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Abstract
A link between dopamine levels, circadian gene expression, and attention deficit hyperactivity disorder (ADHD) has already 
been demonstrated. The aim of this study was to investigate the extent of these relationships by measuring circadian gene 
expression in primary human-derived dermal fibroblast cultures (HDF) after dopamine exposure. We analyzed circadian 
preference, behavioral circadian and sleep parameters as well as the circadian gene expression in a cohort of healthy controls 
and participants with ADHD. Circadian preference was evaluated with German Morningness-Eveningness-Questionnaire 
(D-MEQ) and rhythms of sleep/wake behavior were assessed via actigraphy. After ex vivo exposure to different dopamine 
concentrations in human dermal fibroblast (HDF) cultures, the rhythmicity of circadian gene expression (Clock, Bmal1, 
Per1-3, Cry1) was analyzed via qRT-PCR. We found no statistical significant effect in the actigraphy of both groups (healthy 
controls, ADHD group) for mid-sleep on weekend days, mid-sleep on weekdays, social jetlag, wake after sleep onset, and 
total number of wake bouts. D-MEQ scores indicated that healthy controls had no evening preference, whereas subjects with 
ADHD displayed both definitive and moderate evening preferences. Dopamine has no effect on Per3 expression in healthy 
controls, but produces a significant difference in the ADHD group at ZT24 and ZT28. In the ADHD group, incubation 
with dopamine, either 1 µM or 10 µM, resulted in an adjustment of Per3 expression to control levels. A similar effect also 
was found in the expression of Per2. Statistical significant differences in the expression of Per2 (ZT4) in the control group 
compared to the ADHD group were found, following incubation with dopamine. The present study illustrates that dopamine 
impacts on circadian function. The results lead to the suggestion that dopamine may improve the sleep quality as well as 
ADHD symptoms by adjustment of the circadian gene expression, especially for Per2 and Per3.
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Introduction

Dopamine is produced by dopaminergic neurons in the brain 
from aminoacid tyrosine, which is converted into dihydroxy-
phenylalanine (DOPA) by a rate-limiting enzyme, tyrosine 
hydroxylase (TH) (Tekin et al. 2014). Dopamine β hydroxy-
lase (DBH) is an enzyme responsible for the conversion of 
dopamine into catecholamine neurotransmitter noradrena-
line (Catelas et al. 2020). Circadian variations in the activity 
of tyrosine hydroxylase and dopamine β hydroxylase were 

observed in the rat brain stem and Per1b mutant zebrafish 
(Cahill and Ehret 1981; Huang 2015).

After biosynthesis, dopamine is packaged and stored into 
a synaptic vesicle by the vesicular monoamine transporter 
2 (VMAT2) (Roeder 2002). A plasma membrane protein 
dopamine transporter (DAT), encoded by SLC6A3 gene, 
controls both extracellular and intracellular concentrations 
of dopamine (McHugh and Buckley 2015; Salatino-Oliveira 
et al. 2018). Dopamine neurotransmitters bind to five sub-
types of dopamine receptors:  D1,  D2,  D3,  D4, and  D5, divided 
into two major subclasses: D-1-like and D-2-like members 
of the G-protein coupled receptor family (Beaulieu et al. 
2015; Xin et al. 2019). When administered in critical care 
and emergency settings, dopamine acts as a non-selective 
drug and an agonist of α-, and β-adrenergic receptors (Far-
zam et al. 2020). Infused at low doses, between 0.5 and 
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3.0 μg/kg/min, dopamine increases diuresis, splanchnic 
blood flow and natriuresis. At higher doses than 3 μg/kg/
min dopamine stimulates β-adrenergic receptors increasing 
cardiac inotropy and chronotropy, whereas doses higher than 
7 μg/kg/min result in α-adrenergic stimulation with periph-
eral and splanchnic vasoconstriction (MacGregor et  al. 
2000). In critically ill new-born infants, plasma dopamine 
concentrations range from 0.5 ng/ml to almost 70 ng/ml, at 
an infusion rate of 4–8 μg/kg/min (Padbury et al. 1990). In 
hemodynamically stable children, the half-lives of distribu-
tion and elimination were 1.8 min and 26 min, respectively. 
The apparent volume of distribution was 2952 ± 2332 mL/
kg, and clearance rate was 454 ± 900 mL/kg/min (Eldadah 
et al. 1991). In healthy male volunteers, injected with 3 μg/
kg/min infusions for 90 min, steady-state dopamine concen-
trations varied from 1880 to 18,300 ng/l. After 10 min of 
dopamine infusion at 10 μg/kg/min plasma concentrations 
of dopamine varied from 12,300 to 201,500 ng/l, suggesting 
intra-individual and inter-individual variability in dopamine 
distribution and metabolism (MacGregor et al. 2000).

Dopamine is degraded by monoamine oxidase (MAO) in 
the cytosol and catechol-O methyl transferase (COMT) in 
the surrounding glial cells (Meiser et al. 2013). Main deg-
radation products of dopamine are reactive 3, 4-dihydroxy-
phenylacetaldehyd and homovanilic acid (HVA) (Eisenhofer 
et al. 2004). Dopamine and its metabolites are metabolized 
by phase II conjugation reactions (Uutela et al. 2009).

Dopamine plays important roles in executive function, 
motor control, motivation, arousal, reinforcement, and 
reward through signaling cascades (Awata et  al. 2015; 
Blenau and Baumann 2001; Waddell 2013). Studies have 
suggested that dopamine mediates learned associations 
between stimuli and reward (Beeler and Kisbye Dreyer 2019; 
Steinberg et al. 2013). Dopamine is a key regulatory com-
ponent of executive function in the prefrontal cortex, and 
dopaminergic dysfunction can result in impaired working 
memory (Klaus and Pennington 2019). In addition, dopa-
mine dysfunction has been linked with the development 
of many psychiatric disorders. The symptoms and signs of 
schizophrenia have been linked to high levels of dopamine in 
specific areas of the brain and maintenance on antipsychotic 
drugs prevents relapse to a much greater extent than placebo 
up to 2 years of follow-up (Ceraso 2020; Seeman 2013). 
Recent studies show that dopaminergic receptor signaling 
is disrupted in dyskinetic Parkinsonian rats (Jones-Tabah, 
2020) and dopamine is associated with prioritization of 
reward-associated memories in Parkinson’s disease (Sharp 
et al. 2020). Restless legs syndrome and attention deficit 
hyperactivity disorder (ADHD) are also associated with 
decreased dopamine activity (Guo 2017; Volkow 2009).

ADHD is one of the most prevalent psychiatric disorders 
in children and adults, characterized by symptoms of inat-
tention, hyperactivity, impulsivity, or combined type that 

produce impairment across cognitive, behavioral, and inter-
personal domains (Kooij 2019). The results for some dopa-
mine genes, such as dopamine receptor  D4 and  D5, dopamine 
transporter (DAT) and DBH confirm the heredity of ADHD 
syndromes (Paclt et al. 2005). Patients with ADHD showed 
a reduction in dopamine synaptic markers associated with 
symptoms of inattention as shown in the dopamine reward 
pathway of participants with ADHD (Volkow et al. 2009). 
Medin et al. (2013) report low dopamine  D5 receptor density 
in hippocampus in an animal model of ADHD (Medin et al. 
2013). Dopamine genes, its signaling and metabolism are 
linked with the pathophysiology of ADHD (Barkley et al. 
2019).

ADHD patients often display circadian abnormalities 
including sleep problems (Coogan et al. 2016; Fisher et al. 
2014; Gau et al. 2007). ADHD has been linked with dis-
turbances in chronotype, particularly increased eveningness 
in children aged 7–12 years (Durmus et al. 2017). Patients 
with diagnosed ADHD show shorter average sleep durations 
(Boonstra et al. 2007) and frequent nocturnal awakenings 
(Sobanski et al. 2008).

Dopamine is involved in the regulation of sleep as regu-
lator of the sleep/wake cycle, exerting a potent wake-pro-
moting activity (Eban-Rothschild et al. 2018). In addition, 
dopamine is linked to circadian rhythmicity and extreme 
light sensitivity of circadian entrainment (Hirsh et al. 2010). 
Circadian molecular clock machinery mechanism consists of 
an interconnected series of transcriptional-translational feed-
back loops involving Circadian Locomotor Output Cycles 
Kaput (CLOCK) and Brain and Muscle Arnt-like Protein 
1 (BMAL1) that heterodimerize and promote transcription 
of the Period (Per1/2/3) and Cryptochrome (Cry1/2) genes 
(Buhr and Takahashi 2013). Circadian rhythms are driven by 
the central pacemaker in the mammalian brain, the suprachi-
asmatic nucleus (SCN) of the hypothalamus, also entrained 
in peripheral cells including fibroblasts cultured in vitro 
(Balsalobre 1998; Schibler and Sassone-Corsi 2002). Our 
research group observed circadian gene alterations at the 
molecular level of human dermal fibroblasts derived from 
human individuals (ADHD and control subjects) (Coogan 
2019). Human-derived fibroblasts provide an advantageous 
model to study circadian rhythmicity as well as the influ-
ence of drugs on circadian gene expression (Faltraco et al. 
2020). Circadian clocks are linked with the regulation of 
neurotransmitter systems. Disruptions to these circadian 
clocks can effect cognitive functions in various diseases 
with altered neurotransmitter signalling (Kiehn et al. 2019).

Many essential psychiatric medications modulate the 
effects of dopamine, such as levodopa (L-DOPA) for Parkin-
son’s Disease, and dopamine antagonists like antipsychotic 
and anti-nausea agents.

The psychostimulant methylphenidate and the selective 
norepinephrine transporter inhibitor atomoxetine, are two 
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of the most frequently prescribed medications for ADHD. 
Methyphenidate blocks DAT, increasing levels of extracel-
lular dopamine in the prefrontal cortex and striatum, as well 
as increasing concentrations of norepinephrine in the pre-
frontal cortex and hippocampus (Kuczenski and Segal 2002; 
Volkow 2001, 2002).

Atomoxetine increases extracellular levels of norepi-
nephrine and dopamine in prefrontal cortex of rats, without 
effecting dopamine concentrations in striatum or nucleus 
accumbens (Bymaster 2002). Ide et al. observed that low-
dose methylphenidate alters the reward system in wild-
type mice via dopamine transporter inhibition. Dopamine 
transporter knockout mice do not exhibit such alterations. 
High-dose methylphenidate suppresses intracranial self-
stimulation, suggesting the possibility that methylpheni-
date treatment does not increase the risk of drug depend-
ence (Ide et al. 2018). Using HDF as a model, Coogan et al. 
(2019) report alterations in the expression of Per2 and Cry1 
between subjects with ADHD without medication, com-
pared to ADHD subjects taking medication, or controls. 
Clock gene expression was also altered in pharmaceutically 
treated ADHD subjects. Analysis of fibroblasts transfected 
with a Bmal1:luc reporter demonstrated changes in the tim-
ing of the peak expression across the three groups. Behavio-
ral data that indicate that patients with ADHD using ADHD 
medication have lower relative amplitudes of diurnal activity 
rhythms, lower sleep efficiency and more nocturnal activity 
(Coogan et al. 2019).

Based on the assumption of the effectiveness of dopamine 
for the treatment of ADHD, its influence on the expression 
of the core circadian genes (Clock, Bmal1, Per1-3, Cry1-2) 
is hypothesized. Therefore, in this study, the influence of 
dopamine on circadian rhythmicity are investigated in vitro.

Materials and methods

Participant selection criteria

Ethical approval for the conduct of the study, including 
obtaining human dermal biopsy samples, was given by the 
ethical review committee of Rostock University (Registra-
tion-number: A2013-159) and written consent was obtained 
from each study participant. The study was conducted 
according to the ethical guidelines of the Declaration of 
Helsinki.

ADHD patients and healthy controls participating in the 
study were recruited via the Department of Psychiatry and 
Psychotherapy, University Medical Centre Rostock. All 
ADHD patients were diagnosed by experienced psychia-
trists in advance. The healthy control group was recruited 
of acquaintances of people involved in the study.

Human dermal fibroblasts (HDF) were obtained from 
skin biopsies from dorsal forearm from ADHD patients 
and healthy control volunteers. Only adult individuals, 
able to give informed consent, were included. Healthy con-
trols without a history of childhood and adult ADHD were 
matched for sex and age. Patients with more severe than 
ADHD symptoms, were excluded, as were shift workers. 
Screening for ADHD symptoms was done by using the 
WURS-k (Wender Utah Rating Scale) as well as assessment 
of symptoms according to DSM-IV and ICD-10 criteria. 
Additional, the following psychometric tests were used to 
confirm ADHD diagnosis: SKIDI and II (Structured clini-
cal interview), DIVA 2.0 (Structured diagnostic interview), 
CAARS (Conners’ Adult ADHD Rating Scales) and PSQI 
(Pittsburgh Sleep Quality Index). The IQ of the healthy con-
trol group and volunteers with ADHD diagnosis were meas-
ured using MWT (Multiple-Choice Word Test). The chrono-
type of the participants were determined by the D-MEQ 
(Morning-Eveningness-Questionnaire, German Version). 
No special cognitive testing was implemented in the study.

Comorbidities were observed: 33.3% of participants 
with ADHD diagnosis has additionally adipositas, 8.3% has 
additionally addiction disorder, and 25.1% has additionally 
affective disorder. The remaining participants with ADHD 
diagnosis has no comorbidities.

The four manuscripts of this special issue dealing with 
circadian rhythmicity describe unique research ques-
tions (Faltraco et al. 2021a, b; Palm et al. 2021). Although 
some samples have been used for more than one research 
question, the overall sample composition differs from each 
other and thus is different for each study. Experiments differ 
substantially in their conditions, thus, they each investigate 
unique cellular biochemical pathways.

Actigraphy

To obtain objective measures of participants’ sleep and cir-
cadian rhythm function, the rest–activity pattern of partici-
pants was recorded using wrist-worn actigraphs (Actiwatch 
2, Philips Respironics, USA). Actigraphs were worn on the 
non-dominant wrist for a period of at least 7 consecutive 
days. The recording interval of the device was set at 60-s 
epochs. Data occurring before the first and after the final 
midnight of each record were excluded, ensuring at least 6 
complete days for each participant, with a complete weekend 
included in each record.

Tissue isolation and fibroblast cell culture

Human dermal fibroblasts (HDF) were isolated and cultured 
as described previously (Takashima 1998). Fibroblasts were 
cultivated (37 °C, 5%  CO2) in Dulbecco’s Modified Eagle 
Medium DMEM (Gibco, Thermo Fisher, UK) /1 mg/ml 
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Liberase TM (Roche, Germany) containing 100 units/ml 
penicillin, 100 µg/ml streptomycin (Gibco, Thermo Fisher, 
UK) and 10% fetal bovine serum FBS (Gibco, Thermo 
Fisher, UK).

Measurement of cell viability

Upon confluency of the respective primary fibroblast cell 
culture from each participant, cells were incubated with 
0 µM, 1 µM and 10 µM dopamine (Vitamaze, Germany). 
Following 24 h cell viability was measured using the Trypan 
Blue Exclusion Test (Strober 2015).

Measurement of circadian gene expression

Upon confluency of the respective primary fibroblast cell 
culture from each participant, eight culture flask replicates 
were prepared and cells were incubated with either 1 µM or 
10 µM dopamine (Vitamaze, Germany). Cultures without 
dopamine were used as a negative control. After 24-h of 
incubation, the cells were synchronized with 100 nM dexa-
methasone (Sigma-Aldrich, Germany) for 30 min. Samples 
were harvested every fourth hour after synchronization for 
a period of 28-h in solution D (4.5 M guanidinium thiocy-
anate, 0,5% sodium-N-lauryl sarcosine, 25 mM tri-sodium 
citrate, 0.1 M betamercaptoethanol) and stored at -70 °C. 
Total RNA was isolated and purified with RNeasy Plus Mini 
Kit (Qiagen, Germany) as well as subjected to reverse tran-
scription using the Superscript III First-Strand Synthesis 
System (Invitrogen, Germany). Gene expression of Clock, 
Bmal1, Per1, Per2, Per3 and Cry1 as well as housekeeping 
genes (Rpl13A, Rpl19A, GAPDH) was measured by real-
time quantitative reverse transcriptase polymerase chain 
reaction (qRT-PCR) with CFX Connect™ Real-Time PCR 
Detection System (Biorad, Germany). The oligonucleo-
tide sequences are presented in Table 1. All primers were 

purchased from Eurofins (Alameda, CA). The qRT-PCR was 
performed in 96-well 0.1-ml thin-wall PCR plates (Applied 
Biosystems) in the CFX Connect™ Real-Time PCR Detec-
tion System (Biorad, München, Germany) as previously 
described (Coogan 2019).

Statistical methods

Circadian gene expression data were tested for significant 
circadian rhythmicity, using CircWave v. 1.4 software (gen-
erated by Dr.Roelof Hut; www. euclo ck. org) to determine 
the best-fitting linear harmonic regression with an assumed 
period of 24-h and with α set at 0.05. The center-of-gravity 
of each best-fitting waveform in CircWave was used as the 
circadian acrophase, and the associated estimation error 
was used as the SD. Inferential statistics were carried out in 
SPSS (IBM Corporation).

Actigraphic data were analyzed via MANCOVAs, 
with age, sex and in some cases ADHD symptom severity 
included in the model as co-variates.

qRT-PCR clock gene data were analyzed via ANOVA. 
For all inferential tests, P < 0.05 was used to indicate a sta-
tistically significant groupwise difference. Sample sizes were 
calculated via GPower 3.1 software; for correlations, the 
assumptions used were significance level of α = 0.05 and 
the power of 0.8 for 2 groups (ADHD, HC) with 3 measures 
(0 µM, 1 µM and 10 µM dopamine). Although research in 
this field is generally scarce, we assumed that the influence 
of dopamine on the circadian gene expression will have an 
effect size d’ = 0.5, returning a required total sample size 
of 21. Taking into consideration an expected drop-out rate, 
n = 12 participants were allocated per each group. Data were 
analyzed via time series statistics adequately powered by 12 
samples each, which in this statistical model is mathemati-
cally sufficient and thus representative (Menet et al. 2012; 
Thaben and Westermark 2016).

Table 1  Oligonucleotides for 
qRT-PCR to measure circadian 
gene expression

Gene Forward primer (5′–3′) Reverse primer (5′–3′)

Clock CCA GCA GTT TCA TGA GAT GC GAG GTC ATT TCA TAG CTG AGC 
Bmal1 AAG GAT GGC TGT TCA GCA CATGA CAA AAA TCC ATC TGC TGC CCTG 
Per1 TGG GGA CAA CAG AAC AGA GAA AGG ACA CTC CTG CGA CCA 
Per2 GTA TCC ATT CAT GCT GGG CT TCG TTT GAA CTG CGG TGA C
Per3 TCA GTG TTT GGT GGA AGG AA TCT GGG TCA GCA GCT CTA CA
Cry1 CAC GAA TCA CAA ACA GAC GG TAC ATC CTG GAC CCC TGG T
RPL13a GCC AGA AAT GTT GAT GCC TT AGA TGG CGG AGG TGCAG 
RPL19a GTG GCA AGA AGA AGG TCT GG GCC CAT CTT TGA TGA GCT TC
GAPDH GAA GGT GAA GGT CGG AGT GAA GAT GGT GAT GGG ATT TC

http://www.euclock.org
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Results

Demographic data

Human dermal fibroblasts (HDF) were obtained via skin 
biopsy from volunteers with attention deficit hyperactivity 
disorder (ADHD) (8 men, 4 women; 45.08 ± 18.07 years, 
mean ± SD; BMI: 26.73 ± 4.48  kg/m2, mean ± SD), 
matched by healthy controls (HC) (4 men, 8 women; 
41.50 ± 14.04 years, mean ± SD; BMI: 25.87 ± 5.42 kg/
m2, mean ± SD). All participants completed the Mul-
tiple-Choice Word Test (IQ score: ADHD partici-
pants: 107.50 ± 10.91, mean ± SD, HC: 110.25 ± 9.32, 
mean ± SD), Morningness-Eveningness-Questionnaire, 
German Version (D-MEQ Score: ADHD participants: 
44.33 ± 16.14, mean ± SD, HC: 58.83 ± 8.97, mean ± SD, 
p < 0.01) and Wender Utah Rating Scale, German 
Short Version (WURS-k Score: ADHD participants: 
41.50 ± 14.94, mean ± SD; HC: 7.17 ± 8.19, mean ± SD, 
p < 0.0001). The demographic data are presented in 
Table 2.

There were no significant differences in age, BMI, IQ or 
gender across the two study groups. D-MEQ scores indi-
cated that ADHD patients displayed more definitive and 
moderate evening preference than HC. 58.3% of healthy 
participants displayed neutral preferences, whereas 25.0% 
had moderate morning preference, and 16.7% definite 
morning preference. 25.0% of ADHD participants dis-
played moderate morning preference, and 33.3% neutral 
preference. In the ADHD group the evening preference 
was represented by 25.0% definite evening and 16.7% 
moderate evening type. There were no participants with 
definitive morning preference in the ADHD group.

Actigraphy

Measures from the non-parametric circadian rhythm analy-
sis were analyzed across the two groups, healthy controls 
and ADHD participants, in a MANCOVA with age and sex 

as co-variates. No statistically significant effect of group 
was observed (Pillai’s trace = 0.380; F = 1.226; P = 0.359; 
partial ETA squared = 0.380). No significant difference 
for mid-sleep on weekend days (p = 0.774), mid-sleep on 
weekdays (p = 0.169), social jetlag (p = 0.984), sleep effi-
ciency (p = 0.833), WASO (wakening after sleep onset; 
p = 0.844) and total number of wake bouts (p = 0.425) was 
shown (Fig. 1). The measurements for three ADHD volun-
teers were not completed.

Cell viability

The viability of the cultivated human dermal fibroblasts 
(HDF) after dopamine incubation was compared with HDFs 
without dopamine. The viability of cells treated with Dopa-
mine (1 µM Dopamine: 91.067 ± 0.007, mean ± SD; 10 µM 
Dopamine: 90.204 ± 0.002, mean ± SD) was higher than 
compared to control cells without dopamine (0 µM Dopa-
mine: 83.650 ± 0.009, mean ± SD). After incubation with 
dopamine the cell numbers increased by 147% for 1 µM 
Dopamine and 154% for 10 µM Dopamine, compared to the 
cells without dopamine.

Circadian gene expression in human dermal 
fibroblasts

The expression profiles of circadian genes after incubation 
with 1.0 µM and 10.0 µM dopamine concentrations were 
examined in primary fibroblasts cultured from skin biopsies 
collected from ADHD and healthy participants and synchro-
nized with dexamethasone. Cultures without dopamine were 
used as a negative control.

Bmal1, Cry1 and Per3 expression was strongly rhyth-
mic in both groups (CircWave, p < 0.001). No rhythmicity 
was detected for Clock in both groups except for cultures 
incubated with 1 µM dopamine (CircWave, p < 0.05). In 
the ADHD group, 10 µM dopamine exposure dampened 
the rhythmicity of Clock (CircWave, p > 0.05). The same 
effect was observed for Per1/2 genes in cultures from healthy 
controls (HC) (CircWave, p > 0.05). Dopamine shifted the 
Clock circadian acrophase to 20.00 ± 3.37 h (CircWave, 
mean ± SD) compared to 5.68 ± 3.37  h (CircWave, 
mean ± SD) in cultures without dopamine. In the ADHD 
group exposure to dopamine shifted the Per1 circadian acro-
phase to 5.63 ± 2.22 h (CircWave, mean ± SD) compared to 
7.07 ± 2.09 h (CircWave, mean ± SD) in cultures without 
dopamine.

Differences of clock gene expression levels among study 
groups were assessed using one-way ANOVA (Fig. 2). 
When comparing the two study groups, ADHD and HC, 
one-way ANOVA revealed significant different Per2 at 
ZT4 (p = 0.003, F = 4.075) and Cry1 at ZT28 (p = 0.002, 
F = 4.451). A Bonferroni post hoc correction revealed a 

Table 2  Demographic data

*p < 0.01, ***p < 0.001

Demographic data Healthy controls n = 12 ADHD n = 12

Age 41.50 ± 14.04 years 45.08 ± 18.07 years
Female 8 (66.7%) 4 (33.3%)
BMI 25.87 ± 5.42 26.73 ± 4.48
IQ-Score 110.25 ± 9.32 107.50 ± 10.91
D-MEQ 58.83 ± 8.97** 44.33 ± 16.14**
WURS-k-Score 7.17 ± 8.19*** 41.50 ± 14.94***
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significant different expression of Per2 (ZT4, p = 0.011) 
between the HC and ADHD cultures incubated with 10 µM 
dopamine. The expression and rhythm of Per2 gene in the 
ADHD group resulted in an adjustment to the HC group 
after 10 µM dopamine incubation (Fig. 3). The expression 
of Cry1 (ZT 28, p = 0.001) was different between HC and 
ADHD without dopamine incubation.

Gene expression in healthy participants revealed a sta-
tistical significant difference between cultures incubated 
with dopamine and negative controls (without dopamine 
incubation), as determined by one-way ANOVA for Cry1 
at ZT28 (F = 5.594, p = 0.008) and Per2 at ZT4 (p = 0.043, 
F = 3.473). A Bonferroni post hoc correction revealed a sig-
nificant lower Cry1 expression in cultures incubated with 
1 µM dopamine (p = 0.019) and 10 µM dopamine (p = 0.018) 

compared to HDF cultures without dopamine. 10 µM dopa-
mine significant lowered the expression levels of Per2 at ZT4 
(p = 0.040) compared to the cultures without dopamine. One-
way ANOVA revealed in the ADHD group statistical signifi-
cant Per2 expression at the same time-point, ZT4 (p = 0.024, 
F = 4.170) between samples incubated with 1 µM and 10 µM 
dopamine. In the ADHD group, statistical significant differ-
ences were observed at ZT24 and ZT28 between cultures 
incubated with dopamine and negative controls, particularly, 
for period genes Per1 (ZT28, F = 5.103, p = 0.012) and Per3 
(ZT24, F = 7.703, p = 0.002; ZT28, F = 3.800, p = 0.033). A 
Bonferroni post hoc correction revealed a significant higher 
expression of Per1 at ZT28 in cultures incubated with 1 µM 
dopamine (p = 0.049) and 10 µM dopamine (p = 0.016) com-
pared to negative controls. The same effect was observed for 

Fig. 1  Actigraphic measures of mid-sleep of weekend days, mid-sleep of week days social jetlag, sleep efficiency, WASO (wakening after sleep 
onset) and total number of wake bouts are displayed as boxplots. Circles correspond to outer values and asterisks correspond to extreme values
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Per3 gene expression for the cultures incubated with 1 µM 
dopamine (ZT28, p = 0.039). 1 µM (p = 0.003) and 10 µM 
(p = 0.010) dopamine increased the expression of Per3 at 
ZT24 compared to the negative controls.

Discussion

In the present study, the incubation of human dermal 
fibroblast cultures with 1  µM dopamine induced the 

Fig. 2  Relative mRNA gene expression of circadian genes in healthy controls and ADHD volunteers (0, 1.0, 10.0 µM Dopamine). *p < 0.05, 
**p < 0.01
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rhythmicity of Clock gene. This effect was not observed 
in cultures incubated with 0 and 10 µM dopamine. Pre-
liminary results from our work has shown that Clock gene 
rhythmicity is also linked with the neurotransmitter nor-
epinephrine. Norepinephrine is a known synchronizer of 
the circadian rhythm (Li and Cassone 2015; Maletic et al. 
2017). This effect could suggest a potential link between 
the monoamines neurotransmitters and circadian rhythm 
pathways.

Hirsh et al. observed that dopamine plays an important 
role in the circadian behavior of Drosophila melanogaster. 
These drosophila mutants lacking tyrosine hydroxylase neu-
ral expression show weak circadian rhythmicity. The tyros-
ine hydroxylase rescue strain, deficient in neural dopamine 
also selectively shows a defect in circadian entrainment 
to low light levels (Hirsh et al. 2010). Under a light–dark 
cycle, tyrosine hydroxylase exhibited rhythmic patterns 
of transcription in chicken embryonic retinal cells (Lima 
et al. 2011). Low levels of dopamine also were observed in 
zebrafish mutants for the circadian gene period1b (Huang 
et al. 2015). These zebrafish mutants display hyperactivity, 
impulsivity-like and inattention-like behavior. Huang et al. 
found that the circadian clock regulates dopamine-related 
genes dopamine β hydroxylase and MAO. MAO is rhyth-
mically expressed in wild-type larvae and upregulated in 
per1b mutant larvae (Huang et al. 2015). Kim et al. studied 
the influence of Per2 in cases of methamphetamine addic-
tion and observed that Per2-overexpressed mice presented 
lower dopamine levels compared to Per2-knockout mice, 

suggesting that Per2 may influence the addictive effects of 
methamphetamine through the dopaminergic system (Kim, 
2019). Bussi et al. studied interval timing (duration dis-
crimination within the seconds-to-minutes range), which 
involves the dopaminergic–glutamatergic pathway. The 
authors suggested that the lack of dopamine rhythmicity 
under constant light is probably regulated by Per2 and this 
could be responsible for impaired performance in the timing 
task in the mice model organism (Bussi et al. 2014). Hood 
et al. demonstrated a direct relationship between extracel-
lular dopamine levels and the rhythm of expression of the 
clock protein PERIOD2 (PER2) in the dorsal striatum in 
male Wistar rat. The authors suggested that the rhythm of 
expression of PER2 depends on daily dopaminergic activa-
tion of D(2) dopamine receptors (Hood, 2010).

The study of Yokokura et al. suggests that microglial 
activation and dopamine D1 receptor reduction, as well as 
their aberrant interactions underpin the neurophysiologi-
cal mechanism of ADHD (Yokokura, 2020). Volkow et al. 
demonstrated that a reduction in dopamine synaptic markers 
are associated with symptoms of inattention in the dopa-
mine reward pathway of participants with ADHD. The D2/
D3 receptor measures were correlated with attention impli-
cating the dopamine reward pathway in the symptoms of 
inattention in ADHD (Volkow et al. 2009). Previous studies 
focused on genetics and environmental etiologies also pro-
posed a relation between dopamine and ADHD (Braun et al. 
2006; Swanson, 2007). Imaging studies observed that brain 
dopamine neurotransmission is disrupted in ADHD (Ernst 

Fig. 3  Relative mRNA gene expression of circadian genes in healthy controls (0 µm) and ADHD volunteers (0, 1.0, 10.0 µM Dopamine)
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et al. 1999; Lou et al. 2004; Rosa Neto et al. 2002; Volkow 
et al. 2007a, b).

To the best of our knowledge, until now, no studies have 
analyzed the influence of dopamine in human fibroblast cell 
cultures of healthy controls and volunteers with ADHD. 
The results of the present study illustrate that ADHD leads 
to alterations in the circadian rhythm. It demonstrates that 
dopamine impacts on circadian function, particularly the 
Cry1, Per1/2/3 gene expression.

Dopamine showed no effect on Per3 expression in healthy 
controls, but exhibited a significant difference in the ADHD 
group at ZT24 and ZT28 compared to samples without dopa-
mine incubation. Incubation with dopamine, either 1 µM or 
10 µM, result in an adjustment of Per3 expression to the 
healthy controls (without dopamine incubation). Addition-
ally, dopamine significantly reduces the Per2 expression in 
cells of healthy controls. In the ADHD group, dopamine 
incubation results in an adjustment of Per2 expression to 
healthy controls without dopamine incubation. These results 
lead to the suggestion that dopamine may improve the sleep 
quality as well as ADHD symptoms by adjustment of the 
circadian gene expression, especially for Per2 and Per3.

It is to mention, that no special cognitive testing was 
implemented in this study. In addition, the participants of 
the ADHD group took no medication during the study. For 
further studies, a connection between circadian disturbances, 
cognitive deficits and the effect of medication would be 
suitable.
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