), 
the resting state functional connectivity of midbrain dopa-
minergic nuclei being important (Wei et al. 2018). Since PD 
causes depletion of dopaminergic neurons in the SN, depres-
sion may be part of the pathophysiological process that leads 
to PD. Widespread degeneration of dopaminergic terminals 
in the striatum, particularly in dorsal caudate, is seen in PD 
patients with both depression and mild cognitive impair-
ment, with relative preservation of the other dopaminergic 
systems in the brain (Jellinger 2022b).

Dopamine transporter (DAT) availability, providing evi-
dence for anterior presynaptic dopaminergic dysfunction, 
in the striatum and limbic brain regions (ventral striatum, 
amygdala, anterior cingulate cortex) is reduced in DPD 
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compared to non-depressed PD patients (Remy et al. 2005; 
Vriend et al. 2014). Decreased DAT correlating with depres-
sion severity was found in left anterior putamen (Weintraub 
et al. 2005), bilateral striatum (Rektorova et al. 2008), and 
thalamus (Oh et al. 2021). Furthermore, decreased dopa-
minergic metabolism was demonstrated in bilateral puta-
men and caudate correlating with DPD severity (Koerts et al. 
2007), as well as in non-PD patients with major depression 
(Meyer et al. 2001). On the contrary, other studies found a 
significantly higher density of DAT in the bilateral stria-
tum, particularly in the left caudate and right putamen in 
depressed PD patients in comparison to non-depressed ones, 
suggesting increased dopaminergic transmission at the syn-
apse (Felicio et al. 2010), or no dopaminergic striatal change 
related to depression using (l8F)FP-CIT PET (Park et al. 
2019). It should be considered that DAT imaging provides 
evidence for presynaptic dopaminergic dysfunction related 
to DPD either via a reduced availability due to greater 
degeneration or an increased availability of DAT possibly 
due to abnormal dopamine clearance (Prange et al. 2022).

Patients with late-onset depression showed abnormal 
(123)I-ioflupane SPECT, suggesting that they could be con-
sidered at increased risk of PD (Kazmi et al. 2021).

Investigation of neurodegenerative pathology in PD cases 
in relation to depressive symptoms revealed a significantly 
higher αSyn burden in SN (p = 0.006), ventral tegmental 
area (VTA) (p = 0.011) and nucleus accumbens (p = 0.0031), 
whereas cell density in VTA showed negative correlation 
with Braak LB stage (p = 0.026) and neurofibrillary tangle 
Braak stage (p = 0.007), indicating that dopaminergic αSyn 
pathology drives depression in PD (Patterson et al. 2019).

A significant relationship was observed for αSyn spread 
from VTA to caudate, from SN to putamen and from the 
insula cortex to putamen, suggesting that spread of αSyn 
from brainstem to the striatum may indicate that not only 
mesolimbic, but also nigrostriatal dopaminergic circuits are 
implicated in depression (Alexander et al. 1990; Frisina et al. 
2009).

Depressive symptoms were associated with dopamine 
loss in caudate nucleus, possibly related to degeneration of 
dopaminergic projections from the VTA, which is consist-
ent with the involvement of cortico-striatal-thalamo-cortical 
circuits in DPD (Vriend et al. 2014).

Dopaminergic neurons in the ventral tegmental area 
(VTA) project to the nucleus accumbens, which plays a criti-
cal role in the regulation of mood and motivation. A higher 
level of depressive symptoms was associated with a lower 
density of tyrosine hydroxylase-immunoreactive neurons in 
VTA and SN, but not in LC. As a lower neuronal density in 
VTA was associated with higher density of brainstem LBs, 
their association with depressive symptoms, was suggested 
to be in part owing to the lower neuronal density of VTA 
(Wilson et al. 2013).

Rodent studies have demonstrated that changes within the 
dopaminergic pathways are associated with depression-like 
behaviors. They include alterations in the neuroplasticity 
of medium spiny neurons in the nucleus accumbens, that 
underlie behavioral despair and social avoidance (Krishnan 
et al. 2007). Dissociated involvement of the dorsolateral 
striatum and prefrontal cortex was relevant to depression 
in 6-hydroxydopamine (6-OHDA)-lesioned rats (Matheus 
et al. 2016), while unilateral administration of highest doses 
of 6-OHDA to the rat medial forebrain induced neurochemi-
cal and behavioral changes resembling advanced PD with 
coexisting depression (Kaminska et al. 2017). Dopaminergic 
lesion in the olfactory bulb involved olfaction and induced 
depressive-like behaviors in another 6-OHDA model of 
PD (Ilkiw et al. 2019). Downregulation of astroglial glu-
tamate transporter in the habenula of 6-OHDA rat models 
may attribute to its downregulation after degeneration of 
the nigrostriatal pathway, which may be closely associated 
with DPD (Lyu et al. 2021; Maillet et al. 2016). Unilateral 
6-OHDA lesions the SNc in rats involved the presynap-
tic dopamine D4 receptors in the lateral habenula that are 
important in the regulation of PD-related depression (Hui 
et al. 2020).

Serotonergic system

Serotonergic dysfunction is linked to depression in the gen-
eral population, it is prominent in de novo patients with idi-
opathic PD (Maillet et al. 2016) and in A53T mutation carri-
ers of the SNCA gene (Wilson et al. 2019), but there is mixed 
evidence for its involvement in DPD (Remy et al. 2005).

Serotonergic neurons in raphe nuclei as the main source 
of 5-HT in the brain gradually degenerate as PD pathology 
progresses (Halliday et al. 1990a; Pasquini et al. 2020). This 
leads to 5-HT depletion in structures that receive seroton-
ergic projections, such as cortex and basal ganglia (Politis 
et al. 2010a; Qamhawi et al. 2015). Postmortem and PET 
studies have confirmed the involvement of the serotonergic 
system in PD (Buddhala et al. 2015; Huot and Fox 2013; 
Pagano et al. 2017; Politis and Niccolini 2015). However, 
other PET studies failed to show any differences between 
the serotonergic system and neuron loss in the dorsal raphe 
nuclei between PD patients with and without depression 
(Fazio et al. 2020; Gallagher and Schrag 2012; Kostic et al. 
2010). While some neuroimaging studies point towards 
alteration of the serotonergic system from the early stages 
of PD (Ballanger et al. 2012; Boileau et al. 2008; Doder 
et al. 2003; Pavese et al. 2010; Politis et al. 2010a; Qamhawi 
et al. 2015), others have not confirmed that (Beucke et al. 
2011; Strecker et al. 2011). DPD patients show increased 
serotonin transporter binding in raphe and limbic regions 
(Norris et al. 2004), whereas decreased 5-HT1A receptor 
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densities were seen in limbic regions including insula, hip-
pocampus and orbitofrontal cortex (Ballanger et al. 2012), as 
well as in posterior cingulated and amygdala-hippocampus 
complex (Benoit and Robert 2011). Greater serotonergic 
pathology related to depression was demonstrated across 
PD stages, underlying the major influence of serotonergic 
dysfunction in limbic-corticostriatal circuits (Maillet et al. 
2021). In murine models of PD, strong stress successfully 
induced stable depression like symptoms, indicating that 
5-HT dysfunction may contribute to depression like symp-
toms in PD (Wang et al. 2021). However, both in vivo and 
postmortem studies about the role of the serotonergic sys-
tem in PD have provided contradictory results (de Natale 
et al. 2021; Oertel et al. 2019). Either increased or decreased 
serotonergic markers in striatum and raphe nuclei have been 
reported (Bédard et al. 2011; Beucke et al. 2011; Buddhala 
et al. 2015; Halliday et al. 1990a; Huot et al. 2011; Jellinger 
1987; Joutsa et al. 2015; Kerenyi et al. 2003; Kish et al. 
2008; Paulus and Jellinger 1991; Politis et al. 2010b).

Whereas a higher prevalence of pathological features in 
DPD patients was reported in LC, SNc and dorsal vagus 
nerve, suggesting that DPD may be related more to catecho-
laminergic than serotonergic system dysfunction (Frisina 
et al. 2009), others showed greater neuron loss and gliosis in 
the serotonergic dorsal raphe nucleus (Paulus and Jellinger 
1991), highlighting its role in the development of depression 
(Steinbusch et al. 2021). Disruption and/or dysfunction of 
the 5-HT1A-FGFR1 (fibroblast growth factor receptor 1) 
heteroreceptor complex, located in the dorsal and median 
raphe of the brainstem, leads to reduced neuroplasticity and 
potential atrophy of the raphe-cortical and raphe-striatal 
5-HT pathways, and may contribute to the development of 
MDD (Borroto-Escuela et al. 2021). In addition to the rel-
evance of the FGFR1-5-HT1A heteroreceptor complex for 
neuroplasticity and depression (Borroto-Escuela et al. 2015), 
striatal 5-HT1A auto- and hetero- receptors may reduce 
L-DOPA-induced dyskinesia (Meadows et al. 2017), which 
is not in the focus of this review.

Serotonin 6 receptors in the dorsal hippocampus were 
shown to regulate depression-like behaviors in unilateral 
6-OHDA lesions in Parkinson rats, while there was no 
change in the density of the glutamate transporter EAAC1/5-
HT6 receptor co-expressing neurons in the dorsal hippocam-
pus (Liu et al. 2015). Severely impaired hippocampal neu-
rogenesis was associated with an early serotonergic deficit 
in an αSyn transgenic rat model of PD (Kohl et al. 2016). 
Neurochemical studies found that injections of the 5-HT1A 
receptor-agonist 8-hydroxy-2-(dipropylamino)tetralin hyd-
robromide (8-OH-DPAT) into the dorsal hippocampus sig-
nificantly increased dopamine and 5-HT levels in the medial 
prefrontal cortex, habenula, ventral hippocampus, and amyg-
dala, suggesting that hippocampal 5-HT1A receptors regu-
late depression and DPD (Jiang et al. 2020).

Strong stress can induce stable depression-like symptoms 
in subchronic MPTP-PD mice along with highest levels 
of inflammation enhancement and decrease in expression 
levels of 5-HT-related genes, suggesting that 5-HT system 
dysfunctions may contribute to depression-like symptoms 
in PD (Wang et  al. 2021). The adeno-associated virus 
(AAV5)-induced overexpression of wild-type human αSyn 
in raphe 5-HT neurons and triggers progressive accumula-
tion, phosphorylation, and aggregation of wild-type human 
αSyn protein in the 5-HT system, causing axonal impairment 
in the output brain regions of raphe neurons and deficits 
in brain-derived neurotrophic factor (BDNF) expression 
and 5-HT neurotransmission, resulting in a depressive-like 
phenotype (Miquel-Rio et al. 2022). Recent studies have 
shown that human αSyn overexpression in mouse seroton-
ergic neurons triggers a depressive-like phenotype, showing 
that α-synucleinopathy in 5-HT neurons negatively affects 
brain circuits that control mood and emotions, resembling 
neuropsychiatric symptoms occurring at the onset of PD 
(Miquel-Rio et al. 2022).

Noradrenergic system

There is strong evidence for changes in noradrenergic func-
tion related to DPD.

The locus coeruleus (LC) is affected in the early stage 
of PD pathology, which leads to noradrenergic content loss 
of up to 70% in the brain (Paredes-Rodriguez et al. 2020), 
resulting in decreased noradrenergic projections to cerebel-
lum, thalamus and motor cortex (Pifl et al. 2012). Imaging 
studies demonstrated reduction in noradrenergic and dopa-
minergic innervation in LC, thalamus and limbic regions, 
and increased neuronal loss and gliosis in LC (Brown et al. 
2011; Burn et al. 2012; Frisina et al. 2009). Noradrener-
gic deficits due to loss of neurons in LC, with reduction 
of noradrenaline in caudate, putamen and cortical regions 
(Gibb 1992; Goldstein et al. 2011) are related to depression 
in early stages of LB disease, since staging of pathology 
suggests degeneration of the LC before SN degeneration 
(Vermeiren and De Deyn 2017). Accordingly, non-motor 
symptoms, such as depression usually correlate with LC 
related noradrenergic deficiency, consistent with its projec-
tion (Oertel et al. 2019). However, the majority of LC neu-
rons can survive the pathological process for many years, 
in contrast to the abundant early neuronal loss in the SNc 
(Beach et al. 2021; Halliday et al. 1990a, b; Hirsch et al. 
1988; Oertel et al. 2019), suggesting that clinical features 
related to LC pathology appear in patients with substantial 
loss of SNc neurons (Huynh et al. 2021).

The role of cholinergic cortical deficits in PD is well 
established (Bohnen and Albin 2011a). Interestingly, pro-
gression of cholinergic deficit spares the prefrontal cortex in 
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early PD, and subsequently follows an anterior-to-posterior 
prefrontal degeneration gradient, which may relate to pro-
gressive CI and co-morbid depression (Bohnen et al. 2018). 
Reduced α4β2*-nicotinic acetylcholine receptor binding in 
the anterior cingulate and frontoparietal cortex was related 
to mild cognitive and depressive symptoms in PD (Meyer 
et al. 2009).

Combined neurotransmitter deficits

Both the dorsal raphe nucleus (serotonergic) and LC 
(noradrenergic) involved in premotor PD stages can lead 
to depletion of monoaminergic transporter systems in the 
basal ganglia-cortical loop linked to emotional control. 
These and changes of precuneal cortex thickness have been 
associated with depression in early PD (Borgonovo et al. 
2017; Zanigni et al. 2017). Higher prevalence of patho-
logical features in depressed vs non-depressed PD patients 
particularly in the catecholaminergic brain areas, LC (neu-
ronal loss p = 0.08; gliosis p = 0.008), dorsal raphe nuclei 
(neuronal loss p < 0.05) and SNc (ns), but differences in 
amygdala and cortical regions suggested that DPD is more 
related to catecholaminergic than to serotonergic dysfunc-
tion (Frisina et al. 2009), whereas LBs in the dorsal raphe 
nuclei in early PD implicated a serotonergic pathology in 
early DPD (Tan et al. 2011), without a prominent role of 
dopaminergic degeneration (Maillet et al. 2016). PET studies 
showed elevated serotonin transporter binding in DPD, sug-
gesting an up-regulation in depressed PD patients (Boileau 
et al. 2008), whereas other studies showed decreased dopa-
mine and noradrenaline innervation in the limbic system in 
DPD (Remy et al. 2005).

Depression-like behavior has been observed in 6-OHDA-
lesioned and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP)-treated rodents, and rotenone infusion into the SN 
of rats was associated with altered dopaminergic and sero-
tonergic transmission (Zhang et al. 2021). Involvement of 
the dorsal 5-HT1A receptors has been shown to regulate PD-
related depression by neurochemical mechanisms including 
significantly increased serotonin and dopamine levels in the 
medial prefrontal cortex, lateral habenula, ventral hippocam-
pus and amygdala (Jiang et al. 2020). The lateral habenula 
was shown as a link between dopaminergic and serotonergic 
systems contributing to depressive symptoms in PD rats via 
mediating the effects of dopaminergic neurons in the SN on 
serotonergic neurons in the raphe nuclei (Luo et al. 2015).

Other studies characterized the concomitant dopaminer-
gic and serotonergic dysfunctions after different durations 
of PD and the expression and severity of neuropsychiatric 
signs as follows: both dopaminergic and serotonergic lesions 
worsen with the duration of PD, spreading from midbrain/
subcortical to cortical regions, the severity of depression and 

apathy appearing primarily related to serotonergic alteration 
within corticostriatal limbic areas, whereas apathy at PD 
onset may be associated with more cortical and subcorti-
cal dopaminergic and serotonergic disruption (Maillet et al. 
2021). Dopaminergic and serotonergic changes progress in 
a similar way in LRRK2 mutation carriers with manifest PD 
and those with sporadic PD, while LRRK2 mutation carri-
ers without manifest PD show increased 5-HT transporter 
binding in striatum and brainstem, possibly reflecting com-
pensatory changes in serotonergic innervation preceding the 
motor onset of PD (Wile et al. 2017). In preclinical phases 
of PD, dysfunction of the limbic loop of the basal ganglia 
and the lateral habenula as well as the network of inter-
related dopaminergic, serotonergic and adrenergic systems 
have been suggested to play a key role for the development 
of depression (Borgonovo et al. 2017; Wilson et al. 2019). 
Thus, the role of disordered 5-HT innervation in early PD 
appears to be rather modest and awaits further full elucida-
tion (Blesa et al. 2022).

In a chronic rotenone model, besides motor deficits, an 
anxious and depression-like phenotype was associated with 
neuronal loss, cytoplasmic αSyn accumulation as well as 
astro- and microglial activation both in SNc and the con-
trolling projections. Occasionally, urocortin-1 (URC-1) 
immunoreactive neuronal debris was observed in phagocyt-
ing microglia. UCN1 peptide content of viable cells in the 
Edinger-Westphal nucleus (EW) correlated with dopamin-
ergic SN cell count, while other mood status-related dopa-
minergic (VTA), serotonergic, dorsal & medial raphe and 
noradrenergic (LC and A5 area) brainstem centers showed 
no remarkable morphological changes. These findings sug-
gest that neurodegeneration in the EW contributed to mood-
related symptoms in toxic rat models of PD (Ujvári et al. 
2022).

DPD and brain circuit disturbances

DPD is mediated by dysfunction of multiple brain mecha-
nisms causing functional network disturbances, reinforc-
ing the hypothesis of DPD as a "disconnection syndrome" 
(Kostic and Filippi 2011). Recent neuroimaging studies 
have detected impaired deep WM networks associated with 
clinical motor and non-motor symptoms (Meng et al. 2022), 
impaired long contact WM fibers integrity being related to 
DPD (Wu et al. 2018), while other studies did not replicate 
previous work that found reduced WM integrity in limbic 
prefrontal regions in DPD (Lacey et al. 2019). Diffuse ten-
sor imaging revealed such changes in the prefronto-limbic/
temporal circuitry, mainly in the left hemisphere (Shen et al. 
2022; Wu et al. 2018), and impaired frontal and limbic WM 
integrity, associated with severe depressive symptoms in 
patients with PD (Li et al. 2020b).
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Early microstructural alterations in the medial corticos-
triatal limbic system in de novo PD patients with apathy and 
depression extended to the medial frontal, anterior cingulate 
cortex and subcallosal gyrus, indicating an early disruption 
of ascending dopaminergic projections and related corti-
cocortical and cortico-subcortical networks (Prange et al. 
2019).

Previous studies found WM microstructural changes in 
the mediodorsal thalamus as possible mechanism of DPD 
(Li et al. 2010) or increased connectivity between limbic 
areas and decreased connectivity between cortico-limbic 
networks which may reflect impaired high-order cortical 
regulatory effects on the emotion-related limbic areas (Hu 
et al. 2015a). Abnormal activities and connectivities of the 
limbic-cortical circuit indicating impaired high-order control 
of negative mood may be a possible neural mechanism of 
DPD (Hu et al. 2015b). Impaired resting state functional 
connectivity between VTA and anterior cingulate cortex was 
correlated with the severity of depression in PD support-
ing the role of abnormal neocortical-limbic system in DPD 
(Wei et al. 2018). PET findings demonstrated the dysfunc-
tion of the limbic cortico-basal ganglia circuit—including 
the orbitofrontal cortex, anterior caudate nucleus and limbic 
part of basal ganglia—in the pathophysiology of depression, 
apathy and anxiety (Maillet et al. 2016), which is consistent 
with the result of previous studies, supporting functional., 
structural and metabolic abnormalities within this network 
in DPD (Skidmore et al. 2013; Weintraub et al. 2005). Other 
studies suggested that the limbic loop of the basal ganglia 
and lateral habenula are important for early depression in PD 
(Borgonovo et al. 2017).

DPD has been associated with disruption in the topo-
logical organization of functional brain networks, mainly 
involving the posterior cingulate gyrus and temporo-occip-
ital cortex as well as the prefrontal-limbic network (Qiu 
et al. 2021). There is evidence that resting-state functional 
connectivity within posterior cingulate cortex, insula, and 
between superior parietal lobule and medial prefrontal 
cortex characterizes DPD and may distinguish them from 
non-depressed ones (Lin et al. 2020). Abnormal subcallosal 
cingulate cortex connectivity was underlying DPD domi-
nated by dysphoric mood (Uhr et al. 2022). The insular 
networks were severely damaged in depressed PD patients, 
who further showed decreased functional connectivity in the 
middle frontal gyrus and inferior parietal lobe, whereas the 
connectivity between left anterior insula and middle fron-
tal gyrus was positively related with cognitive scale scores. 
These results suggest that the disrupted connection between 
the salience and the executive networks may contribute to 
depression in PD (Huang et al. 2020).

Dysfunction in extensive brain areas was involved in 
DPD, in particular disturbed connectivity between right mid-
dle frontal gyrus, anterior cingulate cortices and cerebellum 

was found in DPD (Wang et al. 2018), while others reported 
microstructural alterations in the anterior insula with lower 
fractional anisotrophy between dorsal and anterior insular 
cortex subregions that are associated with cognitive and 
affective impairment in PD (Jonkman et al. 2021). Further-
more, impaired interhemispheric synchrony with decreased 
connectivity was seen in the bilateral putamen, middle 
occipital and postcentral gyrus, paracentral lobule and cer-
ebellum in DPD (Zhu et al. 2016b). MRI connectivity stud-
ies demonstrated a significant negative correlation between 
depression scores and quantitative anisotropy (QA) of left 
cingulum, genu and splenium of the corpus callosum, and 
anterior and posterior limbs of the right internal capsule 
(Ghazi Sherbaf et al. 2018). Decreased functional connectiv-
ity (FC) within the prefrontal-limbic system and increased 
FC in the prefrontal cortex and lingual gyrus were seen in 
DPD (Sheng et al. 2014), while others reported decreased 
FC in the left posterior cingulate and right superior temporal 
gyrus, and increased FC in right posterior cingulate cortex 
(Lou et al. 2015). Other connectometry studies showed sig-
nificant differences in the bilateral uncinate and inferior lon-
gitudinal fasciculi, fornices, left fronto-occipital fasciculum, 
right corticospinal tract, genu of the corpus callosum, and 
middle cerebellar peduncle. This suggests that the prominent 
circuits involved in emotion recognition, particularly nega-
tive emotions, might be impaired in co-morbid depressive 
symptoms in PD (Ansari et al. 2019). Furthermore, DPD 
was associated with dysfunctional connectivity from the 
medial frontal gyrus and paracentral lobule to the contralat-
eral supplementary motor area (Liao et al. 2020).

Although there is no significant volume change in the 
amygdala, left amygdala activity increased in DPD patients 
compared to controls, and decreased functional connectiv-
ity between the right amygdala and fronto-parietal areas 
suggested abnormal amygdala function in DPD (Huang 
et al. 2015). Other resting-state functional MRI analyses 
revealed decreased functional connectivity between the 
anterior cingulate cortex and right temporo-parietal junc-
tions probably associated with emotion-related factors of 
quality of life in PD patients (Nakano et al. 2021). Depres-
sive symptoms were associated with larger volumes of the 
left isthmus of the cingulate cortex, which, together with the 
temporal cortex, is part of the default mode network, and 
increased activity has been described within this network 
among patients with depression (Sheline et al. 2009). DPD 
patients exhibited abnormal functional connectivity within 
the default mode network (DMN), executive control network 
(ECN), salience network (SAN), precuneus and sensorimo-
tor network (SMN), as well as between the anterior SAN 
and bilateral ECN, between posterior SAN and dorsal DMN, 
between precuneus network and dorsal DMN/SMN/bifrontal 
ECN. Connectivity within the left hippocampus and dorsal 
DMN, and the right medial superior frontal gyrus of anterior 
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SAN was a significant predictor of depression levels in PD 
patients. This indicates that aberrant intra- and inter-network 
functional connectivity is involved in several hubs in the 
large-scale networks which could be a biomarker for distin-
guishing DPD from non-depressed PD (Liao et al. 2021).

Resting state bidirectional connectivity alterations were 
observed between emotional and motor networks in DPD 
in the pathway from bilateral anterior insula and posterior 
orbital cortices to right basal ganglia(Liang et al. 2016), 
while others confirmed the involvement of basal ganglia, 
default mode and left frontoparietal networks and SN in 
DPD (Wei et al. 2018). There was evidence for clinically rel-
evant microstructural alterations of the anterior insula with 
loss of interconnecting anterior insular-anterior cingulate 
cortex in DPD (Jonkman et al. 2021). Brain network analysis 
revealed a significant hyperconnectivity among the default 
mode network (left lateral-parietal region), the medial pre-
frontal and left prefrontal cortex (part of the central execu-
tive network), suggesting how the functional connectivity 
pattern may signal a neural pathway for depression in PD 
(Alfano et al. 2022).

In de novo PD patients with depression, altered network 
connection involving the default mode network and cogni-
tive executive network may contribute to depression (Xu 
et al. 2022b). Likewise, altered neural network connectiv-
ity within the ventral attention network in the left middle 
temporal cortex, the auditory and default mode networks 
may predict depression in de novo PD (Xu et al. 2022a). 
Altered functional connectivity of ventral striatal subregions 
and between ventromedial putamen and left middle occipi-
tal gyrus provided new insight into neural mechanisms of 
depression in early PD (Wang et al. 2022). Recent functional 
MRI studies characterizing the spontaneous blood–oxygen-
level-dependence (BOLD) in the whole brain and multiple 
brain regions revealed reduction in the resting-state BOLD 
complexity as an important component in the pathology of 
DPD (Liu et al. 2022), and a meta-analysis and validation 
study demonstrated altered BOLD activity in posterior cin-
gulate gyrus, supplementary motor area and cerebellum in 
DPD compared to non-depressed ones (Su et al. 2022).

With regard to gender differences, altered emotion pro-
cessing in PD is specific of males that may be related to 
diminished neural response in putamen and insula, whereas 
structural MRI found bilateral GM atrophy in female patients 
(Heller et al. 2018). Sex differences were found in dynamic 
connectivities in healthy controls but not in PD patients. 
Available findings suggest that while in healthy controls, sex 
differences may play a certain role in dynamic connectivity 
patterns, in PD patients, these effects may be overcome by 
the neurodegenerative process (Diez-Cirarda et al. 2021).

Imaging genetics analysis to explain the degree if depres-
sion in PD tries to identify several brain regions and genes 
known to be involved in depression, and to explain the 

degree of depression in PD (Won et al. 2019). fMRI studies 
in non-manifesting LRRK2 and GBA carriers demonstrated 
increased task-related activity in the right medial frontal 
gyrus and reduced activity in left lingual gyrus, while no 
whole-brain differences were noted between groups (Breg-
man et al. 2017). Connectome differences were seen between 
familial and sporadic forms of PD, as indicated by increased 
activity in the left medial amygdala in familial PD, which 
showed a distinct functional network between the left medial 
amygdala and regions related to retrieval of motor informa-
tion. These data indicate that the medial amygdala might 
be most vulnerable in both sporadic and familial PD (Tang 
et al. 2017). Reduced integrity of non-motor networks was 
detected among non-manifesting carriers of the G2019S 
mutation in the LRRK2 gene prior to identifiable changes 
in motor network connectivity, indicating significant non-
motor cerebral changes among carriers "at risk" for future 
development of PD (Jacob et al. 2019).

Other pathogenic factors in DPD

Vascular factors

Whereas vascular risk factors failed to verify the vascu-
lar depression hypothesis in PD (Ou et al. 2018), others 
suggested that co-morbid cerebral small-vessel disease 
(CSVD), marked by WM hypointensity, number of lacunes 
and microbleeds, may affect multiple functional domains in 
PD, including motor, cognitive and emotional impairments 
(Chen et al. 2021). Many studies have provided evidence that 
large WM hypointensity volumes, subcortical lacunes and 
other markers for CSVD are associated with increased risk 
for depressive symptoms (Geraets et al. 2021; Jellinger 2021, 
2022b; Nunes et al. 2022; Wang et al. 2020), since they 
are disturbing cortico-subcortical neuronal circuits causing 
microstructural dysfunctions of major brain connections 
involved in emotion and other important behaviors, thus 
suggesting an association between CSVD and depression 
(Empana et al. 2021; Kim and Han 2021; Nunes et al. 2022).

The neurogenesis hypothesis

Degeneration of the midbrain dopaminergic neurons in PD 
can affect remote regions in the brain that are innervated 
by the projections of these neurons. The dentate gyrus, a 
site of continuous production of new neurons in the adult 
hippocampus, receives dopaminergic inputs from SNc, the 
depletion of which may directly affect adult hippocampal 
neurogenesis (Park and Enikolopov 2010).

There is a detrimental synergistic interplay between 
dopamine depletion and posttranslational modification of 
αSyn contributing to impairment of adult hippocampal 
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neurogenesis (Schlachetzki et  al. 2016). Experimental 
studies have revealed a complex interaction between brain-
derived neurotrophic factors (BDNF) and neurotoxins in 
PD models that result in distinct effects on the catechola-
minergic system and hippocampal neurogenesis (Chen et al. 
2018). MDD was previously hypothesized to be related to 
monoaminergic deficiency which leads to reduced levels of 
monoamines at the synaptic cleft, but more recently, there 
has been a shift towards the "neurogenesis/neuroplasticity 
hypothesis of depression". Disruption of hippocampal neu-
rogenesis in depression may be a consequence of neural 
circuitry impairments, in particular, the entorhinal cortex, 
which has a regulatory effect on the neural circuitry related 
to hippocampal function and adult neurogenesis (Kim and 
Park 2021; Tartt et al. 2022). Neuromodulation and hip-
pocampal neurogenesis that are closely related to dopamine 
depletion in PD, therefore, may help to elucidate the role 
of neurogenic-related mechanisms mediating neurotrophic 
processes, the role of neurogenic effects of the gene SNCA 
and, possibly, the molecular mechanisms underlying DPD 
and MDD (Flores et al. 2020). In genetic animal models and 
human postmortem studies of PD, severely impaired adult 
neurogenesis has been observed with patients showing hip-
pocampal atrophy. Because adult newborn neurons appear to 
exert various functions which relate to non-motor symptoms 
of PD, there might be a close correlation between malfor-
mation of newborn neurons in the adult hippocampus and 
depressive symptoms, thus presenting a novel framework for 
targeting adult hippocampal neurogenesis and PD-associated 
depression (Lim et al. 2018).

SNCA and depression

αSyn overexpression in dopaminergic neurons is not only 
important for PD, but also for depression, both being cor-
related with decreased nigral BDNF levels and alterations in 
proteins involved in synaptic plasticity (Caudal et al. 2015).

αSyn interaction with dopamine metabolism (Galvin 
2006) and transmission (Phan et al. 2017) may have impor-
tant implications not only in neuronal loss and motor symp-
toms (Norris et al. 2004), but also through development of 
depressive symptoms in LB disease, which suggests that 
continued progression of symptoms may be underpinned 
by the neuronal connectivity in the brain and the spread of 
specific pathologies.

αSyn plays a critical role in neurotransmission, vesicle 
dynamics, and neuroplasticity. Its overexpression in the 
hippocampus triggers depressive-like behaviors, leads to 
synapse loss and microglia-mediated inflammation, thus 
contributing to the pathogenesis of both PD and depressive 
disorders (Du et al. 2021). Depression has been shown to 
affect the metabolism of αSyn, suggesting that depression 
is not only a prodromal symptom but also a risk factor of 

PD (Ishiguro et al. 2019). αSyn (SNCA) is not only a hall-
mark of PD, but SNCA mRNA in peripheral blood cells is 
increased in MDD and positively correlated with severity 
of depression (Rotter et al. 2019), which appears important 
in view of the high co-morbidity of PD with depression. 
Unfortunately, a preliminary study on the relations between 
α-synucleinopathy and MDD revealed αSyn pathology in 
brainstem only in 16.7% of patients with late-life depression, 
which was comparable to a healthy elderly control popula-
tion (Jellinger 2009).

Neuroinflammation and immune reactions

The past decade has provided evidence for a significant role 
of the immune system in PD pathogenesis, either through 
inflammation or autoimmune response, which may be a 
cause of, rather than a response to neuronal loss (De Virgilio 
et al. 2016). An important converging mechanism between 
MDD and PD appears to be neuroinflammation. Mounting 
evidence has indicated that broad central and peripheral 
immune dysfunctions may also contribute to the neurobiol-
ogy of MDD (Wohleb et al. 2016), and that there is a depres-
sion-related disruption in a neuroimmune axis that interfaces 
the immune system and CNS networks to control behavior 
and emotion (Hodes et al. 2015). Chronic neuroinflamma-
tion is one of the hallmarks of PD pathophysiology (Tansey 
et al. 2022). Experimental animal models and postmortem 
studies of human PD patients indicate that activation of glial 
cells and increase of pro-inflammatory factor levels are com-
mon features of the PD brain; indeed, microglia has been 
shown to play an important role in managing neuronal cell 
death, neurogenesis and synaptic interaction, besides their 
involvement in immune-response generating cytokines. The 
role of neuroinflammation in the emergence of depression 
is related to dynamic alterations in microglia response to 
stimulation may have an etiological role in neurodegenera-
tion, in particular in depressive-like disorder.

DPD is accompanied by immune dysregulation, resulting 
in increased production of proinflammatory cytokines, e.g., 
interleukin-6 (lL-6), and tumor necrosis factor (TNF-α) in 
blood and brain (Hodes et al. 2015; Wohleb et al. 2015), 
the release of which by microglia and activated astrocytes 
leads to exacerbation of dopaminergic neuron degeneration 
and other abnormalities in brain function (Tonhajzerova 
et al. 2020). Furthermore, there is an important interface 
between peripheral immune cells and brain (Hodes et al. 
2015). Clinical studies have shown that elevated levels of 
TNF-α and IL-6 are observed in the blood of MDD patients 
(Dowlati et al. 2010; Howren et al. 2009). These changes 
were associated with significant reduction in connectivity 
between prefrontal cortex and ventral striatum, which in turn 
are correlated with anhedonia, a core symptom of depres-
sion (Felger et al. 2016). Peripheral immune systems induce 
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cell-mediated inflammation in PD, highlighting the signifi-
cant contribution of the immune system in the etiology of 
PD (Mutoh 2016).

Dysregulation of glial cells results in disruption of 
homeostasis leading to a chronic, pro-inflammatory, delete-
rious environment. Peripheral immune cells, in particular T 
lymphocytes, infiltrate the CNS and accumulate in the SN 
where they secrete pro-inflammatory cytokines, stimulate 
surrounding immune cells, and induce dopaminergic neu-
ronal cell death, the pathological hallmarks of PD (Mac-
Mahon Copas et al. 2021). Infiltration and accumulation 
of immune cells from the periphery are detected in and 
around the affected regions of PD brain. In PD, microglia 
and astrocytes can be activated by misfolded forms of αSyn 
protein to release cytokines that interact with multiple pro-
cesses to produce depressive symptoms, including mono-
amine transport and availability, hippocampal neurogen-
esis, and the hypothalamus-pituitary axis. Astrocytes are 
another major link between PD and depression due to their 
recognized role in lymphatic clearing mechanisms. Stud-
ies suggesting that MDD causes astrocytic destruction or 
structural atrophy in relevant brain regions suggests the pos-
sibility that accumulation of αSyn in specific brain areas is 
facilitated due to inadequate clearance of these pathogenic 
protein aggregates. These mechanisms highlight the over-
lapping pathophysiology of MDD and PD with particular 
focus on neuroinflammation (Tran et al. 2021). ln rodent 
models, proinflammatory monocytes infiltrate brain regions 
specifically associated with depression and anxiety (Wohleb 
et al. 2013), after having been lured in these areas by local 
increases of chemotactic cytokines and adhesion molecules 
in endothelium (Torres-Platas et al. 2014). Once inside 
the brain, infiltrating monocytes differentiate into mono-
cyte-derived microglia and produce a local inflammatory 
response contributing to anxiety-like behavior (Varvel et al. 
2012). Increases in peripheral cytokines lead to changes in 
transcriptome profiles of astrocytes with upregulation of 
cytokines, chemokines and growth factors (Meeuwsen et al. 
2003), which can be directly released into the brain. The loss 
of complexity in the astrocytic processes could lead to dam-
age in the blood–brain barrier and increased penetration of 
peripheral substances into the brain. Furthermore, peripheral 
cytokines and hormones can interface on resident microglia 
in the CNS to affect depression, as shown from postmortem 
findings in patients with depression (Steiner et al. 2011). 
PET studies revealed a greater microglial activation in cor-
tical areas that directly correlated with depression sever-
ity (Setiawan et al. 2015). In rodent models of depression, 
microglia released higher levels of lL-6 and lL-1B (Frank 
et al. 2007). Cytokines and chemokines can also act directly 
on neurons to alter plasticity and promote depression-like 
behaviors (Koo et al. 2010) by directly acting on seroton-
ergic neurons and glutamatergic neurons in frontal cortex 

and hippocampus to alter synaptic plasticity (Beattie et al. 
2002; Garcia-Oscos et al. 2012). The relationship between 
depression and PD has been investigated in various rodent 
models, by administration of MPTP in mice causing changes 
in depression and motor function (Ren et al. 2021) or by 
rotenone-induced PD in mice, in all of which metformin 
or fluoxetin showed anti-inflammatory neurogenic and 
neuroplasticity-inducing effects to improve depressive-like 
behavior (Ishola et al. 2022; Mendonça et al. 2022; Zhao 
et al. 2021).

The gut‑brain axis

Gut microbiotic changes that play a crucial role in the bidi-
rectional communication between the gut and the brain 
(Klann et al. 2022) with a close link between multiple move-
ment disorders and gastrointestinal dysfunction (Talman and 
Pfeiffer 2022), suggest that the gut microbes may shape neu-
ronal development, modulate neurotransmission and affect 
behavior, have been associated with the pathomechanism of 
DPD (Dogra et al. 2022; Mendonça et al. 2020; Moustafa 
et al. 2021; Socala et al. 2021) (Felice et al. 2016; Jones et al. 
2021; Tan et al. 2022; Xie et al. 2022). There is increasing 
evidence for the highly complex relationship between the gut 
and the brain in PD, including the potential role of the vagus 
nerve, αSyn deposition in the enteric nervous system, related 
to intestinal permeability, autonomic dysfunction, inflamma-
tion, neural immune system and the gut microbiome (Nowak 
et al. 2022; Tan et al. 2022; Tansey et al. 2022; Warnecke 
et al. 2022). Decreased fecal bacterially produced butyrate is 
related to epigenetic changes in leucocytes and neurons from 
PD patients and the severity of depressive symptoms (Xie 
et al. 2022). Recent studies have detected disturbed lipid 
metabolism (Dong et al. 2021), and abnormal glycolipid 
metabolism, fasting plasma glycose levels and motor symp-
toms being related to depressive symptoms in PD patients 
(Yao et al. 2022), thus enlarging the pathogenic spectrum of 
this deleterious co-morbidity to PD (Fig. 1).

Conclusion and outlook

PD is a common and heterogeneous neurodegenerative dis-
ease characterized as a Lewy type α-synucleinopathy that 
is never restricted to the nigrostriatal system, and has both 
motor and non-motor manifestations including depression, 
anxiety and other neuropsychiatric signs and symptoms aris-
ing from a diverse neuroanatomical distribution of αSyn 
aggregates that causes a multitude of degenerative lesions 
involving a wide variety of nervous systems and networks. 
Among the non-motor manifestations of PD, depression 
is particularly important due to its negative impact on the 
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course of the disease, its frequent combination with cog-
nitive impairment and functional disability and impact on 
the quality of life of the patients and caregivers (Mou et al. 
2022). The morphological and molecular biochemical basis 
of depressive symptoms in PD is heterogeneous, and mod-
ern neuroimaging, neurochemical and neuropathological 
studies have provided insight into important pathobiologi-
cal mechanisms, suggesting that DPD is associated with 
complex dysfunctions of multiple neurotransmitter nuclei 
and pathways, in particular widespread degeneration of both 
the dopaminergic and serotonergic systems, as well as early 
noradrenergic deficiency due to early degeneration of the 
LC. Recent advances using functional and structural neu-
roimaging revealed extensive changes in cerebral GM and 
WM infrastructures, involving multiple brain areas, caus-
ing not only dopaminergic, serotonergic and noradrenergic 
dysfunctions but widespread disturbances of cortico-limbic, 
striato-thalamo-prefrontal, mediotemporal-limbic, anterior 
cingulate- orbitofrontal, and interhemispheric networks, 
with disruption of functional emotional, behavioral, cog-
nitive and other essential brain circuits. Among the wide-
spread reduced functional connectivities, DPD is particu-
larly related to decreased functional connectivity between 
the orbitofrontal, hippocampal complex, cingulate, striatum, 
thalamus and limbic systems, while anxiety, often associated 
with depression in PD, appears to be related to decreased 

limbic-dorsolateral prefrontal, orbitofrontal-dorsolateral 
prefrontal, and sensorimotor-orbitofrontal cortices. These 
two types of functional dysconnectivity suggest less volun-
tary and more automatic emotion regulation in PD patients 
(Dan et al. 2017). In conclusion, modern in vivo imaging 
studies demonstrated that DPD is mainly underpinned by 
dysfunction of basal ganglia-cortico-limbic networks and 
monoaminergic systems, depending on the stage of PD and 
associated symptoms, including autonomic dysfunctions, 
CI, and RBD. In particular, the evolution of dopaminergic 
and serotonergic dysfunction and abnormalities of limbic 
circuits across time, involving the orbitofrontal and anterior 
cingulate cortices, ventral striatum, amygdala, thalamus, 
and other important brain networks, help to delineate the 
variable expression and severity of depression in patients 
with preclinical/prodromal, early and advances stages of PD 
(Prange et al. 2022). A history of depression may also be 
an increased risk of adverse effects following subthalamic 
nucleus deep brain stimulation (Kratter et al. 2020).

An essential pathogenic factor of DPD is monoaminergic 
imbalance and disruption of multiple brain networks related 
to neurodegeneration of relevant neurotransmitter systems 
due to aggregation of toxic misfolded αSyn, mitochondrial 
dysfunction, impairment of protein clearance (associated 
with deficient ubiquitin-proteasomal and autophagic-
lysosomal systems), immunological/neuroinflammatory 

Fig. 1   Some essential/hypothetical factors influencing the pathogenesis of depression in Parkinson disease (PD)
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mechanisms and oxidative stress (Jankovic and Tan 2020; 
Jellinger and Attems 2015; Jellinger 2022a). A deeper 
understanding of the pathophysiological processes underly-
ing depressive symptoms in PD, such as the contribution of 
αSyn "prion-like" progression through the brain, and the 
impact of other co-morbidities, like immunological/inflam-
matory or CSVD and Alzheimer-like pathologies in pro-
gressed stages of PD, is required to better understanding 
the relationship between the different forms and degrees of 
depression in PD and related LB diseases. The prospective 
assessment and validation of depressive signs and symp-
toms in PD will be improved by the combined use of clinical 
standard criteria, neuroimaging and biomarker signatures, 
making decisions more homogenous, which may be vali-
dated by multicentered post-mortem studies of well-charac-
terized, longitudinally followed patients to further elucidate 
pathophysiological mechanisms of depression and its multi-
faced manifestations in PD. Overall, this review emphasizes 
that increasing understanding of the complex mechanisms 
in the development of depression may help to implement a 
roadmap of person-tailored interventions for patients with 
PD and depression depending on the stage and co-morbid 
symptoms underlying PD subtypes and their prognosis.
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