
Vol.:(0123456789)1 3

Journal of Neural Transmission (2021) 128:1567–1575 
https://doi.org/10.1007/s00702-021-02355-7

NEUROLOGY AND PRECLINICAL NEUROLOGICAL STUDIES - REVIEW ARTICLE

Insights into Lewy body disease from rare neurometabolic disorders

Daniel Erskine1,2   · Johannes Attems2

Received: 21 April 2021 / Accepted: 13 May 2021 / Published online: 30 May 2021 
© The Author(s) 2021

Abstract
Professor Kurt Jellinger is well known for his seminal work on the neuropathology of age-associated neurodegenerative 
disorders, particularly Lewy body diseases. However, it is less well known that he also contributed important insights into 
the neuropathological features of several paediatric neurometabolic diseases, including Alpers–Huttenlocher syndrome, a 
syndrome of mitochondrial disease caused by POLG mutations, and infantile neuroaxonal dystrophy, a phenotype resulting 
from PLA2G6 mutations. Despite these rare diseases occurring in early life, they share many important pathological over-
laps with age-associated Lewy body disease, particularly dysregulation of α-synuclein. In this review, we describe several 
neurometabolic diseases linked to Lewy body disease mechanisms, and discuss the wider context to pathological overlaps 
between neurometabolic and Lewy body diseases. In particular, we will focus on how understanding disease mechanisms 
in neurometabolic disorders with dysregulated α-synuclein may generate insights into predisposing factors for α-synuclein 
aggregation in idiopathic Lewy body diseases.
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Introduction

The Lewy body diseases (LBD) include Parkinson’s dis-
ease (PD), Parkinson’s disease dementia (PDD), and demen-
tia with Lewy bodies (DLB), all of which lie on a clinical 
spectrum of motor and cognitive symptoms (Jellinger and 
Korczyn 2018). PD and PDD present with motor symptoms 
such as rest tremor, bradykinesia, and unsteady gait that can 
progress into cognitive impairment, whilst DLB typically 
present with cognitive features that often develop into par-
kinsonian features similar to PD (McKeith et al. 2017). The 
characteristic pathological feature of LBD is intraneuronal 
inclusions of the protein α-synuclein termed Lewy bod-
ies (McKeith et al. 2017; Spillantini et al. 1997). In addi-
tion to the presence of Lewy bodies, LBD cases are also 
characterised by nigral depigmentation and striatonigral 
dopaminergic denervation that is thought to underlie the 

extrapyramidal features that characterise clinical parkinson-
ism (Jellinger 2012).

The direct pathogenic relevance of Lewy bodies to the 
neuronal dysfunction and degeneration that characterises 
LBD is not known (Outeiro et al. 2019). Nevertheless, the 
observations that mutations in the α-synuclein gene SNCA 
cause familial PD (Polymeropoulos et al. 1997), the pres-
ence of α-synuclein in Lewy bodies (Spillantini et al. 1997), 
and downregulation of α-synuclein levels reducing risk of 
developing idiopathic PD (Mittal et al. 2017), suggest an 
important role for α-synuclein in pathological processes in 
LBD. Despite the putative role of α-synuclein in LBD, many 
questions remain, including why it aggregates, how (if at all) 
it induces neuronal dysfunction and degeneration, and thus 
its suitability as a target for candidate therapeutics.

Neurometabolic diseases typically arise as a result of 
mutations that induce perturbations in cellular metabolism 
that prominently affect neurons. Most are very rare and 
often affect individuals at earlier stages of life than age-
associated neurodegenerative disorders; however, they often 
share overlaps with neuropathological changes observed 
in individuals with LBD. The present review will discuss 
metabolic diseases that share neuropathological overlaps 
with LBD in terms of α-synuclein aggregation, and will 
focus on PLA2G6-associated neurodegeneration (PLAN), 

 *	 Daniel Erskine 
	 daniel.erskine@ncl.ac.uk

1	 Wellcome Centre for Mitochondrial Research, Newcastle, 
UK

2	 Newcastle University Translational and Clinical Research 
Institute, Newcastle, UK

http://orcid.org/0000-0002-1752-5343
http://crossmark.crossref.org/dialog/?doi=10.1007/s00702-021-02355-7&domain=pdf


1568	 D. Erskine, J. Attems 

1 3

POLG-associated neurodegeneration, Niemann–Pick Type 
C1, and Krabbe disease. In the present review, we will dis-
cuss what is known about shared mechanisms between the 
neurometabolic diseases of interest and idiopathic Lewy 
body disease, with a particular focus on whether the pro-
posed pathways may be implicated in α-synuclein dysregula-
tion in idiopathic Lewy body disease.

PLA2G6‑associated neurodegeneration

PLAN is a group of disorders that fall under the umbrella 
of neurodegeneration with brain iron accumulation and are 
caused by mutations in the PLA2G6 gene, the protein prod-
uct of which is thought to have a role in lipid membrane 
homeostasis and remodelling (Burke and Dennis 2009). 
PLAN is typically divided into four sub-types on the basis 
of clinical features and age of onset: infantile neuroaxonal 
dystrophy, atypical neuroaxonal dystrophy, adult-onset dys-
tonia-parkinsonism, and autosomal recessive early onset par-
kinsonism (Guo et al. 2018). Neuroaxonal dystrophy was 
previously termed “Seitelberger’s disease”, and Prof Kurt 
Jellinger worked with Prof Franz Seitelberger to study this 
disease (Jellinger et al. 1968).

Infantile neuroaxonal dystrophy (INAD) presents between 
6 months and 3 years of age, with rapidly progressing devel-
opmental delay or regression followed by muscle hypoto-
nia and spasticity, leading to a complete loss of voluntary 
muscle control and death usually by the age of 5–10 years 
old (Babin et al. 2018). Atypical neuroaxonal dystrophy is 
characterised by ataxia, rigidity, and spasticity, with later 
onset from 3 years old to late teens, and slower progression 
than infantile neuroaxonal dystrophy (Guo et al. 2018). In 
contrast to infantile neuroaxonal dystrophy, both PLAN sub-
types that onset in adulthood, adult-onset dystonia-parkin-
sonism and autosomal recessive early onset parkinsonism, 
are characterised by later onset between 20 and 40 years 
old, a slower rate of clinical deterioration, and responsive-
ness to dopaminergic agents (Guo et al. 2018). Adult-onset 
dystonia-parkinsonism is characterised by parkinsonian 
extrapyramidal features, though there is some heteroge-
neity in presentation, with neuropsychiatric features such 
as depression preceding motor symptoms in some cases 
(Karkheiran et al. 2015).

The characteristic neuropathological features of individ-
uals with PLA2G6 mutations are prominent neuroaxonal 
spheroids, iron deposition largely confined to the globus 
pallidus with variable affectation of the substantia nigra, 
and widespread neuronal loss (Kruer 2013). Lewy bodies 
are an invariant finding in all cases reported in the literature 
with confirmed genetic testing, and were notably present 
to a severe degree throughout the brain of 8 years old with 
clinical onset in infancy (Paisan-Ruiz et al. 2012). Lewy 

body diseases are normally associated with advancing age, 
and incidental Lewy bodies are typically only observed in 
individuals over the age of 60 (Frigerio et al. 2011; Outeiro 
et al. 2019); therefore, the presence and severity of Lewy 
body pathology in individuals as young as 8 years old sug-
gests an association between Lewy body pathology and 
PLA2G6 mutations. As a result, and given that Lewy body 
formation in PLAN appear to follow Braak’s pathological 
staging scheme for Lewy body pathology in PD (Braak et al. 
2003; Paisan-Ruiz et al. 2012), it has been suggested that 
INAD should be considered to lie on the α-synucleinopathy 
spectrum (Jellinger 2003). It is also notable that many cases 
of PLAN also manifested tau pathology, though this was a 
less invariant finding than Lewy body pathology as the 8 
years old with severe Lewy body pathology did not manifest 
concomitant tau pathology (Paisan-Ruiz et al. 2012). Never-
theless, given the putative potentiating effect of α-synuclein 
on tau pathology (Bassil et al. 2021), and tau on α-synuclein 
pathology (Dasari et al. 2019), these interactions may con-
tribute to pathological and clinical features of PLAN.

How PLA2G6 mutations induce the aggregation of 
α-synuclein is not clear, but as infantile neuroaxonal dys-
trophy is primarily characterised as an iron storage disorder, 
and iron dyshomeostasis has been implicated in α-synuclein 
aggregation (Xiao et al. 2018), one could speculate that 
elevated iron levels could be associated with α-synuclein 
aggregation in infantile neuroaxonal dystrophy. However, 
knockdown of PLA2G6 in drosophila led to changes in the 
composition of the phospholipid bilayer of neuronal cell 
membranes towards lipids with shorter acyl chains and 
increased membrane curvature, leading to the dissociation 
of α-synuclein from cell membranes and increased fibril-
lisation (Mori et al. 2019). Consistent with this proposition, 
PLA2G6 knockdown in mice led to α-synuclein aggregation 
in mitochondria (Sumi-Akamaru et al. 2016), perhaps due 
to altered membrane composition and subsequent dissocia-
tion of α-synuclein from mitochondrial membranes (Shen 
et al. 2014). Therefore, one could speculate that PLA2G6 
mutations affect the membrane-binding propensity of 
α-synuclein, causing its dissociation and subsequent loss of 
alpha-helical structure, and aggregation in a concentration-
dependent manner (Outeiro et al. 2019).

POLG‑associated neurodegeneration

Mutations in POLG give rise to several clinical syndromes, 
including: Alpers–Huttenlocher syndrome (AHS), myocer-
ebrohepatopathy spectrum (MCHS), myoclonic epilepsy 
myopathy sensory ataxia (MEMSA), ataxia neuropathy 
spectrum (ANS), and progressive external ophthalmople-
gia (PEO) (Stumpf et al. 2013). Typically, AHS and MCHS 
onset in infancy or childhood, both with liver dysfunction 
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and developmental delay, though AHS is also characterised 
by epilepsy, particularly in the occipital region, progressing 
to epilepsia partialis continua and status epilepticus (Wolf 
et al. 2009). MEMSA onsets in adolescence or adulthood 
and is characterised by epilepsy, myopathy and ataxia (Van 
Goethem et al. 2003). ANS onsets in early adolescence or 
adulthood and is characterised by ataxia and neuropathy, 
but without myopathy, and some may also have PEO (Van 
Goethem et al. 2004). Finally, PEO onsets in adulthood with 
progressive weakening of extraocular eye muscles leading to 
ptosis and reduced eye movement, though myopathy is often 
observed in these individuals (Van Goethem et al. 2001). As 
with many rare diseases, neuropathological data on indi-
viduals harbouring POLG mutations are limited by the rela-
tively few reports in the literature. However, individuals with 
POLG mutations have varied pathological features, ranging 
from severe necrosis of the occipital cortex, particularly in 
AHS, to cortical laminar necrosis, with loss of cerebellar 
Purkinje cells an almost invariant finding across phenotypes 
(Fig. 1A.i., A.ii.).

POLG mutations have been linked to degeneration of the 
nigrostriatal system similar to PD with concomitant, though 
variable, parkinsonism. One study that conducted neuro-
pathological examinations of four POLG mutation carriers 
identified severe deficiency of Complex I of the mitochon-
drial respiratory chain in substantia nigra neurons, but that 
this was not associated with clinical parkinsonism, whereas 
loss of nigral neurons was a good correlate of parkinsonian 
severity (Palin et al. 2013). In contrast, another study in six 

younger POLG cases confirmed severe Complex I deficiency 
and marked nigral neuronal loss but an absence of parkinso-
nian clinical features (Tzoulis et al. 2013). Although initial 
reports of parkinsonism in PEO cases indicated an absence 
of Lewy bodies in two cases, we have subsequently reported 
a higher prevalence of Lewy body pathology in a prospec-
tive series of older mitochondrial disease cases (Fig. 1B.i., 
B.ii.), particularly those with nuclear DNA mutations such 
as POLG, than in a comparable and older control popula-
tion (Erskine et al. 2020). This study did not show consist-
ently higher levels of Alzheimer-type pathology compared 
to that observed in normal ageing, and Lewy body pathol-
ogy appeared to conform to Braak’s scheme for the distribu-
tion of Lewy bodies in PD (Braak et al. 2003). Consistent 
with the proposition that POLG mutations may increase 
vulnerability to Lewy body pathology, stem cells derived 
from a patient with a POLG mutation had increased levels 
of high molecular weight α-synuclein and higher levels of 
α-synuclein phosphorylated at serine 129 (Chumarina et al. 
2019).

There are many potential mechanisms that could explain 
why individuals with POLG mutations would have increased 
risk of developing Lewy body pathology, including the 
long-established relationship between Complex I inhibition 
and α-synuclein aggregation (Cannon et al. 2009), exces-
sive production of reactive oxygen species leading to the 
accumulation of degradation-resistant oxidised α-synuclein 
(Martinez-Vicente et al. 2008), and increasingly oxidised 
intracellular environments leading to increased unbound 

Fig. 1   In contrast to control cerebellum, which shows a clear layer of 
Purkinje cells (arrows) on H&E stain (A.i.), individuals with POLG 
mutations typically show a loss of Purkinje cells, with some dys-
trophic remnants of Purkinje cells (arrow), alongside associated Berg-
mann gliosis (arrowheads; A.ii.). The substantia nigra of a 59  year 
old male with a POLG mutation shows α-synuclein-immunoreactive 
Lewy bodies (arrowheads; B.i.), as does the temporal cortex of a 
79 year old male with a POLG mutation (arrowheads; B.ii.). Krabbe 

disease patients show clusters of lipid-filled multi-nucleated globoid 
cells (arrowheads) and single mononucleated foamy macrophages 
(arrows) in the medial lemniscus of a 10 month old male (C.i.) and 
occipital white matter of a 9  month old male (C.ii.). α-Synuclein 
immunohistochemistry of Krabbe disease cases demonstrates spheri-
cal inclusions in frontal cortex of a 10 month old male (D.i.) and the 
putamen of a 12 month old female (D.ii.). Scale bars = 200 µm (A.i., 
B.i., B.ii.), 100 µm (A.ii., C.i., C.ii., D.i.), 50 µm (D.ii.)



1570	 D. Erskine, J. Attems 

1 3

α-synuclein through reductions in its binding partners 
(Scarlata and Golebiewska 2014). The mitochondrial lipid 
cardiolipin has been demonstrated to stabilise monomeric 
α-synuclein on mitochondrial inner membranes (Ryan et al. 
2018), but is highly vulnerable to peroxidation secondary to 
excessive production of reactive oxygen species (Paradies 
et al. 2014) that reportedly occurs in neuronal cells gen-
erated from POLG mutation carriers (Liang et al. 2020). 
Therefore, it is also plausible to suggest that altered mito-
chondrial membrane dynamics could lead to increased levels 
of unbound α-synuclein within neurons, somewhat similar 
to that proposed for PLA2G6 mutations.

Niemann–Pick type C1

Niemann–Pick disease is an umbrella term for a group of 
autosomal recessive lysosomal disorders characterised by 
the accumulation of undegraded lipids within affected cells 
(Santos-Lozano et al. 2015). Niemann–Pick type A and B 
differ from C and D on the basis of the affected mechanisms, 
with A and B resulting from sphingomyelinase deficiency 
and C and resulting from mutations in proteins involved in 
intracellular lipid and cholesterol trafficking (Sun, 2018). 
Niemann–Pick C1 results from mutations in NPC1, a lysoso-
mal membrane protein, the loss of which induces defects in 
intracellular lipid trafficking and the accumulation of unes-
terified cholesterol and other sphingolipid species (Yu et al. 
2014). Niemann–Pick C1 can present across childhood and 
adolescence, with early onset associated with more rapid 
progression, and typically involving hepatosplenomegaly, 
developmental delay, ataxia, hypotonia, and saccadic abnor-
malities (Sun 2018).

Neuropathologically, Niemann–Pick C1 is characterised 
by widespread accumulation of gangliosides and unesteri-
fied cholesterol in neurons, alongside meganeurites often 
larger than the soma from which they emanate (Zervas et al. 
2001). There have been several reports of α-synuclein accu-
mulation in Niemann–Pick C1 cases, from one case study 
reporting Lewy bodies (Chiba et al. 2014), to a case series of 
12 individuals, of which nine had intraneuronal α-synuclein 
aggregation characterised as “pre-Lewy bodies”, whilst in 
two cases aged 23 and 32, it was typical Lewy body pathol-
ogy (Saito et al. 2004). Therefore, although Niemann–Pick 
C1 appears associated with the accumulation of α-synuclein 
in most cases, it is not clear how this related to Lewy body 
formation, nor whether they conform to the distribution of 
Lewy body pathology in PD (Braak et al. 2003). However, 
given the young age of cases manifesting Lewy bodies, 
much younger than the age at which incidental Lewy body 
disease typically occurs, one could suggest an association 
between NPC1 mutations and α-synuclein aggregation. It is 
also notable that tau pathology was also observed in 10/12 

Niemann–Pick cases with α-synuclein pathology noted 
previously, where its abundance appeared to closely mirror 
that of α-synuclein, and with which it was frequently co-
localised (Saito et al. 2004).

There are several potential mechanisms that could under-
lie the increased levels of aggregated α-synuclein in Nie-
mann–Pick Type C1. In addition to cholesterol, lipidomic 
analyses have demonstrated reductions of galactosylcera-
mide alongside striking increases in cholesterol, glucosyl-
ceramide, lactosylceramide, gangliotriaosylceramide, and 
GM2 and GM3 gangliosides in Niemann–Pick type C1 
(Vanier 1999). Glucosylceramide has been widely studied in 
the context of Lewy body diseases, where it has been dem-
onstrated to precipitate the toxic conversion of α-synuclein 
(Zunke et al. 2018), and thus, its elevation in Niemann–Pick 
type C1 may contribute vulnerability to α-synuclein aggre-
gation. GM2 gangliosides have also been associated with 
α-synuclein pathology in mouse models (Suzuki et al. 2003, 
2007) and GM3 gangliosides have been demonstrated to 
induce α-synuclein fibrillisation in vitro (Gaspar et al. 2018). 
Therefore, there are several plausible links between lipids 
accumulated in Niemann–Pick type C1 and the aggregation 
of α-synuclein.

Krabbe disease

Krabbe disease is a rare autosomal recessive neurodegen-
erative disorder resulting from mutations in the GALC 
gene, which encodes the lipid-degrading lysosomal enzyme 
β-galactocerebrosidase (Graziano and Cardile 2015). 95% of 
cases have onset within the first 6 months of life, presenting 
with hyperirritability, hypersensitivity to external stimuli, 
and stiffness of limbs. Infantile cases progress quickly with 
marked psychomotor regression and hypotonicity, leading to 
a state of decerebrate posture and complete non-responsive-
ness, prior to death typically before the age of 2 years old 
(Hagberg et al. 1963). Later onset cases have been described, 
though their onset and progression is more variable, ranging 
from late infantile through to juvenile and even adult onset 
(Debs et al. 2013; Lyon et al. 1991). The classic neuropatho-
logical feature of Krabbe disease is spongiosis of the white 
matter and the presence of swollen lipid-laden macrophages 
termed globoid cells (Fig. 1C.i., C.ii.) (Itoh et al. 2002). The 
characteristic leukodystrophy of Krabbe disease is thought to 
result from the accumulation of the toxic lipid psychosine, a 
precursor of galactosylceramide, a substrate of the enzyme 
encoded by GALC (Spassieva and Bieberich 2016).

Only three infantile Krabbe disease cases have been eval-
uated for α-synuclein pathology in the literature, with all 
demonstrating Thioflavin-S and α-synuclein-positive spheri-
cal inclusions reminiscent of Lewy bodies in frontal cortical 
tissue (Fig. 1D.i., D.ii.) (Smith et al. 2014). These findings 
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are notable both due to the very young age of the Krabbe dis-
ease patients in which α-synuclein pathology was observed, 
but also as variants in GALC are associated with increased 
risk of developing idiopathic Parkinson’s disease, this indi-
cates a direct mechanistic link between Krabbe disease 
and age-associated Lewy body diseases (Kia et al. 2021; 
Li et al. 2018). Given that α-synuclein pathology has only 
been evaluated in one brain region in human Krabbe disease 
brains, it is not possible to determine the extent to which it 
overlaps with the distribution of Lewy body pathology in 
PD. Furthermore, no study to our knowledge has evaluated 
whether concomitant Alzheimer-type pathology is present 
in Krabbe disease brains.

There are several plausible mechanisms that may account 
for α-synuclein pathology in Krabbe disease; first, psycho-
sine has been demonstrated to interact with, and induce 
the fibrillisation of, α-synuclein in vitro (Abdelkarim et al. 
2018). However, psychosine also induces cholesterol mislo-
calisation and alterations to membrane curvature (D’Auria 
et al. 2017; Hawkins-Salsbury et al. 2013), which may pro-
mote α-synuclein membrane dissociation and subsequent 
accumulation.

Implications for idiopathic Lewy body 
disease

Rare neurometabolic diseases with α-synuclein pathology 
offer a potentially unique insight into the formation of Lewy 
bodies in idiopathic Lewy body disease, given that their aeti-
ology is well known and thus mechanisms that may give 
rise to α-synuclein aggregation can be inferred. If processes 
affected in the described neurometabolic disease are also 
known to be perturbed in idiopathic Lewy body disease, then 
one could speculate that they may contribute to the forma-
tion of Lewy bodies and may be worthy of further study to 
better understand the pathogenesis of Lewy body disease.

There are conflicting reports about the role of variants in 
PLA2G6 and risk of PD, with some demonstrating an asso-
ciation (Liu et al. 2020a, b) and others not (Liu et al. 2020a, 
b). However, a study using cells obtained from idiopathic PD 
patients demonstrated deficient activity of iPLA2, the pro-
tein product of PLA2G6 (Zhou et al. 2016), and it has been 
reported to be located within Lewy bodies of idiopathic PD 
cases (Miki et al. 2017). Therefore, although limited, there 
is some evidence for alterations to PLA2G6-associated func-
tion in idiopathic LBD; however, given that Lewy bodies 
are an invariant finding in all PLAN cases in the literature, 
further understanding of how iPLA2 is altered in idiopathic 
Lewy body disease is a pressing issue.

Similar to PLA2G6, POLG variants are not thought to 
be associated with increased risk of developing idiopathic 
Lewy body disease (Bentley et  al. 2014; Hudson et  al. 

2009; Tiangyou et al. 2006). However, POLG is a mito-
chondrial DNA polymerase, the dysfunction of which has 
a profound impact on the mitochondrial respiratory chain 
(Lax et al. 2016), and alterations to the mitochondrial res-
piratory chain have been consistently observed in PD and 
DLB (Hatton et al. 2020; Reeve et al. 2012; Schapira et al. 
1990), which may point to some shared aetiological fac-
tors. In contrast to the mitochondrial respiratory chain, no 
study to our knowledge has investigated whether alterations 
to cardiolipin occur in Lewy body disease despite increas-
ing interest in this area (Gilmozzi et al. 2020). Therefore, 
it remains unclear whether  cellular changes resulting from 
POLG mutations that are putatively related to α-synuclein 
aggregation are also observed in Lewy body disease.

Natural variants in NPC1 are not associated with 
increased risk of PD (Ouled Amar Bencheikh et al. 2020; 
Zech et al. 2013); however, some of the substrates that accu-
mulate in Niemann–Pick Type C1, such as cholesterol, have 
been identified as dysregulated in idiopathic PD (Huang 
et al. 2019; Park et al. 2021) and DLB (Bettcher et al. 2017; 
Bosco et al. 2006). As with Niemann–Pick type C1, there is 
evidence for alterations to GM3 gangliosides in Lewy body 
diseases, with studies demonstrating elevations in plasma 
(Chan et al. 2017) and cerebrospinal fluid (Huebecker et al. 
2019) in PD. There is also evidence that upregulation of 
β-hexosaminidase, an enzyme responsible for degradation 
of GM2 gangliosides, protects dopaminergic neurons from 
α-synuclein toxicity, implying a role for GM2 gangliosides 
in α-synuclein-mediated neurodegeneration (Brekk et al. 
2020). Furthermore, glucosylceramide, which is elevated in 
Niemann–Pick type C1, has been demonstrated to be ele-
vated in PD (Mielke et al. 2013), where it has been demon-
strated to induce α-synuclein aggregation (Zunke et al. 2018) 
and enhance neuronal susceptibility to α-synuclein toxicity 
(Henderson et al. 2020). Taken together, these findings sug-
gest that whilst NPC1 is not a risk factor for idiopathic Lewy 
body diseases, there is evidence to suggest dysregulation of 
lipid species associated with Niemann–Pick Type C1.

Unlike PLA2G6, POLG, and NPC1, multiple large stud-
ies have consistently reported that GALC variants are asso-
ciated with PD risk (Kia et al. 2021; Li et al. 2018). Fur-
thermore, there is direct evidence that psychosine, the lipid 
that accumulates in Krabbe disease, directly interacts with 
α-synuclein and induces its fibrillisation in vitro (Abdelka-
rim et al. 2018; Smith et al. 2014), and is elevated in PD 
brain tissue lysates (Marshall et al. 2018). Taken together, 
these findings highlight plausible and direct mechanisms 
through which dysregulation of psychosine may contribute 
to α-synuclein pathology in Krabbe disease and idiopathic 
Lewy body disease.
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Discussion

The discussed neurometabolic diseases typically have a rela-
tively young onset, in contrast to the age-associated pres-
entation of idiopathic Lewy body diseases. Nevertheless, 
despite incidental Lewy bodies typically occurring over the 
age of 60 years (Gilmozzi et al. 2020), it is notable that many 
of the discussed metabolic diseases manifest α-synuclein 
aggregates at a much younger age. Given that Lewy body 
pathology occurs at a much younger age in individuals with 
particular neurometabolic diseases than occurs incidentally, 
one could quite reasonably suggest that α-synuclein aggrega-
tion is related to the underlying metabolic dysfunction that 
gives rise to the primary pathology. Therefore, understand-
ing the processes that may contribute to α-synuclein aggre-
gation in neurometabolic diseases, where causal disease 
mechanisms are already well characterised, may provide 
unique insights into pathological processes that contribute 
to Lewy body formation in idiopathic Lewy body disease.

The present discussion has highlighted four rare neuro-
metabolic disorders with α-synuclein accumulation, all of 
which have alterations to particular lipid species that are 
also reportedly dysregulated in idiopathic Lewy body dis-
ease. Therefore, it is tempting to speculate that alterations 
to lipid metabolism may contribute to α-synuclein aggre-
gation, either by direct lipid–protein interactions, as with 
psychosine or GM3 gangliosides, or indirectly by reducing 
membrane binding and thus increasing the abundance of 
free α-synuclein within neurons, as with PLA2G6 and car-
diolipin. These are not trivial matters of enquiry as many 
candidate disease-modifying therapies in development for 
idiopathic Lewy body disease target the aggregation of 
α-synuclein. However, if α-synuclein aggregation in idio-
pathic Lewy body disease results from an underlying meta-
bolic deficit, as it appears to do in some rare neurometabolic 
disorders, then such efforts are unlikely to be effective as 
they would not address the underlying metabolic dysfunc-
tion that led to α-synuclein aggregation, and which likely 
contributes to neural dysfunction and degeneration.

Although there is a renewed interest in the role of lipids in 
Lewy body diseases (Fanning et al. 2020), there is a pressing 
need to better understand changes to lipid species in post-
mortem Lewy body disease brain tissue and how these may 
contribute to Lewy body formation. One potential barrier 
to this is that lipids are more difficult to study in brain tis-
sue than proteins, and the methods involved often require 
tissue homogenates meaning that topographical informa-
tion is lost compared to histological preparations. There 
is also a pressing need to better understand the extent to 
which α-synuclein aggregates in neurometabolic diseases 
recapitulate key pathogenic features of Lewy body diseases, 
such as increased levels of phosphorylation at serine 129 and 

the ability to seed aggregation of monomeric α-synuclein. 
Answering these questions may help gain further insights 
into α-synucleinopathies and determine the extent to which 
these diseases at the opposite ends of life share key patho-
genic mechanisms.
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