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Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease worldwide. Behind the symptoms there is 
a complex pathological mechanism which leads to a dopaminergic cell loss in the substantia nigra pars compacta. Despite 
the strong efforts, curative treatment has not been found yet. To prevent a further cell death, numerous molecules were tested 
in terms of neuroprotection in preclinical (in vitro, in vivo) and in clinical studies as well. The aim of this review article is 
to summarize our knowledge about the extensively tested neuroprotective agents (Search period: 1991–2019). We detail the 
underlying pathological mechanism and summarize the most important results of the completed animal and clinical trials. 
Although many positive results have been reported in the literature, there is still no evidence that any of them should be 
used in clinical practice (Cochrane analysis was performed). Therefore, further studies are needed to better understand the 
pathomechanism of PD and to find the optimal neuroprotective agent(s).
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Introduction

Parkinson’s disease (PD) is the second most common neu-
rodegenerative disease worldwide (Kalia and Lang 2015). 
Cardinal motor symptoms are bradykinesia, tremor and/
or muscle rigidity. Behind the clinical symptoms there is a 
complex pathological mechanism which leads to dopamin-
ergic cell loss in the substantia nigra pars compacta (Kalia 
and Kalia 2015). Currently, there is no curative treatment, 
the gold standard of symptom management is levodopa. At 
the time of the diagnosis of PD only 30% of the dopaminer-
gic neurons but around 50–60% of their axon terminals have 
already perished (Cheng et al. 2010). Therefore, in the last 
few decades great effort has been made to understand the 
undergoing mechanisms and to find molecule(s) which can 
protect the dopaminergic neurons from the complex dam-
aging cascade. Our review summarizes the most important 

pathophysiological aspects of PD and describes the widely 
studied molecules.

Review data

The aim of this review article is to provide a comprehensive 
summary of the pathomechanism and the potential neuro-
protective targets in Parkinson’s disease. For search PubMed 
(MEDLINE) and Web of Science and Cochrane (Septem-
ber 1991 to September 2019) databases were applied. The 
following search terms were used: ‘Neuroprotection’ AND 
‘Parkinson’s disease’ AND ‘6-OHDA’ OR ‘Adenosine A2A’ 
OR ‘Amantadine’ OR ‘Anti-apoptotic agent’ OR ‘Anti-oxi-
dant’ OR ‘Bromocriptine’ OR ‘Caffeine’ OR ‘Calcium chan-
nel antagonist’ OR ‘Coenzyme Q10’ OR ‘CoQ10’ OR ‘Cre-
atine’ OR ‘Deprenyl’ OR ‘Doxycycline’ OR ‘Environment’ 
OR ‘Exenatide’ OR ‘Exercise’ OR ‘Flavonoid’ OR ‘GDNF’ 
OR ‘Ghrelin’ OR ‘Isradipine’ OR ‘Kynurenine’ OR ‘Levo-
dopa’ OR ‘MAO inhibitor’ OR ‘Minocycline’ OR ‘MPTP’ 
OR ‘Neurotropic factors’ OR ‘Neurturin’ OR ‘Nicotine’ 
OR ‘Nilotinib’ OR ‘NMDA’ OR ‘NSAID’ OR ‘Parkin’ OR 
‘Pramipexole’ OR ‘Rasagiline’ OR ‘Rifampicin’ OR ‘Rop-
inirole’ OR ‘Selegiline’ OR ‘Tocopherol’ OR ‘UCH-L1’ OR 
‘Uric acid’ OR ‘Uridine’ OR ‘Vitamin D’ OR ‘Vitamin E’ 
OR ‘α-synuclein’ OR ‘Vitamin C’ AND ‘Review’. The most 
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comprehensive, online available reviews have been selected 
for further evaluation and after the collection of all neces-
sary information they were synthesized in this article.

Pathogenesis of Parkinson’s disease

Despite extensive animal and clinical studies, the etiology 
of PD is still unclear (Fig. 1). Most of our information on 
the pathomechanism of Parkinson’s disease originate from 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 
6-hydroxydopamine (6-OHDA) animal models. Presumably 
PD is much more complex than can be modeled with toxin 
experiments. The most important pathological processes are 
the followings (Mandel et al. 2003; Allain et al. 2008):

(1) Monoamine oxidase B (MAO-B) activity—it is 
widely known that MAO-B metabolizes the MPTP toxin to 
its active compound, 1-methyl-4-phenylpyridium  (MPP+), 
which reaction creates reactive oxygen intermediates (ROI) 
and lead to cell death (Mandel et al. 2003). It could be one 
reason why selegiline is effective in MPTP toxin models 
(Heikkila et al. 1984). In PD there is an accumulation of 
alpha-synuclein aggregates in the astrocytes. This accumu-
lation results in oxidative stress. A previously published 
research reported that there is a positive correlation between 
MAO-B and astrocyte marker levels (e.g., glial fibrillary 
acidic protein). Therefore, it seems that MAO-B plays an 
important pathogenic role in the production of ROI in the 
activated astrocytes (Jellinger 2017; Langston 2017; Tong 
et al. 2017). (2) Oxidative stress and reduced endogenous 
antioxidant capacity (Zádori et al. 2011). (3) Elevated iron 

level—It is hypothesized that oxidative stress, which is 
provoked by iron metabolism, is one of the most important 
cause of neurodegeneration (Mandel et al. 2003). (4) Glu-
tamatergic excitotoxicity (Koutsilieri and Riederer 2007; 
Majláth et al. 2016a; Zádori et al. 2012a, 2013). (5) Abnor-
mal protein aggregation, misfolding—Parkinson’s disease 
is a sporadic disease. However, rarely familial (estimated 
incidence 1–2%) forms were also reported in the scientific 
literature (Polymeropoulos et al. 1997). If there is a muta-
tion in the SNCA gene, α-synuclein starts to aggregate and 
it seems that this aggregated protein interferes with ubiq-
uitin–proteasome system (Chung et al. 2001). The produc-
tion of Lewy bodies is accelerated by the aggregation of the 
α-synuclein forming proteins. Currently around 20 genes 
have been identified (Kim and Alcalay 2017). (6) Reduced 
level of trophic factors (see in “Neurotropic factors”). (7) 
Altered ion (calcium) homeostasis (Hirsch et al. 2013). (8) 
Neuroinflammation—it has been showed that cyclooxyge-
nase (COX) COX-2 is upregulated in Parkinsonian patients. 
The pharmacological inhibition of this enzyme leads to the 
prevention of toxic dopamine-quinone formation in MPTP 
mouse model (Teismann et al. 2003). Theoretically micro-
glias may contribute to the ongoing cell death by producing 
inflammatory molecules, such as prostaglandins, interleukins 
and reactive oxygen species (Allain et al. 2008). (9) Apop-
tosis—in animal studies and also in Parkinsonian patients 
there is an upregulation of the synthesis of proteins which 
take part in the apoptotic pathways. P53, caspase-3 are just 
two of the many involved proteins (Allain et al. 2008; Stern 
1996). (10) Defect of the endoplasmatic reticulum traffick-
ing system—in the normal cells, α-synuclein contributes to 

Fig. 1  Patomechanism and 
potential neuroprotective targets 
in Parkinson’s disease (AMPA 
α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid 
receptor, ER endoplasmatic 
reticulum, MAO-B monoamine 
oxidase B, mGluR metabotropic 
glutamatergic receptor, NMDA 
N-methyl-D-aspartate receptor, 
NSAID non-steroidal anti-
inflammatory drug, ROI reac-
tive oxygen intermediates, UPS 
ubiquitin–proteasome system)
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the synaptic vesicle recycling and to the maintenance of the 
membrane plasticity (Bonini and Giasson 2005). Nonethe-
less, the aggregation of these proteins leads to a lethal block 
in the vesicular transport mechanisms (endoplasmatic reticu-
lum, Golgi) (Allain et al. 2008).

Neuroprotective agents

Neuroprotection is mostly a pharmacological intervention 
that slows the natural progression of the PD or helps to save 
the most vulnerable dopaminergic neurons in the substantia 
nigra. This section summarizes the main animal and clinical 
experimental results of the compounds tested for neuropro-
tection in PD.

MAO‑B inhibitors

Selegiline (Tábi et al. 2019) is used in the daily practice 
to manage on/off fluctuations and to reduce the levodopa 
dose (Lees et al. 1977). Selegiline reduces the oxidative 
stress, which is produced by the metabolism of biogenic 
amines and environmental toxic agents (e.g., pesticides). It 
elevates the endogenous anti-oxidant capacity (superoxide 
dismutase (SOD) and catalase) and prevents the uptake of 
neurotoxins in the nerve terminals (Mandel et al. 2003). Two 
important prospective, double-blind trials (DATATOP and 
SINDEPAR) were performed (in this review we do not sum-
marize the clinical trials of Tetrud and Langston (Tetrud 
and Langston, 1989), Swedish—(Pålhagen et al. 1998) and 
Norwegian-Danish (Larsen et al. 1999) selegiline trials, 
because the small number of participants and the limited 
amount of available data). The DATATOP study assessed 
the effect of selegiline and tocopherol on the progression of 
PD. Untreated patients were randomly separated in different 
groups: (1) vitamin E (2000 IU); (2) selegiline (deprenyl) 
(2 × 5 mg/day); (3) vitamin E and selegiline (deprenyl); (4) 
placebo. In the vitamin E group, there was no observable 
benefit, but in the selegiline groups there was a delay in 
the time needed to start the levodopa treatment compared 
to placebo. It could not be decided whether the drug had 
a neuroprotective or just a prolonged symptomatic effect. 
The aim of the SINDEPAR (Sinemet-Deprenyl-Parlodel) 
study was to estimate the potential neuroprotective effect of 
selegiline in untreated patients. The primary endpoint was 
the change in the Unified Parkinson’s Disease Rating Scale 
(UPDRS) score between first and last visits (14 months (12 
treatment + 2 months washout period). Although the sele-
giline group has lesser worsening on the UPDRS scale, it 
was hard to exclude the potential long-term symptomatic 
effect of selegiline (Parkinson study group 1989, 1993; 
Olanow et al. 1995; Olanow and Jankovic 2005).

Rasagiline is a more potent MAO-B inhibitor than sele-
giline, without amphetamine-like metabolites (Youdim et al. 
2001; Youdim 2010; Weinreb et al. 2011). Animal and cell 
culture studies concluded that rasagiline increases the anti-
oxidant capacity (SOD, catalase, bcl-2) and prevents toxic 
effects of peroxynitrite, MPTP and 6-OHDA. Rasagiline 
increases the survival rate of dopaminergic neurons as well. 
In clinical phase rasagiline (up to 2 mg/day) as an adjuvant 
to levodopa was examined during 12 weeks of treatment. 
There was a persistent improvement in the UPDRS scores 
compared to placebo (Rabey et al. 2000). Furthermore, 
TEMPO trial found that early treatment with rasagiline 
slowed down the progression of the symptoms compared to 
the delayed started (6 month later) group (Parkinson Study 
Group 2002). Olanow et al. performed a similar clinical trial 
(ADAGIO; 1176 subjects). They found that 1 mg rasagiline 
lead to a significant improvement in the UPDRS score, while 
2 mg did not reach the significance (Olanow et al. 2009). In 
the PRESTO study 472 Parkinsonian patients were involved 
with at least 2 ½ h daily OFF-time. They found an improve-
ment in the UPDRS and in the global impression scale after 
rasagiline administration. 29% OFF-time reduction was 
detectable in the 1.0 mg/day rasagiline group (Parkinson 
Study Group 2005). In the LARGO trial during 18-week 687 
Parkinsonian patients were randomly divided in rasagiline 
(1 mg/day), entacapone (200 mg with every levodopa) and 
placebo groups. In the rasagiline group there was a decrease 
in the daily OFF-time (− 1.18 h) and an increase in the ON-
time without troublesome dyskinesias (Rascol et al. 2005). 
These trials did not make easier the interpretation of the 
potential neuroprotective effect of rasagiline. Peretz et al. 
published in (2016) a real-life study, where no differences 
were found on the natural PD history between patients, who 
were treated with rasagiline or selegiline.

Dopamine receptor agonists

Dopamine receptor agonists may be able to prevent the 
nigrostriatal dopaminergic cell loss, perhaps as a conse-
quence of antioxidant and levodopa sparing effects (Djal-
detti and Melamed 2002). These compounds stimulate the 
dopaminergic auto-receptors as well, resulting in a decrease 
in dopamine excretion (Djaldetti and Melamed 2002).

In animal studies, pramipexole (D2/D3 receptor ago-
nist), bromocriptine (D2 receptor agonist), R-apomorphine 
(D1/D2 receptor agonist), ropinirole (D2/D3 receptor ago-
nist) were tested in different models (ischemic damage, 
methamphetamine, 3,4-dihydroxyphenylacetic acid and 
homovanillic acid depletion, MPTP, 6-OHDA). The applied 
dopamine agonists prevented the loss of dopaminergic neu-
rons (Fornai et al. 2001; Grünblatt et al. 1999; Hall et al. 
1996; Iida et al. 1999; Kondo et al. 1994; Zou et al. 2000).
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In clinical studies, it is an unsolved question whether 
these compounds have a neuroprotective or just a sympto-
matic effect (Djaldetti and Melamed 2002). PET and SPECT 
studies were performed with the aim of better distinction 
between these 2 kinds of effects (Djaldetti and Melamed 
2002). In the REAL PET study ropinirole was compared to 
levodopa (Whone et al. 2003) and the nigrostriatal system 
fluorodopa uptake was measured. This uptake was slower 
in the ropinirole group, but no correlation between the 
neuroimaging findings and the patient’s clinical status was 
found there. A similar study (CALM-PD) was conducted 
with pramipexole, where β-CIT labeled with [123]iodine 
striatal uptake (SPECT) was compared to the levodopa 
group (Marek et al. 2002). Although the study duration was 
short (46 months), there was a clear positive tendency in 
the pramipexole group (Marek et al. 2002). This result was 
not confirmed in the PROUD study (Schapira 2013). None 
of these neuroimaging studies had placebo control groups. 
Therefore, it is hard to decide which of the following two 
interpretations of the results is the correct one: (1) dopa-
mine receptor agonists have neuroprotective effect or (2) 
levodopa induces the degeneration of dopaminergic neu-
rons (Olanow and Jankovic 2005). In the ELLDOPA trial, 
untreated patients were involved and randomly divided in 
the following groups: 300–450–600 mg levodopa/day or 
placebo. There was a lower clinical decline in levodopa 
groups compared to placebo. It demonstrated the poten-
tial protective effect of levodopa treatment (The Parkinson 
Study Group 2004). On the contrary, a study published in 
2019 found, that in a delay-start clinical trial (445 patients; 
80 week levodopa treatment (3 × 100 mg levodopa + 25 mg 
carbidopa) vs. 40 week placebo followed by 40 week levo-
dopa treatment) there was no detectable disease-modifying 
effect of levodopa (Verschuur et al. 2019).

NMDA receptor antagonists

Next to the dopaminergic system, alterations in glutamater-
gic transmission also contributes to the development of the 
Parkinsonian symptoms via excitotoxicity (Mandel et al. 
2003). Riluzole exerted protective effect on dopaminergic 
cells in the MPTP toxin model. In the clinical phase no sig-
nificant alteration occurred in the UPDRS score of riluzole 
treated groups; therefore, the clinical trial was interrupted 
(Obinu et al. 2002; Jankovic and Hunter 2002). Amantadine 
has a mild retarding effect on the progression of the disease 
in MPTP model. In the clinical use, amantadine has a good 
clinical effect on the motor complications (Rojas et al. 1992; 
Schwab et al. 1972; Greulich and Fenger 1995). The retro-
spective analysis of patients treated with amantadine showed 
an improved survival rate (Uitti et al. 1996). Memantine 
exerted a dose-dependent, sustained effect on cortical 
and hippocampal neurons induced by excitotoxicity and 

hypoperfusion (Seif el Nasr et al. 1990; Erdö and Schäfer 
1991). NMDA-receptor antagonists are badly tolerated by 
patients because of their side effects (e.g., psychiatric symp-
toms) (Olanow and Jankovic 2005).

Iron chelators

Nigral iron deposition, located mainly in the glia cells, is 
characteristic of PD as well. Iron promotes the development 
of oxidative stress which leads to protein misfolding and 
the formation of Lewy bodies (Sian-Hülsmann et al. 2010). 
Despite the clear evidence on iron chelators [e.g., deferox-
amine, phytic acid (IP6)] in the preclinical models, there is 
no data on their clinical utility (Gerlach et al. 1994; Mochi-
zuki et al. 1994; Dusek et al. 2016; Seidl and Potashkin 
2011).

Neurotropic factors

In animal models the effect of the growth factors was widely 
studied (Djaldetti and Melamed 2002). It was identified in 
the MPTP-treated monkeys that glial derived neurotropic 
factor (GDNF) helped to return the dopaminergic cell func-
tion (Djaldetti and Melamed 2002). MPTP treated mon-
keys were infused with GDNF (intraventricular or striatal) 
3 months after lesioning. There was an obvious increase in 
the number and the size of the tyrosine hydroxylase (TH)-
positive cells (Schapira 2008). Similar results were detect-
able with lentiviral transfectioning after 1 week of MPTP 
treatment (Kordower et al. 2000). GDNF did not penetrate 
adequately to the target after intraventricular administration 
(Kordower et al. 1999). In the first phase II study, GDNF was 
administered intracerebroventricularly without any benefit 
(Domanskyi et al. 2015; Nutt et al. 2003a, b). In view of the 
safety of the intraputaminal administration in one study, this 
route of administration was used in the second clinical phase 
II trial. This treatment did not result in clinical improvement 
(Lang et al. 2006). Concomitant administration of GDNF 
in putamen and substantia nigra was also tested with good 
safety in 6 PD patients (Bartus et al. 2013).

Calcium channel blockers

There is no clear evidence on the effectiveness of calcium 
channel blockers in Parkinson’s disease (Seidl and Potashkin 
2011). Isradipine (L-type dihydropyridine) was successful 
in the prevention of the apoptosis after hypoxic damage 
(Barhwal et al. 2009). The L-type channel blockers seem 
to be protective after MPTP or 6-OHDA administration in 
animals (Bove et al. 2005; Kalia et al. 2015). In a clinical 
phase (STEADY-PD—multicenter, phase II study) isradi-
pine was tested on 99 early Parkinsonian subjects (5, 10 or 
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20 mg/day or placebo). They found that the maximal tol-
erable dose is 10 mg/day (Parkinson Study Group 2013). 
Isradipine is under testing in an ongoing phase III clinical 
trial (NCT02168842).

Coenzyme Q10

Coenzyme Q10 (Co-Q10; ubiquinone) functions as an anti-
oxidant and as a part of the respiratory chain of mitochon-
dria. It has the capacity to scavenge free radicals. In a pilot 
study, patients were randomly divided into placebo and 
treated groups [3 doses (300 mg/d; 600 mg/d; 1200 mg/d)]. 
Patients who got the highest Co-Q10 dose (1200 mg/d) had 
a short-term improvement and a significant lower dete-
rioration in the UPDRS score compared to placebo group 
(Shults et al. 2002). A small trial was performed, where 
Parkinsonian patients were treated with 360 mg Co-Q10 
daily over 4 weeks (Müller et al. 2003). It showed a mild 
symptomatic effect after the treatment. Larger study did 
not find any effect on the motor symptoms of PD after the 
administration of 300 mg Co-Q10 daily (Storch et al. 2007). 
Another randomized phase III clinical trial found no benefit 
after 1200 mg/day or 2400 mg/day Co-Q10 administration 
(+ vitamin E 1200 IU/day was concomitantly administered) 
(The Parkinson Study Group QE3 Investigators 2014).

Creatine

Creatine is metabolized to phosphocreatine in the cell. This 
phosphate group could help in the stage of energy depriva-
tion across the synthesis of ATP from ADP. In the MPTP 
animal model creatine had a protective effect on dopamin-
ergic cell loss (Matthews et al. 1999). In the NINDS NET-
PD study (2006) 10 g creatine was administered daily to 
66 early Parkinsonian patients. The clinical trial was termi-
nated early because of the futility of results (The NINDS-PD 
Investigators 2006). In another study 2 g creatine was used 
for 6 months, then 4 g for 18 months in 31 patients. There 
was no significant change either in the UPDRS score, or in 
the SPECT results compared to the placebo group (Bender 
et al. 2006).

Alpha‑synuclein immunotherapy

There are hypotheses in the literature, that prion-like mecha-
nisms play important role in the development of PD (Visanji 
et al. 2013). These treatments targeting the extracellular toxic 
form of the α-synuclein. PD01A is a short peptide, which 
contains the C-terminus of the alpha-synuclein. In a phase I 
trial, 24 early Parkinsonian patients were involved to test this 
compound. It was safe and well tolerated after 12 months 
of treatment period with two subcutaneously administered 
different doses. PD03A, another compound was also tested 

in a phase I randomized controlled trial (RCT). Currently, 
there are no available results (NCT02267434). Not only 
active immunization therapies were examined, but even 
the passive ones as well. PRX002 is a monoclonal anti-α-
synuclein antibody, which was safe and well tolerated (single 
and multiple doses). Currently there is a phase II clinical 
study ongoing testing its efficacy (NCT03100149) (Jankovic 
et al. 2018). Further clinical trials are ongoing or under plan-
ning with monoclonal antibodies (e.g., BIIB054, BAN0805), 
α-synuclein aggregation modulators (e.g., NPT200-11, 
− 088, ANLE 138b) and Glucocerebrosidase enhancers 
(e.g., Ambroxol, GZ/SAR4027671) (Fernández-Valle et al. 
2019). To reach a higher efficacy in the prevention of synu-
clein accumulation Rockenstein et al. tested and reported 
the positive effect of the combination of humoral and cel-
lular immunization (glucan microparticle (GP) + rapamycin 
(RAP)/α-syn) in PDGF-α-syn transgenic mice (Rockenstein 
et al. 2018). Spencer et al. reported that short interfering 
RNA oligonucleotides (siRNA) could be an interesting new 
tool in the treatment of synucleinopathies. They identified an 
alternative peptide [apolipoprotein B (ApoB)] which allows 
the transport of oligonucleotides into the nervous system 
across the blood brain barrier. This method showed efficacy 
and revealed reduction of the neuropathological alteration 
severity in transgenic animal model of Parkinson’s disease 
(Spencer et al. 2019).

Recreational—caffeine, nicotine

The mount of evidence supports the possible neuropro-
tective effect of caffeine (Ross et al. 2000; Ascherio et al. 
2001; Saaksjarvi et al. 2008). Acute and chronic adminis-
tration of caffeine reduced the striatal dopamine cell loss 
in the MPTP, 6-OHDA and paraquat + maneb animal mod-
els (Chen et al. 2001; Joghataie et al. 2004; Kachroo et al. 
2010). A pilot study was also performed in Parkinsonian 
patients who received 200–400 mg/day caffeine for 6 weeks. 
The improvement of motor symptoms was observed on the 
UPDRS score (NCT01738178). Caffeine is an adenosine 
 A2A receptor antagonist (Prediger 2010; Seidl and Potashkin 
2011). Another adenosine  A2A receptor blockers are in a 
different stage of the drug developmental process (e.g., Istra-
defylline, Preladenant, V81444, tozadenant, ST1535, PBF-
509, ST4203) (Bara-Jimenez et al. 2003; Cutler et al. 2012; 
Tarazi et al. 2014).

In a large epidemiological Chinese study, there was a 
lower incidence of PD in that part of the population who 
regularly drink coffee and smoke cigarettes (Tan et al. 2003). 
Nicotine use without any caffeine consumption also has a 
risk reducing effect (Qick 2004; Godwin-Austen et al. 1982). 
The neuroprotective effect of nicotine in animal studies was 
eliminable after administration of nicotine receptor antago-
nist. This suggests that neuroprotective effect of nicotine 
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is mediated by the cerebral nicotinic cholinergic receptors 
(nAChR) (Quik and Jeyarasasingam 2000). Currently there 
is a phase II clinical trial ongoing (transdermal nicotine) 
(NIC-PD) (NCT01560754).

Uric acid, Inosine

Interestingly, slower decline was detectable in clinical symp-
toms of PD in the population with higher blood level of 
uric acid (Ascherio et al. 2009; De Lau et al. 2005). Animal 
studies reported that uric acid prevents dopaminergic cell 
death via antioxidant mechanisms (Duan et al. 2002). The 
conclusion of these studies is that in parkinsonian patients 
the elevated uric acid level is not always needed to be treated 
(Seidl and Potashkin 2011). Inosine is a precursor molecule 
of urate. In a phase II RCT study (SURE-PD) inosine was 
tested in 75 early Parkinsonian patients. The treatment for 
8–24 months elevated the serum and the cerebrospinal fluid 
urate content (Schwarzschild 2014).

Kynurenines

Numerous data support the role of kynurenines in neuro-
logical diseases, including PD (Bohár et al. 2015; Majláth 
et al. 2016b; Klivényi et al. 2004; Vécsei et al. 2013; Zádori 
et al. 2012b). One of the most important compounds of this 
system is kynurenic acid (KYNA) (Sas et al. 2007). In vitro 
and also in vivo (animal) experiments demonstrated protec-
tive effect of KYNA after toxin administration (e.g., MPTP, 
QUIN). The most important challenge in this field is to find 
the solution for its short elimination time and its low pen-
etration through the blood–brain-barrier (Zádori et al. 2011).

Conclusion

Although many molecules have been extensively tested in 
preclinical (in vitro, in vivo) and clinical studies, no per-
fect drug was found. Most of our knowledge comes from 
toxin animal models, allowing us to study only one part of 
the pathological mechanism. Some authors hypothesized 
that the combination of the tested neuroprotective agents 
(‘coctail’) could be effective. Currently there is a wide-
range of studies ongoing with molecules (e.g., antidiabetics 
(exenatide), anticancer drugs (nilotinib), glutamate (AMPA; 
metabotropic) receptor antagonists (LY-300164, peram-
panel, talampanel, AFQ056, dipraglurant), neurotrophic fac-
tors (cerebral dopamine and astrocyte-derived neurotropic 
factors (CDNF and MANF), melatonin, acyl-ghrelin mimet-
ics). We think that besides further development of chemical 
molecules the identification of novel molecular drug targets 
is also needed.
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