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Abstract
The pharmacological treatment of major depressive disorder with currently available antidepressant drugs is still unsatisfying 
as response to medication is delayed and in some patients even non-existent. To understand complex psychiatric diseases 
such as major depressive disorder and their treatment, research focus is shifting from investigating single neurons towards a 
view of the entire functional and effective neuronal network, because alterations on single synapses through antidepressant 
drugs may translate to alterations in the entire network. Here, we examined the effects of monoamine reuptake inhibitors on 
in vitro hippocampal network dynamics using calcium fluorescence imaging and analyzing the data with means of graph 
theoretical parameters. Hypothesizing that monoamine reuptake inhibitors operate through changes of effective connectiv-
ity on micro-scale neuronal networks, we measured the effects of the selective monoamine reuptake inhibitors GBR-12783, 
Sertraline, Venlafaxine, and Amitriptyline on neuronal networks. We identified a common pattern of effects of the differ-
ent tested monoamine reuptake inhibitors. After treatment with GBR-12783, Sertraline, and Venlafaxine, the connectivity 
degree, measuring the number of existing connections in the network, was significantly decreased. All tested substances led 
to networks with more submodules and a reduced global efficiency. No monoamine reuptake inhibitor did affect network-
wide firing rate, the characteristic path length, or the network strength. In our study, we found that monoamine reuptake 
inhibition in neuronal networks in vitro results in a sharpening of the network structure. These alterations could be the basis 
for the reorganization of a large-scale miswired network in major depressive disorder.

Keywords Hippocampal networks · Antidepressants · Hippocampus culture · Monoamine reuptake inhibitors · 
Connectivity

Introduction

Major depressive disorder (MDD) is a disease characterized 
by persistent feelings of sadness, guilt, and worthlessness 
(American Psychiatric Association 2013). With a worldwide 
lifetime prevalence averaging around 16.6% and a rising 
number of patients, the WHO projected MDD to become 
one of the most burdensome diseases in the western world 

(American Psychiatric Association 2017; GBD 2016 DALYs 
and HALE Collaborators 2017; Olesen et al. 2012). MDD 
also accounts for a great portion of the total health-related 
expenses with an annual cost of 100 billion Euro in Europe 
alone, implying not only an economic burden for society, 
but a threat to our social and health care systems (Olesen 
et al. 2012; Sobocki et al. 2006). Many currently availa-
ble antidepressant drugs (ADDs) are selective monoamine 
reuptake inhibitors, which often take weeks to months to 
show clinical effects (Nestler et al. 2002; Katz et al. 2003; 
Rush et al. 2006). Given the rapid brain accumulation of 
drugs like fluoxetine, the underlying cause for the delayed 
treatment response is only insufficiently understood (Nestler 
et al. 2002).

For decades, the molecular research on neurological and 
psychiatric diseases was based on the single neuron as the 
structural and functional unit of the nervous system (Yuste 
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2015). While these investigations led to groundbreaking 
discoveries, neurons rarely act on their own—they rather 
function in networks through their interactions (Bassett 
and Sporns 2017). A single neuron receives various inputs 
from thousands of other neurons and can target an equally 
large number of neurons (Laughlin and Sejnowski 2003). 
Therefore, a change on only a few synapses can subse-
quently lead to changes in the whole neuronal network 
(Bassett and Sporns 2017; Yuste 2015). With the brain 
consisting of networks of different brain areas, groups of 
neurons, and individual neurons, it can be classified as a 
multiscale network system. Modifications of the compo-
sition of these networks at the molecular scale can have 
an impact on higher brain functions (Bassett and Sporns 
2017). To this day, there is no general theory about the 
function of neuronal circuits and how their dysfunction 
might be the cause of mental or neurological diseases 
(Nestler et al. 2002; Yuste 2015). However, those dis-
eases might derive from disturbances of neuronal networks 
on multiple scales with antidepressant drugs potentially 
reversing these disturbances (Bassett and Sporns 2017; 
Catani and ffytche 2005).

Networks of neurons are studied at many different levels 
and are presented in the mathematical form of a graph which 
consists of nodes (building blocks of the network—on differ-
ent scales these may be single neurons, groups of neurons, 
or distinct brain areas) and edges (the connections linking 
the nodes) (Bassett and Sporns 2017; Wrosch et al. 2017). 
Depending on the nature of relationship between the network 
nodes that we focus on, we can generally distinguish three 
types of neuronal networks: Anatomical networks represent 
physical connections (Bullmore and Sporns 2009), func-
tional networks describe the statistical dependence between 
the activities of two nodes without specifying the cause of 
correlation (Bullmore and Sporns 2009; Feldt et al. 2011), 
and finally, effective networks determine the influence that 
the activity of one node has on another node (Feldt et al. 
2011; Bullmore and Sporns 2009). Functional and effective 
networks are based on statistical and information processing 
models. While of course also statistical relationships have 
to be rooted in physical connections on some level, these 
networks, however, do not require a direct anatomical con-
nection from one cell to another for a functional or effective 
connection to occur.

Universal patterns of network structure, such as ‘small-
worlds’ (Feldt et  al. 2011; Bullmore and Sporns 2009; 
Latora and Marchiori 2001), can be affected in neurological 
and psychiatric diseases (Iturria-Medina et al. 2008; Achard 
and Bullmore 2007; Salvador et al. 2005; Guo et al. 2014). 
Neuroimaging studies showed specifically that major depres-
sive disorder (Zhang et al. 2011; Cooney et al. 2010; Kaiser 
et al. 2015) and other mental disorders such as Alzheimer’s 
disease (Goveas Joseph et al. 2011) and schizophrenia (Jafri 

et al. 2008; van den Heuvel et al. 2013) affect neuronal net-
work function on a whole-brain scale.

Antidepressant drugs like selective serotonin reuptake 
inhibitors (SSRI), selective serotonin-norepinephrine reup-
take inhibitors (SSNRI), tricyclic antidepressants (TCA), 
and monoamine oxidase inhibitors (MAOI) target mono-
aminergic systems by enhancing serotonergic, noradrener-
gic, and partly dopaminergic inputs, leading to modulations 
in synaptic strength (Citri and Malenka 2008). Through 
intracellular signaling cascades, antidepressant drugs fur-
ther might increase the conductance of post-synaptic recep-
tors leading to more permanent strengthening of synapses 
(Citri and Malenka 2008; Andrade and Rao 2010). In paral-
lel, structural changes might be induced through de novo 
synthesis of synaptic proteins which lead to enlargement 
of synapses, dendritic outgrowth, and branching and even 
the growth of new synapses (Citri and Malenka 2008; Pit-
tenger and Duman 2008; Seo et al. 2014). In a similar way, 
weakening and reduction of synapses are possible (Citri and 
Malenka 2008).

As such antidepressant treatment can reverse pathologi-
cal alterations of larger scale networks (Gudayol-Ferré et al. 
2015), we hypothesize that antidepressant drugs and their 
molecular and cellular effects also change effective connec-
tivity on micro-scale neuronal networks.

We found that, while different monoamine reuptake 
inhibitors have some individual effects on the networks, a 
common pattern of effects results from monoamine reuptake 
inhibition.

Materials and methods

Cell culture

Hippocampal neuronal cultures were prepared as previ-
ously described (Tischbirek et al. 2012; Welzel et al. 2010). 
Briefly, 1–3-day-old Wistar rats of any sex were sacrificed 
by decapitation in accordance with the guidelines of the 
State of Bavaria and with approval of the ethics committee 
of the FAU Erlangen-Nürnberg. Whole hippocampi where 
removed and transferred to ice-cold Hank’s salt solution. 
Afterwards, cells were washed, digested, dissociated, and 
centrifuged. Cells were plated onto Matrigel-coated glass 
coverslips, kept in growth medium, and incubated at 37 °C 
and 95% humidity until the experiments.

Pharmacological treatments

After 8–10 days in culture, the growth medium was sup-
plemented with GBR-12783 (10 µM), Sertraline (1 µM), 
Venlafaxine (50 µM), Amitriptyline (10 µM), or solvent 
for 48 h. These concentrations were based on the previous 
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studies showing enhanced expression of synaptic protein lev-
els and dendritic outgrowth at similar dosages (de Leeuw 
et al. 2020; Seo et al. 2014; Kajitani et al. 2012). The cul-
tures were imaged subsequently. All substances were pur-
chased from Tocris Bioscience (Wiesbaden-Nordenstadt, 
Germany).

Live cell recording of neuronal networks

The cells were stained with the calcium-sensitive fluores-
cent dye Fluo-8-AM for 30 min while being kept at 37 °C. 
Afterwards, cells were washed and placed into the record-
ing chamber, and filled with imaging buffer (in mM: NaCl 
144, KCl 2.5, Glucose 10, HEPES 10,  CaCl2 2.5,  MgCl2 
2.5). Recordings were made at room temperature on a Nikon 
TI-Eclipse inverted fluorescence microscope equipped with 
a tenfold, 0.45 NA objective (Nikon Instruments Europe, 
Düsseldorf, Germany) and a water-cooled EM-CCD cam-
era (iXon Ultra 897, Andor, Belfast, Northern Ireland). 
Each recording of spontaneous activity (18.5 min) was 
concluded with an electric field stimulation with alternat-
ing polarity, and delivered through two parallel platinum 
electrodes. Images were recorded with Andor Solis soft-
ware with exposure time of 1 ms and recording frame rate 
of 27.33 images/s, generating 31,156 frames per recording. 

Recordings were exported for analysis into tagged image file 
format containing 512 × 512 pixels of 16-bit monochromatic 
intensity values.

Image processing and network reconstruction

We used the fluorescence increase after electrical stimula-
tion at the end of the recordings to filter for excitable neu-
rons. Neuronal cell was detected using a feature point detec-
tion algorithm (Sbalzarini and Koumoutsakos 2005) and 
the fluorescence signals during the spontaneously captured 
recording phase were extracted from the image stacks. The 
fields of view in all recordings contained around 100–300 
cells (Fig. 1E). The relative fluorescence traces were calcu-
lated for each cell (Jia et al. 2010).

Action potentials were estimated from the relative fluo-
rescence traces with a template fitting and peeling algorithm 
(Deneux et al. 2016). This spike estimation yielded a binary 
time log for each cell with zeros (indicating no spiking activ-
ity) and ones (indicating spikes) in the different time frames. 
Based on these binary spiking data, we reconstructed effec-
tive neuronal networks in the cultures with a previously 
published machine learning model (Wrosch et al. 2017). A 
number of methods have been proposed to infer connectivity 
from spiking activity (Salinas and Sejnowski 2001; Xu et al. 

Fig. 1  Excerpts of recording and processing steps from an exemplary 
culture. a Field of view taken from an exemplary culture (control 1). 
Scale bare = 500  µm. b Fluorescence trace of one single cell of the 
same culture registered over 1 min. c Participation in bursting behav-
ior of all cells of control 1. d Spike traces of all cells of control 1 
over 3 min. e There were no significant differences between groups 

regarding the mean number of cells. Monoamine reuptake inhibi-
tors were present during incubation for 48  h. Sample sizes: control 
(n = 20), GBR12783 (10 µM, n = 23); Sertraline (1 µM, n = 17); Ven-
lafaxine (50  µM, n = 23); Amitriptyline (10  µM, n = 11). The boxes 
extend from the 25th to the 75th percentiles. The median is shown as 
the horizontal line. The whiskers show the range of values
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1997; Stetter et al. 2012; Wrosch et al. 2017; Lungarella 
et al. 2007; Schreiber 2000). This approach uses eight of 
the best performing algorithms and combines them to a joint 
measure, which (on the simulated test data set) outperformed 
each individual algorithms prediction accuracy and sensitiv-
ity. This model is based on excitatory activity in the net-
works and validated with extensive simulations of varying 
connectivity (ranging from 0.05 to 0.8) and activity patterns 
(sparse to no bursting with an average spike propagation 
probability across a connection of 0.05 up to heavy bursting 
behavior with an average propagation probability of 0.8). 
The processing yields a binary, directed network (meaning 
the model predicts whether a specific connection from cell 
A to cell B exists, or not). For all predicted connections, the 
connection weight is calculated as the probability of spike 
propagation across this connection in the respective record-
ing. This finally results in weighted, directed networks that 
we here analyzed for their structural and functional network 
properties.

Graph theoretical network analysis

To analyze spiking properties of treated networks, the fir-
ing rate was calculated as number of spikes per second. To 
assess activity synchrony Cohen’s kappa, comparing the 
observed proportion of coincident spikes to the expected 
proportion of coincident spikes, was used (Illes et al. 2009; 
Cohen 1960). Graph theoretical network parameters were 
calculated using the brain connectivity toolbox (Rubinov 
and Sporns 2010). The most basic network property is the 
connectivity degree, the percentage of existing connections 
out of all possible connections. The strength of a connection 
in the network was defined as the probability of propaga-
tion of a spike in the source cell to a spike in the target cell 
within the next time frame (36 ms) and the average connec-
tion strength across each network (‘network strength’) was 
calculated.

Parameters defining the structure of the network can 
be divided into measures of functional integration and of 
functional segregation. Measures of functional integra-
tion give information about the communication between 
groups of neurons and their ability to integrate information 
(Rubinov and Sporns 2010). They are based on the short-
est path length, which is defined as the minimal numbers 
of links connecting two nodes in the network (Feldt et al. 
2011). Regarding the whole network, the characteristic 
path length is the average shortest path between two ran-
dom nodes in a network (Feldt et al. 2011). It can be calcu-
lated with binary links or links that are weighted according 
to their connection strength (Wrosch et al. 2017). If every 
cell were directly connected with every other cell, the 
characteristic path length would be 1, implying maximum 

communication between specialized groups and therefore 
maximum integration of information (Rubinov and Sporns 
2010). Inversely related to the average shortest path length 
is the global efficiency, giving information about the 
efficiency of parallel signal transfer across the network 
(Rubinov and Sporns 2010; Bullmore and Sporns 2009). If 
one node and its links are deleted, there is a drop in global 
efficiency, which is measured as the vulnerability to the 
loss of that node. The vulnerability of the entire network 
was defined as the mean efficiency loss across all nodes 
(Latora and Marchiori 2005; Newman 2003).

Measures of functional segregation, on the other hand, 
determine the existence of densely interconnected regions 
called clusters or modules which are able to process spe-
cialized information (Rubinov and Sporns 2010). The local 
clustering coefficient is calculated as the fraction of con-
nections between the nearest neighbors of a node out of 
all possible connections (Feldt et al. 2011), meaning that 
if the connection partners of a certain cell are also highly 
connected with each other, the clustering coefficient is 
high. This clustering can be analyzed taking connection 
weights into account (weighted networks) or not (binary 
networks). The modularity degree reveals to which extent 
the network can be divided into modules of cells that are 
highly interconnected within members of the module, 
but have few connections with other modules (Rubinov 
and Sporns 2010). Complementing the structure analy-
sis is the centrality of a node, defined as the number of 
shortest paths that pass through that node. This reflects 
the importance of the node in regard to information flow 
(Rubinov and Sporns 2010; Boccaletti et al. 2006; Nigam 
et al. 2016): Nodes with high centrality play a central part 
in integrating information between different subgroups of 
networks (Nigam et al. 2016; Schroter et al. 2017).

Network parameters were calculated using the follow-
ing formulas:

Activity synchrony

With N denoting the number of cells in the network, si 
and sj denoting the number of spikes in cells i and j, and cij 
denoting the number of synchronous spikes in cells i and j.

Connection strength

Connectivity degree

K =
1

N × (N − 1)
×

∑

i, j ∈ N

i ≠ j

2×cij+N−si−sj

N
−

si×sj+(N−si)×(N−sj)
N2

1 −
si×sj+(N−si)×(N−sj)

N2

.

Sij =
cij

si
.
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With aij denoting the connection between cells i and j.
Binary characteristic path length

With dij denoting the distance between cells i and cells j.
Weighted characteristic path length

With dwNij denoting the weighted distance between cells 
i and cells j.

Global efficiency

Clustering coefficient

with kin denoting the in-degree (number of inward-links 
connecting to the cell) and kout denoting the out-degree 
(number of outward-links connecting to the cell).

Modularity degree

with l denoting the number of links in the network and mi 
denoting the module affiliation according to a generalized 
Louvain community (Leicht and Newman 2008).

Betweenness centrality

with ρhj(i) denoting the number of shortest paths between 
cells h and j that pass through cell i.

Vulnerability

with Ew denoting the global efficiency and Ew(i) denoting 
the global efficiency after removal of node i and all its edges.

c =

∑

i,j∈N aij

N × (N − 1)
.

L =
1

N
×
�

i∈N

∑

j∈N,j≠i dij

N − 1
.

Lw =
1

N
×
�

i∈N

∑

j∈N,j≠i d
w
ij

N − 1
.

Ew =
1

N
×
�

i∈N

∑

j∈N,j≠i
1

dw
ij

N − 1
.

C =
1

N
×
�

i∈N

1

2
×
∑

j,h∈N

�

aij + aji
��

aih + ahi
��

ajh + ahj
�

�

kout
i

+ kin
i

�

×
�

kout
i

+ kin
i
− 1

�

− 2
∑

j∈N aij × aji
;

Q =
1

l
×
∑

i,j∈N

(

aij −
kout
ij

× kin
ij

l

)

× �
(

mi,mj

)

;

bi =
1

(N − 1) × (N − 2)
×

∑

h, j ∈ N

h ≠ i, h ≠ j, j ≠ i

�hj(i)

�hj
;

V(i) =
Ew − Ew(i)

Ew
;

Random networks

Data from random networks were included in the data plots 
as a reference. 100 random networks were generated by cre-
ating an adjacency matrix of the average network size in 
this study (153 cells) and assigning 5814 randomly placed 
connections (self-connections on the diagonal were prohib-
ited), yielding a connectivity degree of 0.25—the average 
across networks in this study. For each connection, the con-
nection weight was set, using normally distributed random 
numbers with mean 0.41 and standard deviation 0.03 (values 
derived from the entire population of connection weights in 
this study).

Statistical analysis

Data resulting for network analyses were statistically ana-
lyzed using GraphPad Prism 7.0 software and are here 
shown as mean ± standard error of the mean (SEM). To com-
pare control and experimental groups, a one-way ANOVA 
test with post hoc Dunnett’s tests was used. A probability 
level of p < 0.05 (*), p < 0.01 (**), or p < 0.001 (***) was 
assumed as significant.

Results

To investigate how major depressive disorder therapy-rel-
evant monoamine reuptake inhibition affects the structure 
and dynamics of neuronal networks, we pursued a previ-
ously published approach of extracting the cell-to-cell con-
nectivity of in vitro neuronal network behavior from live-cell 
calcium fluorescence recordings in rat hippocampal cultures 
(Wrosch et al. 2017). Primary hippocampal cultures from 
newborn rats were prepared (Welzel et al. 2010; Tischbirek 
et al. 2012) and incubated until mature (8–10 days). After a 
subsequent 48 h treatment with the different test substances, 
fluorescence recordings with calcium-indicator dye Fluo-8 
were recorded. An exemplary field of view and fluorescence 
trace are shown in Fig. 1A, B. These recordings were sub-
jected to a cell detection and a spike estimation analysis 
and further processed by network reconstruction algorithms 
(Fig. 2A): In brief, we used the recorded spiking activities 
for each cell to reconstruct neuronal connectivity with a pre-
viously published machine learning model that combines 
different statistical algorithms to evaluate the cells’ spiking 
patterns for correlations and causal spike propagation rela-
tionships (Wrosch et al. 2017). This model is based on excit-
atory activity in the networks and validated with extensive 
simulations of varying connectivity and activity patterns. 
The processing yields a binary, directed network (meaning 
the model predicts whether a specific connection from cell 
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A to cell B exists, or not). For all predicted connections, the 
connection weight is calculated as the probability of spike 
propagation across this connection, which finally results in 
weighted, directed networks that we here analyzed for their 
structural and functional network properties.

To verify that varying firing behavior of differentially 
treated networks does not confound further analysis, we 
first analyzed the spiking properties of cultures treated 

with different monoamine reuptake inhibitors: GBR12783, 
Sertraline, Venlafaxine, and Amitriptyline. We found that 
firing of the cells was around 0.2 spikes/s independent 
of pharmacological interventions (one-way ANOVA: 
F(4,89) = 2.136, p = 0.083; Fig. 2B). The participation 
in bursting events was similar across cultures of all con-
ditions. Figure 1C shows an exemplary distribution of 
simultaneous spiking participation. The histogram shows 
a strong mode at very few cells spiking simultaneously 

Fig. 2  Reduced synchrony in neuronal networks following treat-
ment with monoamine reuptake inhibition. a Schematic depiction of 
analysis pipeline consisting of recording of spontaneous activity with 
calcium imaging, detection of neuronal spikes with a template fitting 
algorithm, and reconstruction of neuronal networks with a machine 
learning model (Wrosch et al. 2017). Exemplary data are taken from 
a control culture. Fluorescence trace depicts a single cell, while ras-
terplot, adjacency matrix, and network illustration show an excerpt of 
50 and 10 cells of the respective control culture network. b Overall 
firing rates of the cultures are maintained when treated with differ-
ent monoamine reuptake inhibitors GBR12783, Venlafaxine, Sertra-

line, and Amitriptyline compared to control. c Synchrony of firing 
assessed as Cohen’s kappa (interrater variability) was significantly 
reduced compared to untreated control networks after treatment with 
monoamine reuptake inhibitors GBR12783 and Venlafaxine, but not 
after Sertraline and Amitriptyline. **p < 0.01 after one-way ANOVA 
followed by Dunnett’s post hoc test. Monoamine reuptake inhibi-
tors were present during incubation for 48  h. Sample sizes: control 
(n = 20), GBR12783 (10 µM, n = 23); Sertraline (1 µM, n = 17); Ven-
lafaxine (50  µM, n = 23); Amitriptyline (10  µM, n = 11). The boxes 
extend from the 25th to the 75th percentiles. The median is shown as 
the horizontal line. The whiskers show the range of values
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with a slight tail to the right, which represents the sparse 
bursting events. This activity pattern of spontaneous activ-
ity with sparse spiking events is illustrated in a rasterplot 
in Fig. 1D.

Individual effects of different monoamine reuptake 
inhibitors on neuronal network parameters

Synchronized firing during bursting events is an important 
feature of physiological hippocampal activity especially for 
information propagation within groups of neurons (Taka-
hashi et al. 2010). We quantified the firing synchrony and 
found that both GBR12783 and Venlafaxine reduced spik-
ing synchrony compared to untreated networks (one-way 
ANOVA: F(4,89) = 4.254, p = 0.0034, Dunnett’s post hoc 
test: p = 0.003 for GBR127832 and p = 0.003 for Venlafax-
ine; Fig. 2C). Amitriptyline, however, did not influence spik-
ing synchrony (Dunnett’s post hoc test: p = 0.724), indicat-
ing, that—although equally effective in treating symptoms 
of major depressive disorder—not all monoamine reuptake 
inhibitors have the same effects on neuronal network behav-
ior on a cellular level. Monoamine reuptake inhibitors sup-
press high-synchrony bursting behavior in thalamic neurons 
(Pape and McCormick 1989). Also here, in hippocampal 
cultures, the high synchrony expressed in some untreated 
networks (see Fig. 2C) does not occur under treatment con-
ditions. To ensure that this effect does not influence the 
further investigated network parameters, we determined the 
correlation of network activity synchrony with some of the 
reconstructed network parameters. The synchrony is cor-
related with modularity with an  R2 of only 0.07 (see sup-
plementary figure S1). Connectivity degree (R2 = 0.16) and 
global efficiency (R2 = 0.28) are lightly correlated with the 
synchrony (see supplementary figures S2 and S3), which 
seems clear as an efficient and highly connected network 
is necessary for coordinated bursting (and high synchrony) 
to occur.

In a similar fashion, we found, that of the tested com-
pounds only the serotonin reuptake inhibitor Sertraline 
affected clustering coefficient as a measure of the local inter-
connectedness of the networks. Clustering based on the gen-
eral existence of connections (binary clustering coefficient) 
(one-way ANOVA: F(4,89) = 2.33, p = 0.062; Dunnett’s post 
hoc test: p = 0.016; Fig. 3A), as well as the weighted cluster-
ing coefficient, where the different connections’ strength are 
integrated, is effectively enhanced by Sertraline (one-way 
ANOVA: F(4,89) = 2.19, p = 0.0763, Dunnett’s post hoc test: 
p = 0.024; les. 3B).

Similar to the increased clustering, the network vulner-
ability to a (computationally simulated) loss of single neu-
rons is enhanced after treatment with Sertraline (one-way 
ANOVA: F(4,89) = 3.396, p = 0.0124; Dunnett’s post hoc 
test: p = 0.005 Fig. 3C). Treatment with other monoamine 

reuptake inhibitors did not induce strong changes regard-
ing this parameter (Dunnett’s post hoc test p > 0.05 for all 
comparisons except with Sertraline). Thus, we identified that 
some properties of neuronal networks are modulated by indi-
vidual classes of monoamine reuptake inhibitors.

Common pattern of action of different monoamine 
reuptake inhibitors

Despite yielding different detailed topological formations, 
we found large-scale network alterations that were common 
to cultures treated with the majority of the tested monoamine 
reuptake inhibitors. The tested different monoamine reup-
take inhibitors all reduced the connectivity degree of the 
neuronal cultures—the number of connections formed, nor-
malized to the number of observed cells (one-way ANOVA: 
F(4,89) = 6.608, p = 0.0001). Monoamine reuptake inhibition 
by GBR12783 (Post hoc Dunnett’s test: p = 0.018), Sertra-
line (Post hoc Dunnett’s test: p = 0.002), and Venlafaxine 
(Post hoc Dunnett’s test: p = 0.0001) reduced the number of 
connections in all networks, indicating a common pattern of 
restructuration for the network (Figs. 4A, B). We also calcu-
lated the characteristic path length (CPL), either in a binary 
or a connection strength-weighted fashion (Figs. 5A, B). We 
found that treatment with monoamine reuptake inhibitors 
did not induce any changes of the binary (one-way ANOVA: 
F(4,89) = 1.347, p = 0.259) and weighted characteristic path 
length (one-way ANOVA: F(4,89) = 1.518, p = 0.2036). This 
suggests that the lost connections stem from rather repeti-
tive or ‘surplus’ pathways, rather than the main information 
transfer routes throughout the network. The network’s cen-
trality property describes its reliance on connections that 
link local neighborhoods and play a ‘central’ role in the dis-
tribution of information throughout the network. Analyzing 
this, we found all cultures elevated centrality levels, though 
this change did not reach significance (Fig. 3D) (one-way 
ANOVA: F(4, 89) = 1.567, p = 0.1900). The structure of a 
network can be described by the modularity degree—the 
degree to which a network can be divided into modules 
(module affiliation according to a generalized Louvain com-
munity optimization (Leicht and Newman 2008)). Modules 
are defined as groups of cells that maximize the intra-mod-
ule connectivity and minimalize the inter-module connectiv-
ity. The modularity degree did not vary much under control 
conditions (0.36 ± 0.07; n = 20; Fig. 5C), but treatment with 
all the tested monoamine reuptake inhibitors significantly 
increased network modularity, which seems counter-intuitive 
(one-way ANOVA: F(4,89) = 4.728, p = 0.0017; Dunnett’s 
post hoc test p < 0.05 for every inhibitor). The number of 
found modules was increased in the treatment condition, 
as well (see Supplementary Figure S4). An analysis of the 
module size, however, revealed that the networks converged 
towards a large number of small ‘modules’ of only two cells 
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in the treatment conditions (see Supplementary Figure S5). 
As a results of this, we see an accumulation of values of 1 in 
the average in and out degree within individual modules (see 
Supplementary Figures S6 and S7). This indicates that the 
lost connections (Fig. 4) may be lost at the edges of the per-
severed modules, freeing cells of the original modular struc-
ture and leaving the network susceptible to reorganization. 
Despite these uniform changes of modularity, the overall net-
work strength (average connection strength in the network) 
remained unaffected (one-way ANOVA: F(4,89) = 0.1979, 
p = 0.9389; Dunnett’s post hoc test p > 0.05 for every inhibi-
tor; Fig. 6A). Also, the spike rate within the individual mod-
els remains constant and matches the network-wide aver-
age (see Supplementary Figure S8). Intriguingly, the global 

efficiency of information transfer, a measure of functional 
integration revealing how efficiently nodes communicate 
when transferring information in parallel (Rubinov and 
Sporns 2010; Bullmore and Sporns 2009), was reduced 
after treatment with all tested reuptake inhibitors (one-way 
ANOVA: F(4,89) = 6.284, p = 0.0002; Dunnett’s post hoc 
test p > 0.05 for every inhibitor, Fig. 6B). A change may also 
result from the diluted modular organization.

These results reveal a common pattern of lost network 
organization in cultures treated with monoamine reuptake 
inhibitors.

Fig. 3  Individual Monoamine Reuptake Inhibitors have different 
effects on neuronal networks. a-c Specific network effects found after 
treatment with Sertraline, but not the other testes’ monoamine reup-
take inhibitors: a-b Binary and connection strength-weighted cluster-
ing coefficients, quantifying strong local connectedness are enhanced 
after Sertraline treatment compared to controls, but not after treat-
ment with the other monoamine reuptake inhibitors GBR12783, 
Venlafaxine, and Amitriptyline. c The average network vulnerability 
was calculated when computationally removing single neurons from 
the network and examining how well the network can compensate 
for such loss. Data show increased vulnerability only after treatment 

with Sertraline when compared to control, but not after other mono-
amine reuptake inhibitors. d Network centrality did not change after 
treatment with monoamine reuptake inhibitors. *p < 0.05, **p < 0.01 
after one-way ANOVA followed by Dunnett’s post hoc test. Monoam-
ine reuptake inhibitors were present during incubation for 48 h. Data 
from simulated random networks were added for comparison. Sample 
sizes: control (n = 20), GBR12783 (10 µM, n = 23); Sertraline (1 µM, 
n = 17); Venlafaxine (50 µM, n = 23); Amitriptyline (10 µM, n = 11). 
The boxes extend from the 25th to the 75th percentiles. The median is 
shown as the horizontal line. The whiskers show the range of values
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Discussion

In the present study, we used fast calcium fluorescence data 
from live-cell imaging of in vitro hippocampal cultures to 
infer the underlying neuronal connectivity on a single-cell 
level. Investigating the effects of monoamine reuptake inhi-
bition on the neuronal networks revealed that although dif-
ferent compounds may target single cells and act on neuronal 
networks through different pathways, we can identify a com-
mon mechanism of action—a reduction of connections that 
undercut the modular network structure.

Due to a lack of a reliable in vitro model of major depres-
sive disorder, our experiments were conducted with healthy 
neurons on which antidepressant drugs might have little or 
deviant effects (Castrén and Hen 2013). However, these 
results give us a first insight into the underlying micro-scale 
neuronal network structure that forms meso- and macro-
scale networks and behavioral circuits. A clear understand-
ing of the effects of pharmacological treatment on this level 
will help us to understand higher level functions and to 
develop more specifically targeted drugs.

Another point of debate in all in vitro studies is the appro-
priate culturing age. Dissociated neuronal cultures exhibit 
electrical activity already after a few days in culture. The 
first isolated spiking events develop more and more towards 
synchronized spiking as the neuronal cultures reconnect and 
form networks. This goes so far that after 2–3 weeks, these 
cultures are driven almost exclusively by unnaturally strong 
and culture-wide bursting events. While some studies sug-
gest using older cultures (Marom and Shahaf 2002; Downes 
et al. 2012; Chiappalone et al. 2006), activity patterns most 
similar to in vivo cortical activity are made up of a combina-
tion of synchronous bursting and cells’ individual spiking 
(Kamioka et al. 1996), as exhibited by the cultures at the age 
of 10 to 12 days as used in our experiments. It is noteworthy 
that our experiments were conducted with hippocampal neu-
rons, whereas antidepressant drugs affect various intercon-
nected brain areas in different ways. To reach a brain wide 
general conclusion on the effects of monoamine reuptake 
inhibition—if even possible—networks need to be studied 
and compared in many different brain areas.

Fig. 4  Monoamine Reuptake Inhibitors reduce network connectivity 
degree. a The connectivity degree quantifies the number of connec-
tions, normalized to the number of neurons in the network. Treatment 
with GBR12783, Sertraline, and Venlafaxine decreased the con-
nectivity degree. b The upper panel shows two exemplary calcium 
fluorescence recordings (stained with Fluo-8) with similar number 
of cells in the field of view (control 143, Sertraline 143) and their 
reconstructed networks overlaid. After Sertraline treatment, the num-
ber of connections in the neuronal networks decreased compared to 
untreated control networks. The bottom panel illustrates the same 

networks in a degree-sorted circle layout. *p < 0.05, **p < 0.01, 
***p < 0.001 after one-way ANOVA followed by Dunnett’s post hoc 
test. Monoamine reuptake inhibitors were present during incubation 
for 48 h. Data from simulated random networks were added for com-
parison. Sample sizes: control (n = 20), GBR12783 (10 µM, n = 23); 
Sertraline (1 µM, n = 17); Venlafaxine (50 µM, n = 23); Amitriptyline 
(10 µM, n = 11). The boxes extend from the 25th to the 75th percen-
tiles. The median is shown as the horizontal line. The whiskers show 
the range of values
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The tested antidepressant drugs have been found to affect 
neuronal function through enhanced expression of synaptic 
proteins at the used concentrations: Sertraline 1 µM and Imi-
pramine 10 µM (which is used in the same dosage as Ami-
triptyline in the clinical setting) enhanced the expression of 
synaptic proteins and dendritic outgrowth (Seo et al. 2014). 
Amitriptyline also increased the expression of neurotrophic 
factors at a concentration of 10 µM (Kajitani et al. 2012). 
Venlafaxine was able to enhance expression of genes related 
to cell metabolism, growth, and signaling at a concentra-
tion of 90 µM, although with a narrow range between effec-
tive and cytotoxic concentrations (de Leeuw et al. 2020). 
Clinically used antidepressant drugs only partly target the 
dopaminergic system. Since dopaminergic dysregulation is 
leading to some of the core symptoms of major depressive 
disorder (Belujon and Grace 2017), we also investigated 
the selective dopamine inhibitor GBR12783 in this study, 
although it is not used as an antidepressant drug in the clini-
cal setting.

Patients with major depressive disorder often take the 
tested medications for weeks until the effects on a behav-
ioral scale are measurable. Neuronal dynamics here were 
recorded after 48 h of treatment. In our previous study 
(Wrosch et al. 2017), we were able to show that changes 
on the level of neuronal networks can be detected already 
after this short time period. Also with this study, we were 
able to detect changes in network dynamics after 48 h treat-
ment with antidepressant drugs. To fully uncover the mecha-
nisms, however, studies with longer incubation periods will 
be necessary in the future. FMRI studies suggest that it takes 
a couple of weeks for changes to occur on a whole-brain 
scale (Wang et al. 2015). Nevertheless, changes on network 
dynamics at a micro-scale level can be detected earlier.

We found differing effects of different compounds on in-
detail neuronal network topology: Only serotonin reuptake 
inhibition promoted strong local clustering and high vulner-
ability. However, we found that all tested monoamine reup-
take inhibitors converged on a common pattern of action on 
a larger scale of network dynamics (Table 1).

Fig. 5  All tested Monoamine Reuptake Inhibitors increase net-
works’ modularity degrees. a-b Inhibition of monoamine reuptake 
does not lead to a change of the characteristic path length, neither 
of the binary, nor the weighted form (b). c All substances increase 
the modularity degree. Bottom shows to recorded networks with the 
same number of cells (n = 171) and low/high modularity (left con-
trol condition, right Sertraline condition). Cells are color-coded and 
grouped according to module affiliations. *p < 0.05, ***p < 0.001 

after one-way ANOVA followed by Dunnett’s post hoc test. Monoam-
ine reuptake inhibitors were present during incubation for 48 h. Data 
from simulated random networks were added for comparison. Sample 
sizes: control (n = 20), GBR12783 (10 µM, n = 23); Sertraline (1 µM, 
n = 17); Venlafaxine (50 µM, n = 23); Amitriptyline (10 µM, n = 11). 
The boxes extend from the 25th to the 75th percentiles. The median is 
shown as the horizontal line. The whiskers show the range of values
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Cultures treated with Sertraline, Venlafaxine, Amitrip-
tyline, and GBR12783 showed higher modularity with an 
accumulation of small modules, lower connectivity, and 
lower global efficiency. This effect is diluting the network 
organization in treated networks and may form the basis of 
a vulnerable network state that is susceptible to rewiring 
and ultimately behavioral change. Especially considering 

the short-treatment duration, what we see here, might be 
a transitional network state on the way to a reorganized 
structure.

Similar effects regarding lower connectivity could 
also be found in fMRI studies on a whole-brain scale 
where patients depicted lower functional connectivity in 

Fig. 6  Global efficiency is reduced after monoamine reuptake inhibi-
tion. a Inhibition of monoamine reuptake does not lead to a change 
of the network strength (average connection strength in the network): 
GBR12783, Sertraline, Venlafaxine, Amitriptyline, and control 
(n = 20). b Global efficiency is significantly decreased after treat-
ment with all tested monoamine reuptake inhibitors. *p < 0.05 after 
one-way ANOVA followed by Dunnett’s post hoc test. Monoamine 

reuptake inhibitors were present during incubation for 48  h. Data 
from simulated random networks were added for comparison. Sample 
sizes: control (n = 20), GBR12783 (10 µM, n = 23); Sertraline (1 µM, 
n = 17); Venlafaxine (50 µM, n = 23); Amitriptyline (10 µM, n = 11). 
The boxes extend from the 25th to the 75th percentiles. The median is 
shown as the horizontal line. The whiskers show the range of values

Table 1   Summary of the 
changes in network parameters 
after monoamine reuptake 
inhibition
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the hippocampus after treatment with SSRIs or SNRIs 
(Andreescu et al. 2013; Posner et al. 2013).

An optimally balanced and economic network consists of 
many specialized groups which also have sufficient connec-
tions in between to obtain high functional integration and 
segregation; it is also called small-world network (Latora 
and Marchiori 2001; Bullmore and Sporns 2009). Recent 
studies found that such modular small-world network struc-
ture is disturbed in psychiatric and neurological diseases. 
Patients suffering from major depressive disorder showed 
higher global efficiency and a shift towards unstructured, 
random network connections as compared to healthy control 
groups (Zhang et al. 2011; Guo et al. 2014; Hou et al. 2016; 
Leistedt et al. 2009). Though there are also contradictory 
findings (Park et al. 2014; Ye et al. 2016), other diseases 
like schizophrenia (Lynall et al. 2010; Rubinov et al. 2009) 
and Alzheimer’s Disease (Supekar et al. 2008; Stam et al. 
2009) also tend towards a more random network structure 
than in health.

In our study, monoamine reuptake inhibitors shifted the 
structure towards a more modular structured network, sug-
gesting an ability to reverse the pathological shift towards a 
more random network organization. The detailed mechanism 
of these synaptic changes is still a focus of research. A key 
role is most likely the enhancement of synaptic proteins. It 
was shown that especially BDNF is enhanced by antidepres-
sant drugs in in vivo and in vitro experiments (Brunoni et al. 
2008; Seo et al. 2014). Other key players are also PSD-95 
and SYP. Seo et al. showed that different classes of antide-
pressant drugs elevated the expression of these synaptic pro-
teins via a calcium/calmodulin kinase II, protein kinase A or 
phosphatidylinositol 3-kinase signaling way. These proteins 
lead to increased dendritic outgrowth and synapse formation 
(Seo et al. 2014). It is probable that changes of effective 
connectivity are mediated through modulation of a variety 
of synaptic proteins. However, a detailed understanding of 
these molecular mechanisms has yet to be achieved.

The ‘small world’ organization was proposed as the struc-
tural basis for new activity patterns and neuronal plasticity 
(Kaiser et al. 2007). Lower global efficiency through less 
connections between modules—as we found in monoamine 
reuptake inhibitor treated cultures—might prevent patho-
logical activity from spreading across the whole network 
(Kaiser et al. 2007). Treated networks hence might be more 
dynamic and more susceptible to changes as it might be 
easier to break pathological activity patterns.

Highly connected modules within brain networks are 
able to promote the generation and stabilization of neuronal 
activity and increase the complexity of activation patterns 
(Okujeni et al. 2017; Fuchs et al. 2007; Kaiser et al. 2007). 
Sharpened networks with an increased functional vari-
ability and adaptability could be the basis for the recovery 
of a miswired network (Castrén and Hen 2013). Relevant 

connections later are stabilized, whereas weak connections 
are eliminated (Castrén and Hen 2013). As this selection is 
an active process and based on internal and external stimuli, 
antidepressant drugs might need to be combined with other 
forms of rehabilitation such as psychotherapy to reach their 
full potential (Castrén and Hen 2013; Colman et al. 1997). 
Rewiring takes time and might explain the delayed clinical 
effects of antidepressant drugs and the inefficiency of drug 
intake if further therapy strategies are lacking.

We could show here that despite some compound specific 
effects, different monoamine reuptake inhibitors converged 
on a common pathway of action. Antidepressant treatment of 
hippocampal cultures resulted in a reduced number of con-
nections, increased modularity, and lower efficiency. These 
changes provide networks that are more susceptible for fur-
ther restructuring through neuronal plasticity, medication, or 
psychotherapy. With this, we showed the fruitfulness of our 
novel approach in investigation connectivity on a single-cell 
basis. This method delivers a valuable puzzle piece towards 
a deeper understanding of the underlying mechanisms of 
antidepressant drugs and major depressive disorder itself. 
More research in this direction will help to develop more 
specifically targeted drugs, which are desperately needed.
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