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Abstract
Individuals with Alzheimer’s disease and other neurodegenerative diseases have been exposed to excess risk by the COVID-
19 pandemic. COVID-19’s main manifestations include high body temperature, dry cough, and exhaustion. Nevertheless, 
some affected individuals may have an atypical presentation at diagnosis but suffer neurological signs and symptoms as the 
first disease manifestation. These findings collectively show the neurotropic nature of SARS-CoV-2 virus and its ability to 
involve the central nervous system. In addition, Alzheimer’s disease and COVID-19 has a number of common risk factors 
and comorbid conditions including age, sex, hypertension, diabetes, and the expression of APOE ε4. Until now, a plethora 
of studies have examined the COVID-19 disease but only a few studies has yet examined the relationship of COVID-19 and 
Alzheimer’s disease as risk factors of each other. This review emphasizes the recently published evidence on the role of the 
genes of early- or late-onset Alzheimer’s disease in the susceptibility of individuals currently suffering or recovered from 
COVID-19 to Alzheimer’s disease or in the susceptibility of individuals at risk of or with Alzheimer’s disease to COVID-
19 or increased COVID-19 severity and mortality. Furthermore, the present review also draws attention to other uninvesti-
gated early- and late-onset Alzheimer’s disease genes to elucidate the relationship between this multifactorial disease and 
COVID-19.
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Introduction

Coronaviruses (CoVs) are viruses with an envelope and a 
positive stranded RNA, and are the members of the Coro-
naviridae family and the order Nidovirales (Pal et al. 2020). 
The COVID-19 pandemic, caused by the novel SARS-CoV-2 
virus, was first reported in December 2019 in Wuhan, Hubei 
province of China (Du et al. 2020). The newly emerged 
CoV virus was designated as SARS-CoV-2 since it shows 
high homology (~ 80%) to SARS-CoV (Yuki et al. 2020). 
Its genome is able to encode three protein classes, which 
include two large polyproteins, pp1a and pp1ab, which are 
cleaved into 16 non-structural proteins essential for viral 
RNA synthesis; four essential structural proteins (the spike, 
envelope, membrane, and nucleocapsid proteins) enabling 
viral entry and assembly; and nine accessory proteins 

considered to resist host immunity while the virus infects 
a person (Peng et al. 2021; Zhu et al. 2020). The reciprocal 
interaction between the viral spike protein, contained by the 
viral envelope membrane, and specific receptors found on 
the superficial layer of target cells is the hallmark of the 
beginning of the SARS-CoV-2 infection (Lukiw 2021). The 
angiotensin-converting enzyme 2 has recently been discov-
ered to act as a major SARS-CoV-2 receptor. As this enzyme 
is also expressed in cortical neurons and glia, these cells are 
prone to the SARS-CoV-2 infection (de Barros Viana et al. 
2021). The main symptoms of COVID-19 are high body 
temperature, dry cough, and exhaustion (Han et al. 2020). 
Nevertheless, several physicians caring the affected patients 
have noticed that, at the time of presentation, a percentage 
of patients have not presented with well-known respira-
tory complaints including high body temperature and dry 
cough; rather, they have presented neurological symptoms 
alone at the disease onset, which included: (1) headache, 
gait disturbance, and malaise, which are possibly nonspe-
cific COVID symptoms; (2) cerebral bleeding; (3) cerebral 
infarction; and (4) other neurological disorders (altered 
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consciousness, neuropathic pain, encephalitis, vertigo, facial 
paralysis, olfactory disturbances, and loss in sense of taste) 
(Aktas et al. 2021; Wang et al. 2020). The above findings 
point a neurotropic feature of SARS-CoV-2 and its ability 
to infect the central nervous system (Ramani et al. 2020). 
SARS-CoV-2 virus is believed to invade the nervous sys-
tem through the olfactory mucosa where a neural-mucosal 
interface closely separates olfactory mucosal, endothelial, 
and nervous tissues, which include fine networks of olfac-
tory and sensory nerve endings (Meinhardt et al. 2021). In 
addition, the respiratory system is linked to the brain without 
the protection of the blood–brain barrier, SARS-CoV-2 may 
attack the cardiorespiratory centers situated in the medulla/
pons regions in the early invasive phase, causing breath-
ing abnormalities and cardiac distress. Functional integ-
rity of brainstem areas is also compromised (Riederer and 
Ter Meulen 2020). Douaud et al. (2022) compared the two 
groups and found significant longitudinal effects, including 
(i) greater reductions in grey matter thickness and tissue con-
trast in the orbitofrontal cortex and parahippocampal gyrus, 
(ii) greater changes in tissue damage markers in regions 
functionally connected to the primary olfactory cortex, and 
(iii) greater reduction in global brain size. Between the two 
timepoints, the infected subjects showed a greater average 
cognitive deterioration. The molecular signatures of the 
SARS-CoV-2 pathogen are identified by various receptors 
recognizing patterns, including toll-like receptors (TLRs) 
and the cytoplasmic retinoic acid-inducible gene I-like 
receptors (RLRs). Microglia is the main cell type that is 
responsible for the expression of such receptors; however, 
neurons, astrocytes, pericytes, and brain endothelial cells 
are also able to express them. When activated, TLRs and 
RLRs induce the expression of type I interferons through 
pathways using the interferon regulatory factor 3/7 while 
they induce the synthesis and release of pro-inflammatory 
cytokines via nuclear factor kappa B (Goncalves de Andrade 
et al. 2021); hence, SARS-CoV-2 induces reactive astroglio-
sis, microglial activation, and neuroinflammatory cascade. 
Hypoxia and inflammation involving neural structures col-
lectively impair the structure and function of cortical and 
hippocampal structures, which are some risk factors for 
neurological diseases including Alzheimer’s disease, and 
play an important part in the neurological diseases process 
(Guglielmotto et al. 2010; Rahman et al. 2021; Stein et al. 
2012). Furthermore, Alzheimer’s disease and COVID-19 
has a number of common risk factors and comorbid condi-
tions, which include age, sex, hypertension, diabetes, and 
the expression of APOE ε4 (Ciaccio et al. 2021). Variations 
of human genome are possibly responsible for the great 
variability of COVID-19 incidence and symptoms across 
human populations worldwide (Haghighi et al. 2020). These 
evidence can partly clarify the grave prognosis and aug-
mented symptoms of SARS-CoV-2 infection in patients with 

Alzheimer’s disease (Ciaccio et al. 2021). Whereas a large 
number of studies on COVID-19 have been reported in the 
literature until now, there is paucity of data on COVID-19 as 
the etiology of Alzheimer’s disease as well as the tendency 
of patients with Alzheimer’s disease to contract COVID-19. 
It is of utmost importance to examine the genetic factors 
responsible for the ability of SARS-CoV-2 to infect cerebral 
neurons and tissues to further clarify the interplay between 
COVID-19 and Alzheimer’s disease (Rahman et al. 2021). 
This review emphasizes the recently published evidence on 
the role of the genes of early- or late-onset Alzheimer’s dis-
ease in the susceptibility of individuals currently suffering or 
recovered from COVID-19 to Alzheimer’s disease or in the 
susceptibility of individuals at risk of or with Alzheimer’s 
disease to COVID-19 or increased COVID-19 severity and 
mortality. It also draws attention to other early- and late-
onset Alzheimer’s disease genes that remain uninvestigated 
but are quite important for the discovery of novel pathways 
to elucidate the relationship between this multifactorial dis-
ease and COVID-19.

Methods

For this review, we searched Google Scholar, PubMed, Sco-
pus and Web of Science from 2020 to 2022 for COVID-19 
disease-related Alzheimer’s disease articles. The following 
keywords were used: “COVID-19” AND “SARS-CoV-2” 
AND “Alzheimer’s Disease”. We searched Google Scholar, 
PubMed, Scopus and Web of Science from 1999 to 2022 
for Alzheimer’s disease early-late onset genes articles. The 
following keywords were used: “Alzheimer’s Disease” AND 
“Early Onset Genes [amyloid precursor protein (APP), pre-
senilin 1 (PSEN1), presenilin 2 (PSEN2), apolipoprotein E 
(APOE)]” AND “Late Onset Genes [ABI family member 3 
(ABI3), ADAM metallopeptidase domain 10 (ADAM10), 
Bridging integrator 1 (BIN1), Cas scaffold protein family 
member 4 (CASS4), CD2 associated protein (CD2AP), 
CD33 molecule (CD33), CUGBP elav-like family member 
1 (CELF1), Clusterin (CLU) (APOJ), Complement C3b/
C4b receptor 1 (CR1), EPH receptor A1 (EPHA1), FERM 
domain containing kindlin 2 (FERMT2), Major histocom-
patibility complex (HLA-cluster), Inositol polyphosphate-
5-phosphatase D (INPP5D), Myocyte enhancer factor 2C 
(MEF2C), Notch receptor 3 (NOTCH3), NME/NM23 family 
member 8 (NME8), Phosphatidylinositol binding clathrin 
assembly protein (PICALM), Paired immunoglobulin like 
type 2 receptor alpha (PILRA), Phospholipase D family 
member 3 (PLD3), Phospholipase C gamma 2 (PLGC2), 
Presenilins (PSEN1 and PSEN2), Prion protein (PRNP), 
Protein tyrosine kinase 2 beta (PTK2B), Solute carrier fam-
ily 24 member 4 (SLC24A4/RIN3), Sortilin related receptor 
1 (SORL1), Triggering receptor expressed on myeloid cells 
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2 (TREM2), Unc5 netrin receptor C (UNC5C), Zinc finger 
CW type and PWWP domain containing 1 (ZCWPW1)]”.

Early‑ and late‑onset Alzheimer’s disease genes

Alzheimer’s disease is a widespread neurodegenerative dis-
order primarily among the elderly. Its clinical presentation 
is characterized by serious cognitive disability and memory 
impairment (DeTure and Dickson 2019). Its pathological 
hallmark is cerebral amyloid beta accumulation and forma-
tion of neurofibrillary tangles (Jellinger and Attems 2007). 
In addition, an inflammatory response results in loss of cer-
ebral neurons in affected cerebral areas (Jevtic et al. 2017; 
Theofilas et al. 2018). Alzheimer’s disease exhibits a strong 
genetic background, the efforts aimed to elucidate which 
have been an integral part of a global initiative to reveal 
the pathophysiological pathways leading to the develop-
ment of clinical disease (Bellenguez et al. 2020). In some 
rarely reported families with early-onset disease (prior to 
age 65 years), mutations of 3 genes, namely amyloid precur-
sor protein (APP), presenilin 1 (PSEN1), and presenilin 2 
(PSEN2), have been reported (Lanoiselee et al. 2017). The 
late-onset variety of the disease, occurring after the age of 
65, is characterized by specific polymorphisms affecting 
apolipoprotein E (APOE) (Williamson et al. 2009; Kam-
boh et al. 2012). Although genome-wide association studies 
and next-generation sequencing studies have aggressively 
focused on the identification of novel genetic loci for Alzhei-
mer’s disease in a growing number of extensive Alzheimer’s 
disease cohorts, the new trend in the field is to investigate 
the genetic data simultaneously to examine how the newly 
discovered risk factors affect human genome (Verheijen and 
Sleegers 2018). New genes or loci have been revealed for 
late-onset Alzheimer’s disease by recently reported com-
prehensive genome-wide association trials, including ABI 
family member 3 (ABI3), ADAM metallopeptidase domain 
10 (ADAM10), Bridging integrator 1 (BIN1), Cas scaffold 
protein family member 4 (CASS4), CD2 associated protein 
(CD2AP), CD33 molecule (CD33), CUGBP elav-like fam-
ily member 1 (CELF1), Clusterin (CLU) (APOJ), Com-
plement C3b/C4b receptor 1 (CR1), EPH receptor A1 
(EPHA1), FERM domain containing kindlin 2 (FERMT2), 
Major histocompatibility complex (HLA-cluster), Inosi-
tol polyphosphate-5-phosphatase D (INPP5D), Myocyte 
enhancer factor 2C (MEF2C), Notch receptor 3 (NOTCH3), 
NME/NM23 family member 8 (NME8), Phosphatidylino-
sitol binding clathrin assembly protein (PICALM), Paired 
immunoglobulin-like type 2 receptor alpha (PILRA), Phos-
pholipase D family member 3 (PLD3), Phospholipase C 
gamma 2 (PLGC2), Presenilins (PSEN1 and PSEN2), Prion 
protein (PRNP), Protein tyrosine kinase 2 beta (PTK2B), 
Solute carrier family 24 member 4 (SLC24A4/RIN3), 
Sortilin-related receptor 1 (SORL1), Triggering receptor 

expressed on myeloid cells 2 (TREM2), Unc5 netrin recep-
tor C (UNC5C), Zinc finger CW type, and PWWP domain 
containing 1 (ZCWPW1) (Kamboh et al. 2012; Verheijen 
and Sleegers 2018; Neuner et al. 2020).

Early‑ and late‑onset Alzheimer’s disease genes 
associated with COVID‑19

It has been recently demonstrated that the early- and late-
onset Alzheimer’s disease genes make patients who cur-
rently experience COVID-19 or those who have recovered 
from it (APP and CD33) susceptible to Alzheimer’s disease; 
it has also been reported that these genes make patients who 
are at risk of having Alzheimer’s disease or who already 
suffer it prone to contracting COVID-19 or suffering more 
severe COVID-19 symptoms and having a greater risk of 
dying from COVID-19 (APOE and BIN1). Below you may 
find a summary of what is known about these genes.

Apolipoprotein E (APOE)

APOE is a 34  kDa glycoprotein containing 299 amino 
acids, which is formed by the cleavage of the 18 amino acid 
signal peptide (Yamazaki et al. 2019). It has pivotal roles 
mainly in lipid metabolism and cholesterol cycle (Mahley 
2016). Nearly all cerebral cell varieties produce APOE. 
These include astrocytes that are responsible for releas-
ing the largest percentage of APOE in non-disease state; 
microglia, in disease state; and neurons, in certain injury 
states (Chen et al. 2020). A single amino acid exchange 
results in the formation of the three most common APOE 
alleles. These include APOE2 (Cysteine112, Cysteine158-
rs7412),  APOE3  (Cysteine112 and Arginine158), 
and APOE4 (Arginine112-rs429358, Arginine158) produc-
ing three homozygous (ε2/ε2, ε3/ε3 and ε4/ε4) and three 
heterozygous (ε2/ε3, ε3/ε4 and ε2/ε4) genotypes (Drenos 
and Kirkwood 2010; Hubacek et al. 2021). APOE3 is the 
most frequently observed allele across the world (55–91%) 
(Huebbe et al. 2015). The ancestral allele APOE4 is tradi-
tionally regarded as a harmful allele and significantly related 
to the development of Alzheimer’s disease and atheroscle-
rotic cardiovascular disease (Hubacek et al. 2021). It leads to 
more prominent pathological signs of Alzheimer’s disease, 
such as amyloid beta fibril deposition and amyloid beta oli-
gomer production, neurofibrillary tangle formation, neuronal 
death, reduced synaptic plasticity associated with impaired 
learning and memory, loss of lipid bilayer compositional 
asymmetry and lipid homeostasis, and oxidative stress (But-
terfield and Mattson 2020).

Kuo et al. (2020a, b) performed an analysis of genetic 
and clinical data of more than 450.000 individuals of Euro-
pean ancestry registered in the United Kingdom Biobank; 
they found that people with the ε4/ε4 allele had a 2 times 



850	 S. Sirin et al.

1 3

greater risk of having severe COVID-19 and a 4 times 
greater risk of death from COVID-19 compared with those 
having the ε3/ε3 genotype (Kuo et al. 2020a, b). A logistic 
regression model in that study was used to compare e3e4 
or e4e4 genotypes to e3e3 for COVID-19 positivity sta-
tus, adjusted for: sex (female 55%, male 45%); age (48–86, 
mean age 68 years); baseline UKB assessment center in 
England; genotyping array type; and the top five genetic 
principal components (accounting for possible population 
admixture). Sex, age, and disease histories (dementia, hyper-
tension, coronary artery disease (myocardial infarction or 
angina), and type 2 diabetes) may be confounding factors 
in that study. In a study on Czech subjects, where Hubacek 
et al. (2021) performed separate comparisons of sympto-
matic and asymptomatic COVID-19 patients with controls, 
it was demonstrated that symptomatic patients and the con-
trols differed significantly regarding the frequency of the ε4/
ε4 allele. Sex (female 54.7%, male 45.3%), age (mean age 
44 ± 15 years), and disease histories (diabetes prevalence 
7.8%, hypertension prevalence 13.3%) may be a confounding 
factor in this study. Likewise, a study performed among 913 
elderly volunteers aged 75 to 90 years from Spain revealed 
that symptom status and clinical severity of COVID-19 
infection are determined by presence of the ε4/ε4 allele (Del 
Ser et al. 2021). Demographics (age, sex, educational attain-
ment (less than primary school, primary school, high school, 
and more than high school), and estimated yearly income 
(< 20,000, 20,000–50,000, > 50,000 EUR/year), anthropo-
metric measures (abdominal circumference, weight, height, 
and BMI), genetic polymorphisms [APOE (rs429358 and 
rs7412) genotype], comorbidities (hypertension, diabetes, 
hypercholesterolemia, hypertriglyceridemia, ischemic heart 
disease, atrial fibrillation, cerebrovascular disease, lung 
diseases, obstructive sleep apnea, and major depression), 
life habits (history, age at onset and duration of smoking 
and alcohol intake, coffee and tea consumption, number 
of drugs, and intake of any statin, angiotensin-converting 
enzyme inhibitor, and anticoagulant or antiplatelet agent), 
frailty surrogates (up and go test, gait disturbances, present 
cognitive state [normal, mild cognitive impairment, and 
dementia), and functional activities questionnaire (FAQ)] 
may be confounding factors in that study. It is reported that 
black African populations express the ε4/ε4 allele more 
commonly than Caucasian and Asian populations (respective 
population frequencies ∼30–40%, ∼7–20%, and ∼5–15%). 
Compared to other races, black African people also suffer 
a higher prevalence and mortality of COVID-19 (Hubacek 
et al. 2021). One or two copies of ε4/ε4, as opposed to two 
copies of ε3/ε3, reportedly causes a more serious in vivo 
innate immune response, indicated by higher hyperther-
mia and cytokine levels, when challenged with intravenous 
lipopolysaccharide administration. Importantly, although a 
variety of cell types in lungs, such as macrophages and type 

I and II alveolar epithelial cells, can express APOE, type II 
alveolar cells are the main cell type that expresses angioten-
sin-converting enzyme 2, which is the functional receptor 
for SARS-CoV-2. Furthermore, the local pulmonary APOE 
concentration is perceived as a danger signal in persons with 
asthma, activating macrophages to produce and release the 
inflammasome followed by interleukin-1β (Goldstein et al. 
2020). It has been suggested by Gkouskou et al. (2021) that 
homozygous ε4 causes cholesterol and oxidized low-density 
lipoprotein deposition in pneumocytes, potentially leading 
to a more readily contracted and more severely experienced 
SARS-CoV-2 infection. The most plausible explanation of 
this occurrence states that quantitatively and qualitatively 
altered lipid rafts and increased reactive oxygen species in 
the cells on the surface of the lung airways pave the way for 
COVID-19 severity. The aforementioned milieu leads to an 
increase in the plasma membrane expression of angiotensin-
converting enzyme 2 and transmembrane protease, serine 
2, which promote virus binding, cell entry, and intercellu-
lar transmission. Apart from SARS-CoV-2, there are other 
viruses that can invade body cells using lipid rafts; of note, 
infectious cycles of viruses are also modulated by the ε4/ε4 
genotype of the APOE gene. Susceptibility to SARS-CoV-2 
infection is greater in neurons and astrocytes expressing ε4/
ε4 allele compared with those expressing ε3/ε3; particu-
larly, astrocytes expressing the ε4/ε4 allele show a more 
severe response to SARS-CoV-2 infection compared with 
those expressing the ε3/ε3 allele. The ε4/ε4 allele report-
edly increases pro-inflammatory cytokines whereas ε3/ε3 
is responsible for the immune modulation of inflammation, 
harming COVID-19 patients to a substantial degree when 
defective (Al-Jaf et al. 2021). Hence, Alzheimer’s disease 
is rendered more pathogenic (amyloid plaques, neurofibril-
lary tangles, and neuronal loss) in individuals carrying the 
ε4/ε4 allele, who are at risk of being infected and killed by 
COVID-19.

Amyloid precursor protein (APP)

Mammals harbor three members of the AAP family: APP, 
the APP-like protein 1 and APP-like protein 2 (Dawkins 
and Small 2014). The human APP gene, which is found on 
the long arm of chromosome 21, has a length of approxi-
mately 240 kb and contains a minimum of 18 exons (Zheng 
and Koo 2006). It is among the most common pathogenic 
genes related to the pathogenesis of Alzheimer’s disease 
(Wang and Li 2021). APP, a transmembrane glycoprotein, 
is subjected to alternative proteolytic processing (Boix et al. 
2020). Its cleavage by proteolysis results in the formation of 
amyloid beta peptide, a process known to be closely asso-
ciated with the pathogenesis of Alzheimer’s disease (Tsat-
sanis et al. 2020). At first, APP is cleaved by two proteases, 
α-secretase or β-secretase, and this process leads to the 
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formation of the secreted ectodomains soluble APPα and 
soluble APPβ (Dawkins and Small 2014). Three enzyme 
members of ADAM family that are responsible for the activ-
ity of α-secretase are ADAM9, ADAM10, and ADAM17 
(Vassar 2013). β-Secretase, a type I transmembrane protein, 
is a member of the pepsin family of aspartyl proteases (Cit-
ron 2004; Lemberg 2011). It carries an N-terminal catalytic 
domain with a transmembrane domain, two catalytic aspartic 
residues, and a short C-terminal cytoplasmic tail (Hunt and 
Turner 2009). γ-Secretase is a heterogeneous protein com-
plex carrying four transmembrane proteins including ante-
rior pharynx defective 1, presenilin enhancer 2, nicastrin, 
and PSENs (Uddin et al. 2020). After an α- or β-secretase 
cleaves APP, the membrane associated C-terminal frag-
ments (C83 and C99, respectively) can undergo cleavage 
by γ-secretase, which produces p3 or amyloid beta, respec-
tively, and a short C-terminal peptide designated as the APP 
intracellular domain (Dawkins and Small 2014).

A number of multi-omic analyses of samples obtained 
from COVID-19 patients have provided clues of a poten-
tial relationship between COVID-19 and APP metabolism. 
For instance, a US study employing RNA sequence analy-
sis found that, as compared to COVID-19 negative ones, 
COVID-19-positive patients showed a significant rise in 
APP transcript in their blood samples (Xia et al. 2021). Sex 
(female and male), ethnicity (white, black, Asian, Hispanic, 
and other), and treatments (replacement therapy, hydroxy-
chloroquine, antibiotics, antiviral, IL6-antagonist, convales-
cent plasma, steroid, and therapeutic anticoagulation) may 
be confounding factors in that study. In line with this obser-
vation, Yang et al. (2021) made the observation that APP 
was among the genes that underwent the highest up-regula-
tion in oligodendrocytes sampled from the brain tissues of 
COVID-19-positive persons after death. Age, sex, brain tis-
sues sampled (frontal cortex and choroid plexus), cell types 
(excitatory and inhibitory neurons, astrocytes, oligodendro-
cytes, oligodendrocyte precursor cells, and microglia) and 
sampling group (10 non-viral, 4 COVID-19, and 1 influenza 
patient) may be confounding factors in that study. It has been 
proposed that immunohistochemical stains for β-APP can 
specifically mark the “signature” change unique to hypoxic 
leukoencephalopathy or COVID-19 brain disease, but for-
mer studies have lacked non-COVID-19 controls (Beach 
et al. 2021). APP accumulation and subsequent amyloid beta 
plaque level rise in the later course of COVID-19 infection 
are clinically important in the short and long term due to a 
number of reasons. APP accumulation due to COVID-19 
infection can facilitate the development of arterial occlusion, 
thrombosis, ischemic stroke, and neurodegenerative disease. 
Many diseases, e.g., cerebral amyloid angiopathy, are caused 
by APP deposition are directly related to the accumulation 
of amyloid beta, the cleaved product of APP. This is poten-
tially relevant to the fact that older COVID-19 patients are 

more susceptible to a greater symptom burden and its con-
sequences related to amyloid beta plaque formation while 
they also suffer a higher COVID-19 mortality (Biffi and 
Greenberg 2011; Camacho et al. 2021; Ghiso et al. 2021).

Bridging integrator 1 (BIN1)

BIN1 has been inherited from yeast to humans during evo-
lution; it is classified in the Bin1/amphiphysin/RVS167 
gene family that is associated with a wide array of cellu-
lar processes, including endocytosis, actin dynamics, and 
membrane trafficking/tubulation (Chapuis et  al. 2013). 
BIN1 is located on the long arm of human chromosome 
2 and acts by encoding various tissue specific isoforms of 
the Myc interacting adapter protein (Glennon et al. 2013). 
Mammal BIN1 undergoes wide expression across differ-
ent species and possesses a wide range of functional roles, 
producing in excess of 10 isoforms with different subcellu-
lar localization, tissue distribution and protein interactions 
(Chapuis et al. 2013). Human brain shows specific expres-
sion of isoforms 1–7 and skeletal muscle isoform 8, whereas 
isoforms 9 and 10 are ubiquitous (Prokic et al. 2014). All 
the isoforms mediate or sense membrane curvature via the 
Bin1/amphiphysin/RVS167 domain and use SRC homol-
ogy 3 domain to bind dynamin (Kojima et al. 2004). Solely 
the neuronal isoforms, however, carry a clathrin and AP-
2-binding domain that is responsible for the interaction 
with clathrin and APETALA2; this hints to a special role 
of BIN1 in cerebral clathrin-mediated endocytosis (Cala-
fate et al. 2016). BIN1’s main expression occurs in rodents’ 
mature oligodendrocytes and white matter tracts as well 
as the human brain. BIN1 has the ability to perform direct 
binding to Tau, and the alteration in the expression of Dros-
ophila Amph (the fly BIN1 homolog) dramatically changes 
the human Tau induced rough eye phenotype; these observa-
tions suggest that BIN1 modulates Tau pathology to mediate 
the risk of late-onset Alzheimer’s disease (De Rossi et al. 
2017). A locus upstream of the gene BIN1 ranks second 
after APOE locus in genetically determining Alzheimer’s 
disease susceptibility (Kingwell 2013). Initially, BIN1 was 
linked to sporadic forms of Alzheimer’s Disease by virtue of 
its association with the disease through two single nucleotide 
polymorphism (SNP)s located about 30 kb upstream of the 
BIN1 gene, namely rs744373 and rs7561528; this was later 
corroborated by several different cohorts (Hao et al. 2021). 
Furthermore, a new 3 bp insertion allele 28 kb upstream 
of BIN1 (rs59335482) was also shown to exist in a recent 
research (Glennon et al. 2013).

BIN1 gene SNPs are the second strongest risk factor 
for sporadic Alzheimer’s disease after APOE variants. 
Having a global allele frequency of 37% and conferring 
an increased Alzheimer’s disease risk with an odds ratio 
of 1.17–1.19, SNP rs744373 is the most prevalent BIN1 
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Alzheimer’s disease risk variant. Studies dealing with sin-
gle cell sequencing in COVID-19 patients’ cerebral tissue 
samples demonstrated that excitatory and inhibitory neu-
rons, astrocytes, oligodendrocytes, oligodendrocyte precur-
sor cells, and microglia of those patients showed similar 
pathological characteristics with those seen in neurodegen-
erative disorders (Villa et al. 2022). Lehrer and Rheinstein 
scanned United Kingdom Biobank to examine the rela-
tionship between BIN1 and SNP rs744373 and survival 
in COVID-19. To achieve this goal, they named the major 
(non-Alzheimer’s disease) BIN1 allele as BIN and the SNP 
rs744373 minor (Alzheimer’s disease) allele as RS7. Their 
study showed that mortality was lowest with heterozy-
gous BIN RS7 (11.7%) followed by homozygous BIN BIN 
(17.2%). Homozygous RS7 RS7 showed the highest mortal-
ity rate (28.1%). According to protein molecule alignment 
analyses, the BIN allele may prevent SARS-CoV-2 virus 
replication (Lehrer and Rheinstein 2021). Demographics 
[sex (female 49%, male %51), age (mean age 54 ± 9.2 years), 
death due to COVID-19, comorbidities (Alzheimer’s dis-
ease, coronary heart disease, and hypertension)] may be 
confounding factors in that study. As for the interaction 
between BIN1 and SARS-CoV-2, the BIN allele may pre-
vent SARS-CoV-2 virus replication in 2 ways. BIN binds to 
the SARS-CoV-2 nucleocapsid phosphoprotein and prevents 
viral infection through the following steps: (i) by conjugat-
ing to SARS-CoV-2 non-structural protein 1, BIN1 could 
hinder viral infection (Lapointe et al. 2021); and (ii) folding 
of the SARS-CoV-2 non-structural protein 3 into a tunnel 
is followed by its binding to cell membranes, which enables 
newly produced viral RNA to exit. BIN1 can prevent this 
event by conjugating to non-structural protein 3 (Wolff et al. 
2020). The exact mode of action of BIN1 on SARS-CoV-2 
needs to be further studied.

CD33 molecule (CD33)

The human sialic acid binding immunoglobulin-like lec-
tin (SIGLEC) family is composed of the CD33 related 
SIGLECs (CD33, SIGLEC5 through 12, 14 and 16) that 
undergo a rapid evolution and are lost from some species; 
four SIGLECs are relatively conserved among species 
(Sialoadhesin (SIGLEC1), CD22 (SIGLEC2), myelin-asso-
ciated glycoprotein (SIGLEC4) and SIGLEC15) (Estus et al. 
2019). CD33, a type I transmembrane protein, is believed 
to play a role in cell–cell interaction and to impede normal 
immune cell function (Jiang et al. 2014). CD33 gene con-
tains seven coding exons (Zhao 2019). Exon 2 is responsi-
ble for encoding the canonical immunoglobulin-V domain 
(Raj et al. 2014), exon 4 for encoding the immunoglobulin-C 
structural domain (Nair-Gupta et al. 2020), and exons 6 and 
7 for encoding cytosolic immunotyrosine inhibitory motifs 
(Walter et al. 2005). The mediation of sialic acid binding by 

the immunoglobulin-V domain is likely since the latter is 
characterized by high homology with the immunoglobulin-
V domain of other SIGLECs, such as arginine, an amino 
acid that play a critical role for sialic acid binding (Ikehara 
et al. 2004). When bound, sialic acid activates CD33 and 
causes monocyte inhibition via cytosolic immunotyrosine 
inhibitory motif domains (Malik et al. 2013). According to 
the findings provided by some genetic studies, CD33 gene 
variant is an important factor modifying Alzheimer’s dis-
ease risk and are expressed by the innate immune system 
(Magusali et al. 2021). rs3865444 is located in the proximal 
promoter of CD33 and considered one of the SNPs linked 
to Alzheimer’s disease (Liu and Jiang 2016). CD33 gene 
variant plays a role in a related pathway so that it enables 
microglia to react to amyloid beta deposition, abnormal 
synaptic activity or damaged phospholipid membranes and 
to activate the complement system to induce phagocytosis 
(Magusali et al. 2021).

Myeloid-derived suppressor cell populations (particularly 
CD33, CD14, and CD15) rose from 0.3% (IQR 0.13–2.13) 
in healthy donors to 47.5% (IQR 28.4–65.6%) in COVID-
19 patients (Bordoni et al. 2020). Sex (female 35.42%, male 
64.58%), age (49–74.25, mean age 62 years), symptoms 
[dyspnea (50%), fever (84.78%), cough (76.09%), sore 
throat (17.39%), diarrhea (6.52%), nausea (2.17%), vomit-
ing (6.52%), headache (13.04%), asthenia (32.61%), myalgia 
(13.04%), and severe respiratory failure (63.04%)] may be 
confounding factors in that study. Furthermore, intensive 
care patients with severe COVID-19 had a lower number 
of innate and adaptive cytotoxic cells such as natural killer 
cells and T-lymphocytes, and this effect was in line with 
CD33 expansion and rising levels of cytokines. Frequency 
of CD33 was positively correlated to viral load and length 
of hospitalization, and negatively correlated to T cell count, 
natural killer cell count, and serum albumin (Koushki et al. 
2021). Demographics [sex (female 49%, male %51), age 
(mean age 54 ± 9.2 years), deceased to COVID-19, comor-
bidities (Alzheimer’s disease, coronary heart disease, and 
hypertension)] may be confounding factors in that study. 
CD33 is expressed to a greater degree when a person has the 
Alzheimer’s disease-related CD33 rs3865444 CC allele and 
renders that person more susceptible. Viral secreted glyco-
protein ligation of CD33, likely in association with Siglec-5, 
promotes proliferation of CD33 myeloid-derived suppressor 
cells, a process known to occur in cancers but at a substan-
tially higher degree (Murch 2020). CD33 myeloid-derived 
suppressor cells secrete arginase-1, which leads to depletion 
of arginine stores and thus reduces T cell receptor-ζ chain 
expression and impairs adaptive immune responses (Tesi 
2019; Verschoor et al. 2013). Some immunosuppressive 
cytokines including transforming growth factor-β and inter-
leukin-10, and a number of effector molecules, such as nitric 
oxide and reactive oxygen metabolites, are also released into 
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the medium. Furthermore, myeloid-derived suppressor cell 
activation downgrades B cell proliferation and antibody pro-
duction (Lelis et al. 2017). CD33 expression has been shown 
to improve susceptibility of patients with COVID-19 and the 
CD33 rs386544 CC allele is associated with Alzheimer’s 
disease.

The other early‑ and late‑onset Alzheimer’s disease 
genes

Despite the fact that numerous COVID-19 studies have 
been published in the last 2 years, the interplay between the 
other early- and late-onset Alzheimer’s disease genes and 
COVID-19 have not been addressed. An understanding of 
the potential effects of the related genes in COVID-19-as-
sociated cognitive impairment would allow the production 
of efficient protective and therapeutic options for neurocog-
nitive diseases that will likely emerge soon. Furthermore, 
COVID-19 shares a common ground with a variety of dis-
eases including Alzheimer’s disease (Ciaccio et al. 2021; 
Dworakowska and Grossman 2020; Sharpless 2020). Hence, 
establishing a link between these genes and COVID-19 will 
serve to set a strategy to combat both Alzheimer’s disease as 
well as COVID-19. This review provides a brief discussion 
of some of the available genes (Table 1).

Conclusion

In conclusion, the present review stresses that the early- and 
late-onset Alzheimer’s disease genes play a role in the sus-
ceptibility of persons who currently suffer or have recovered 
from COVID-19 to Alzheimer’s disease (APP and CD33) 
or the susceptibility of persons who are at risk of Alzhei-
mer’s disease or already suffer the disease to COVID-19 
or increased COVID-19 severity and mortality (APOE and 
BIN1). Furthermore, it also drew attention to other early- 
or late-onset Alzheimer’s disease genes that are essential 
for elucidating the relationship between Alzheimer’s dis-
ease and COVID-19 but remain uninvestigated. Thus, it 
attempted to detail the relationship between more specific 
molecular aspects of Alzheimer’s disease and neurological 
complications of COVID-19. An understanding of the cur-
rent relationship between the above-mentioned genes and 
COVID-19 is important for determining the therapeutic tar-
gets against both Alzheimer’s disease and COVID-19.
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