Skip to main content

Advertisement

Log in

Dopamine, T cells and multiple sclerosis (MS)

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Dopamine is a key neurotransmitter that induces critical effects in the nervous system and in many peripheral organs, via 5 dopamine receptors (DRs): D1R–D5R. Dopamine also induces many direct and very potent effects on many DR-expressing immune cells, primarily T cells and dendritic cells. In this review, we focus only on dopamine receptors, effects and production in T cells. Dopamine by itself (at an optimal concentration of~0.1 nM) induces multiple function of resting normal human T cells, among them: T cell adhesion, chemotactic migration, homing, cytokine secretion and others. Interestingly, dopamine activates resting effector T cells (Teffs), but suppresses regulatory T cells (Tregs), and both effects lead eventually to Teff activation. Dopamine-induced effects on T cells are dynamic, context-sensitive and determined by the: T cell activation state, T cell type, DR type, and dopamine concentration. Dopamine itself, and also few dopaminergic molecules/ drugs that are in clinical use for cardiac, neurological and other non-immune indications, have direct effects on human T cells (summarized in this review). These dopaminergic drugs include: dopamine = intropin, L-DOPA, bromocriptine, pramipexole, pergolide, haloperidol, pimozide, and amantadine. Other dopaminergic drugs were not yet tested for their direct effects on T cells. Extensive evidence in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) show dopaminergic dysregulations in T cells in these diseases: D1-like DRs are decreased in Teffs of MS patients, and dopamine does not affect these cells. In contrast, D1-like DRs are increased in Tregs of MS patients, possibly causing functional Treg impairment in MS. Treatment of MS patients with interferon β (IFN-β) increases D1-like DRs and decreases D2-like DRs in Teffs, decreases D1-like DRs in Tregs, and most important: restores responsiveness of patient’s Teffs to dopamine. DR agonists and antagonists confer some benefits in EAE-afflicted animals. In a single clinical trial, MS patients did not benefit from bromocriptine, which is a D2-like DR agonist. Nevertheless, multiple evidence showing dopaminergic abnormalities in T cells in MS encourages testing other DR analogues/drugs in MS, possibly as “add-on” to IFN-β or other MS-immunomodulating therapies. Together, abnormalities in DRs in T cells can contribute to MS, and DRs in T cells can be therapeutic targets in MS. Finally and in a more general scope: the direct effects of all dopaminergic drugs on human T cells should be studied in further depth, and also taken into consideration whenever treating patients with any disease, to avoid detrimental side effects on the immune system of the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

L-DOPA:

3,4-Dihydroxyphenylalanine

CAs:

Catecholamines

DCs:

Dendritic cells

DR:

Dopamine receptor

EAE:

Experimental autoimmune encephalomyelitis

MS:

Multiple sclerosis

PBMCs:

Peripheral blood mononuclear cells

PBLs:

Peripheral blood lymphocytes

TH:

Tyrosine hydroxylase

NK cells:

Natural killer cells

PD:

Parkinson’s disease

SLE:

Systemic lupus erythematosus

Teff:

Effector T cell

Treg:

Regulatory T cell

CSF:

Cerebrospinal fluid

RA:

Rheumatoid arthritis

References

  • Alberio T, Pippione AC, Comi C, Olgiati S, Cecconi D, Zibetti M, Lopiano L, Fasano M (2012) Dopaminergic therapies modulate the T-CELL proteome of patients with Parkinson’s disease. IUBMB Life 64(10):846–852

    Article  CAS  PubMed  Google Scholar 

  • Balkowiec-Iskra E, Kurkowska-Jastrzebska I, Joniec I, Czlonkowska A, Czlonkowski A (2003) Post intoxicative therapeutic immunization with myelin oligodendrocyte glycoproteine (MOG 35–55) suppresses spontaneous regeneration of dopaminergic neurons injured with 1-methyl-4 phenyl-1,2,3,6-tetrahydropiridine (MPTP). Acta Neurobiol Exp (Wars) 63(2):109–115

    Google Scholar 

  • Bałkowiec-Iskra E, Kurkowska-Jastrzebska I, Joniec I, Ciesielska A, Członkowska A, Członkowski A (2007a) Dopamine, serotonin and noradrenaline changes in the striatum of C57BL mice following myelin oligodendrocyte glycoprotein (MOG) 35-55 and complete Freund adjuvant (CFA) administration. Acta Neurobiol Exp (Wars) 67(4):379–388

    Google Scholar 

  • Bałkowiec-Iskra E, Kurkowska-Jastrzebska I, Joniec I, Ciesielska A, Muszynska A, Przybyłkowski A, Członkowska A, Członkowski A (2007b) MPTP-induced central dopamine depletion exacerbates experimental autoimmune encephalomyelitis (EAE) in C57BL mice. Inflamm Res 56(8):311–317

    Article  PubMed  CAS  Google Scholar 

  • Barbanti P, Fabbrini G, Ricci A, Bruno G, Cerbo R, Bronzetti E, Amenta F, Luigi Lenzi G (2000) Reduced density of dopamine D2-like receptors on peripheral blood lymphocytes in Alzheimer’s disease. Mech Ageing Dev 120(1–3):65–75

    Article  CAS  PubMed  Google Scholar 

  • Barili P, Bronzetti E, Felici L, Ferrante F, Ricci A, Zaccheo D, Amenta F (1996) Age-dependent changes in the expression of dopamine receptor subtypes in human peripheral blood lymphocytes. J Neuroimmunol 71(1–2):45–50

    Article  CAS  PubMed  Google Scholar 

  • Bas J, Calopa M, Mestre M, Molleví DG, Cutillas B, Ambrosio S, Buendia E (2001) Lymphocyte populations in Parkinson’s disease and in rat models of parkinsonism. J Neuroimmunol 113(1):146–152

    Article  CAS  PubMed  Google Scholar 

  • Basu B, Sarkar C, Chakroborty D, Ganguly S, Shome S, Dasgupta PS, Basu S (2010) D1 and D2 dopamine receptor-mediated inhibition of activated normal T cell proliferation is lost in jurkat T leukemic cells. J Biol Chem 285(35):27026–27032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors—IUPHAR Review 13. Br J Pharmacol 172(1):1–23

    Article  CAS  PubMed  Google Scholar 

  • Benner EJ, Banerjee R, Reynolds AD, Sherman S, Pisarev VM, Tsiperson V, Nemachek C, Ciborowski P, Przedborski S, Mosley RL, Gendelman HE (2008) Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 3(1):e1376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benson CA, Wong G, Tenorio G, Baker GB, Kerr BJ (2013) The MAO inhibitor phenelzine can improve functional outcomes in mice with established clinical signs in experimental autoimmune encephalomyelitis (EAE). Behav Brain Res 252:302–311

    Article  CAS  PubMed  Google Scholar 

  • Bergquist J, Silberring J (1998) Identification of catecholamines in the immune system by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 12(11):683–688

    Article  CAS  PubMed  Google Scholar 

  • Bergquist J, Tarkowski A, Ekman R, Ewing A (1994) Discovery of endogenous catecholamines in lymphocytes and evidence for catecholamine regulation of lymphocyte function via an autocrine loop. Proc Natl Acad Sci USA 91(26):12912–12916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergquist J, Josefsson E, Tarkowski A, Ekman R, Ewing A (1997) Measurements of catecholamine-mediated apoptosis of immunocompetent cells by capillary electrophoresis. Electrophoresis 18(10):1760–1766

    Article  CAS  PubMed  Google Scholar 

  • Bergquist J, Ohlsson B, Tarkowski A (2000) Nuclear factor-kappa B is involved in the catecholaminergic suppression of immunocompetent cells. Ann N Y Acad Sci 917:281–289

    Article  CAS  PubMed  Google Scholar 

  • Berne-Fromell K, Fromell H, Lundkvist S, Lundkvist P (1987) Is multiple sclerosis the equivalent of Parkinson’s disease for noradrenaline? Med Hypotheses 23(4):409–415

    Article  CAS  PubMed  Google Scholar 

  • Besser MJ, Ganor Y, Levite M (2005) Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10. TNFalpha or both. J Neuroimmunol 169(1–2):161–171

    Article  CAS  PubMed  Google Scholar 

  • Bissay V, De Klippel N, Herroelen L, Schmedding E, Buisseret T, Ebinger G, De Keyser J (1994) Bromocriptine therapy in multiple sclerosis: an open label pilot study. Clin Neuropharmacol 17(5):473–476

    Article  CAS  PubMed  Google Scholar 

  • Blandini F, Bazzini E, Marino F, Saporiti F, Armentero MT, Pacchetti C, Zangaglia R, Martignoni E, Lecchini S, Nappi G, Cosentino M (2009) Calcium homeostasis is dysregulated in parkinsonian patients with L-DOPA-induced dyskinesias. Clin Neuropharmacol 32(3):133–139

    Article  CAS  PubMed  Google Scholar 

  • Boneberg EM, von Seydlitz E, Pröpster K, Watzl H, Rockstroh B, Illges H (2006) D3 dopamine receptor mRNA is elevated in T cells of schizophrenic patients whereas D4 dopamine receptor mRNA is reduced in CD4+-T cells. J Neuroimmunol 173(1–2):180–187

    Article  CAS  PubMed  Google Scholar 

  • Brito-Melo GE, Nicolato R, de Oliveira AC, Menezes GB, Lélis FJ, Avelar RS, Sá J, Bauer ME, Souza BR, Teixeira AL, Reis HJ (2012) Increase in dopaminergic, but not serotoninergic, receptors in T-cells as a marker for schizophrenia severity. J Psychiatr Res 46(6):738–742

    Article  PubMed  Google Scholar 

  • Carr L, Tucker A, Fernandez-Botran R (2003) In vivo administration of L-dopa or dopamine decreases the number of splenic IFN gamma-producing cells. J Neuroimmunol 137(1–2):87–93

    Article  CAS  PubMed  Google Scholar 

  • Clark C, Woodson MM, Winge VB, Nagasawa HT (1989) The antiviral drug amantadine has a direct inhibitory effect on T-lymphocytes. Immunopharmacology 18:195–204

    Article  CAS  PubMed  Google Scholar 

  • Clark C, Woodson MM, Nagasawa HT (1991) Inhibition of lymphocyte proliferation by amantadine and its isomer, 2-aminoadamantane; impact on Lyt-2 + T cells while sparing L3T4+ T cells. Immunopharmacology 21:41–50

    Article  CAS  PubMed  Google Scholar 

  • Cook-Mills JM, Cohen RL, Perlman RL, Chambers DA (1995) Inhibition of lymphocyte activation by catecholamines: evidence for a non-classical mechanism of catecholamine action. Immunology 85(4):544–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cosentino M, Marino F (2013) Adrenergic and dopaminergic modulation of immunity in multiple sclerosis: teaching old drugs new tricks? J Neuroimmune Pharmacol 8(1):163–179

    Article  PubMed  Google Scholar 

  • Cosentino M, Zaffaroni M, Marino F, Bombelli R, Ferrari M, Rasini E, Lecchini S, Ghezzi A, Frigo G (2002) Catecholamine production and tyrosine hydroxylase expression in peripheral blood mononuclear cells from multiple sclerosis patients: effect of cell stimulation and possible relevance for activation-induced apoptosis. J Neuroimmunol 133(1–2):233–240

    Article  CAS  PubMed  Google Scholar 

  • Cosentino M, Zaffaroni M, Ferrari M, Marino F, Bombelli R, Rasini E, Frigo G, Ghezzi A, Comi G, Lecchini S (2005) Interferon-gamma and interferon-beta affect endogenous catecholamines in human peripheral blood mononuclear cells: implications for multiple sclerosis. J Neuroimmunol 162(1–2):112–121

    Article  CAS  PubMed  Google Scholar 

  • Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F, Lecchini S (2007) Human CD4+ CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109(2):632–642

    Article  CAS  PubMed  Google Scholar 

  • Cosentino M, Colombo C, Mauri M, Ferrari M, Corbetta S, Marino F, Bono G, Lecchini S (2009) Expression of apoptosis-related proteins and of mRNA for dopaminergic receptors in peripheral blood mononuclear cells from patients with Alzheimer disease. Alzheimer Dis Assoc Disord 23(1):88–90

    Article  CAS  PubMed  Google Scholar 

  • Cosentino M, Zaffaroni M, Trojano M, Giorelli M, Pica C, Rasini E, Bombelli R, Ferrari M, Ghezzi A, Comi G, Livrea P, Lecchini S, Marino F (2012) Dopaminergic modulation of CD4 + CD25(high) regulatory T lymphocytes in multiple sclerosis patients during interferon-beta therapy. NeuroImmunoModulation 19(5):283–292

    Article  CAS  PubMed  Google Scholar 

  • Cosentino M, Zaffaroni M, Marino F (2014) Levels of mRNA for dopaminergic receptor D5 in circulating lymphocytes may be associated with subsequent response to interferon-β in patients with multiple sclerosis. J Neuroimmunol 277(1–2):193–196

    Article  CAS  PubMed  Google Scholar 

  • Davids E, Hartwig U, Gastpar M (2004) Antipsychotic treatment of psychosis associated with multiple sclerosis. Prog Neuropsychopharmacol Biol Psychiatry 28(4):743–744

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra CD, van der Voort ER, De Groot CJ, Huitinga I, Uitdehaag BM, Polman CH, Berkenbosch F (1994) Therapeutic effect of the D2-dopamine agonist bromocriptine on acute and relapsing experimental allergic encephalomyelitis. Psychoneuroendocrinology 19(2):135–142

    Article  CAS  PubMed  Google Scholar 

  • Fanciulli A, Misasi R, Campanelli D, Buttarelli FR, Pontieri FR (2011) Dopaminergic drug-induced modulation of the expression of the dopamine transporter in peripheral blood lymphocytes in Parkinson’s disease. Pharmacol Rep 63:1056–1060

    Article  CAS  PubMed  Google Scholar 

  • Ferrari M, Cosentino M, Marino F, Bombelli R, Rasini E, Lecchini S, Frigo G (2004) Dopaminergic D1-like receptor-dependent inhibition of tyrosine hydroxylase mRNA expression and catecholamine production in human lymphocytes. Biochem Pharmacol 67(5):865–873

    Article  CAS  PubMed  Google Scholar 

  • Ferreira TB, Kasahara TM, Barros PO, Vieira MM, Bittencourt VC, Hygino J, Andrade RM, Linhares UC, Andrade AF, Bento CA (2011) Dopamine up-regulates Th17 phenotype from individuals with generalized anxiety disorder. J Neuroimmunol 238(1–2):58–66

    Article  CAS  PubMed  Google Scholar 

  • Fiszer U (2001) Does Parkinson’s disease have an immunological basis? The evidence and its therapeutic implications. BioDrugs 15(6):351–355

    Article  CAS  PubMed  Google Scholar 

  • Fiszer U, Mix E, Fredrikson S, Kostulas V, Link H (1994) Parkinson’s disease and immunological abnormalities: increase of HLA-DR expression on monocytes in cerebrospinal fluid and of CD45RO+ T cells in peripheral blood. Acta Neurol Scand 90(3):160–166

    Article  CAS  PubMed  Google Scholar 

  • Flierl MA, Rittirsch D, Nadeau BA, Chen AJ, Sarma JV, Zetoune FS, McGuire SR, List RP, Day DE, Hoesel LM, Gao H, Van Rooijen N, Huber-Lang MS, Neubig RR, Ward PA (2007) Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449(7163):721–725

    Article  CAS  PubMed  Google Scholar 

  • Flierl MA, Rittirsch D, Nadeau BA, Sarma JV, Day DE, Lentsch AB, Huber-Lang MS, Ward PA (2009) Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response. PLoS One 4(2):e4414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gade-Andavolu R, MacMurray JP, Blake H, Muhleman D, Tourtellotte W, Comings DE (1998) Association between the gamma-aminobutyric acid A3 receptor gene and multiple sclerosis. Arch Neurol 55(4):513–516

    Article  CAS  PubMed  Google Scholar 

  • Gaskill PJ, Calderon TM, Luers AJ, Eugenin EA, Javitch JA, Berman JW (2009) Human immunodeficiency virus (HIV) infection of human macrophages is increased by dopamine: a bridge between HIV-associated neurologic disorders and drug abuse. Am J Pathol 175(3):1148–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentile A, Fresegna D, Federici M, Musella A, Rizzo FR, Sepman H, Bullitta S, De Vito F, Haji N, Rossi S, Mercuri NB, Usiello A, Mandolesi G, Centonze D (2015) Dopaminergic dysfunction is associated with IL-1beta-dependent mood alterations in experimental autoimmune encephalomyelitis. Neurobiol Dis 74:347–358

    Article  CAS  PubMed  Google Scholar 

  • Ghosh MC, Mondal AC, Basu S, Banerjee S, Majumder J, Bhattacharya D, Dasgupta PS (2003) Dopamine inhibits cytokine release and expression of tyrosine kinases, Lck and Fyn in activated T cells. Int Immunopharmacol 3(7):1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Giorelli M, Livrea P, Trojano M (2005) Dopamine fails to regulate activation of peripheral blood lymphocytes from multiple sclerosis patients: effects of IFN-beta. J Interferon Cytokine Res 25(7):395–406

    Article  CAS  PubMed  Google Scholar 

  • Hisanaga K, Asagi M, Itoyama Y, Iwasaki Y (2001) Increase in peripheral CD4 bright+ CD8 dull+ T cells in Parkinson disease. Arch Neurol 58(10):1580–1583

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Qiu AW, Peng YP, Liu Y, Huang HW, Qiu YH (2010) Roles of dopamine receptor subtypes in mediating modulation of T lymphocyte function. Neuro Endocrinol Lett 31(6):782–791

    CAS  PubMed  Google Scholar 

  • Huber TJ, Dietrich DE, Emrich HM (1999) Possible use of amantadine in depression. Pharmacopsychiatry 32(2):47–55

    Article  CAS  PubMed  Google Scholar 

  • Hussain T, Lokhandwala MF (2003) Renal dopamine receptors and hypertension. Exp Biol Med (Maywood) 228(2):134–142

    Article  CAS  Google Scholar 

  • Ilani T, Ben-Shachar D, Strous RD, Mazor M, Sheinkman A, Kotler M, Fuchs S (2001) A peripheral marker for schizophrenia: increased levels of D3 dopamine receptor mRNA in blood lymphocytes. Proc Natl Acad Sci USA 98(2):625–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilani T, Strous RD, Fuchs S (2004) Dopaminergic regulation of immune cells via D3 dopamine receptor: a pathway mediated by activated T cells. Faseb J 18(13):1600–1602

    CAS  PubMed  Google Scholar 

  • Iversen SD, Iversen LL (2007) Dopamine: 50 years in perspective. Trends Neurosci 30(5):188–193

    Article  CAS  PubMed  Google Scholar 

  • Jafari M, Ahangari G, Saberi M, Samangoui S, Torabi R, Zouali M (2013) Distorted expression of dopamine receptor genes in systemic lupus erythematosus. Immunobiology 218(7):979–983

    Article  CAS  PubMed  Google Scholar 

  • Josefsson E, Bergquist J, Ekman R, Tarkowski A (1996) Catecholamines are synthesized by mouse lymphocytes and regulate function of these cells by induction of apoptosis. Immunology 88(1):140–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpus WJ, Konkol RJ, Killen JA (1988) Central catecholamine neurotoxin administration. 1. Immunological changes associated with the suppression of experimental autoimmune encephalomyelitis. J Neuroimmunol 18(1):61–73

    Article  CAS  PubMed  Google Scholar 

  • Kipnis J, Cardon M, Avidan H, Lewitus GM, Mordechay S, Rolls A, Shani Y, Schwartz M (2004) Dopamine, through the extracellular signal-regulated kinase pathway, downregulates CD4+ CD25+ regulatory T-cell activity: implications for neurodegeneration. J Neurosci 24(27):6133–6143

    Article  CAS  PubMed  Google Scholar 

  • Kira J, Harada M, Yamaguchi Y, Shida N, Goto I (1991) Hyperprolactinemia in multiple sclerosis. J Neurol Sci 102(1):61–66

    Article  CAS  PubMed  Google Scholar 

  • Konkol RJ, Wesselmann U, Karpus WJ, Leo GL, Killen JA, Roerig DL (1990) Suppression of clinical weakness in experimental autoimmune encephalomyelitis associated with weight changes, and post-decapitation convulsions after intracisternal-ventricular administration of 6-hydroxydopamine. J Neuroimmunol 26(1):25–34

    Article  CAS  PubMed  Google Scholar 

  • Kuric E, Ruscher K (2014) Reduction of rat brain CD8(+) T-cells by levodopa/benserazide treatment after experimental stroke. Eur J Neurosci 40:2463–2470

    Article  PubMed  Google Scholar 

  • Kurkowska-Jastrzebska I, Wronska A, Kohutnicka M, Czlonkowski A, Czlonkowska A (1999) The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp Neurol 156(1):50–61

    Article  CAS  PubMed  Google Scholar 

  • Kustrimovic N, Rasini E, Legnaro M, Marino F, Cosentino M (2014) Expression of dopaminergic receptors on human CD4 + T lymphocytes: flow cytometric analysis of naive and memory subsets and relevance for the neuroimmunology of neurodegenerative disease. J Neuroimmune Pharmacol 9(3):302–312

    Article  PubMed  Google Scholar 

  • Kwak YT, Koo MS, Choi CH, Sunwoo I (2001) Change of dopamine receptor mRNA expression in lymphocyte of schizophrenic patients. BMC Med Genet 2:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levite M (2008) Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors. Curr Opin Pharmacol 8(4):460–471

    Article  CAS  PubMed  Google Scholar 

  • Levite M (2012) Dopamine in the Immune System: Dopamine Receptors in Immune Cells, Potent Effects, Endogenous Production and Involvement in Immune and Neuropsychiatric Diseases. Nerve Driven Immunity: Neurotransmitters and Neuropeptides in the Immune System. Springer, Vienna, pp 1–45

    Google Scholar 

  • Levite M (2016) Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases. Acta Physiol (Oxf) 216(1):42–89

    Article  CAS  Google Scholar 

  • Levite M, Chowers Y, Ganor Y, Besser M, Hershkovits R, Cahalon L (2001) Dopamine interacts directly with its D3 and D2 receptors on normal human T cells, and activates beta1 integrin function. Eur J Immunol 31(12):3504–3512

    Article  CAS  PubMed  Google Scholar 

  • Marino F, Cosentino M (2016) Multiple sclerosis: repurposing dopaminergic drugs for MS - The evidence mounts. Nat Rev Neurol 12(4):191–192

    Article  CAS  PubMed  Google Scholar 

  • Markianos M, Koutsis G, Evangelopoulos ME, Mandellos D, Karahalios G, Sfagos C (2009) Relationship of CSF neurotransmitter metabolite levels to disease severity and disability in multiple sclerosis. J Neurochem 108(1):158–164

    Article  CAS  PubMed  Google Scholar 

  • McKenna F, McLaughlin PJ, Lewis BJ, Sibbring GC, Cummerson JA, Bowen-Jones D, Moots RJ (2002) Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. J Neuroimmunol 132(1–2):34–40

    Article  CAS  PubMed  Google Scholar 

  • McMurray RW (2001) Bromocriptine in rheumatic and autoimmune diseases. Semin Arthritis Rheum 31(1):21–32

    Article  CAS  PubMed  Google Scholar 

  • Meredith EJ, Holder MJ, Rosén A, Lee AD, Dyer MJ, Barnes NM, Gordon J (2006) Dopamine targets cycling B cells independent of receptors/transporter for oxidative attack: implications for non-Hodgkin’s lymphoma. Proc Natl Acad Sci USA 103(36):13485–13490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyara M, Gorochov G, Ehrenstein M, Musset L, Sakaguchi S, Amoura Z (2011) Human FoxP3+ regulatory T cells in systemic autoimmune diseases Autoimmun Rev 10(12):744–755

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Kabashima K, Fukamachi S, Kuroda E, Sakabe J, Kobayashi M, Nakajima S, Nakano K, Tanaka Y, Matsushita S, Nakamura M, Tokura Y (2013) D1-like dopamine receptors antagonist inhibits cutaneous immune reactions mediated by Th2 and mast cells. J Dermatol Sci 71(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Morikawa K, Oseko F, Morikawa S (1994) Immunosuppressive activity of bromocriptine on human T lymphocyte function in vitro. Clin Exp Immunol 95:514–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musso NR, Brenci S, Setti M, Indiveri F, Lotti G (1996) Catecholamine content and in vitro catecholamine synthesis in peripheral human lymphocytes. J Clin Endocrinol Metab 81(10):3553–3557

    CAS  PubMed  Google Scholar 

  • Musso NR, Brenci S, Indiveri F, Lotti G (1997) L-tyrosine and nicotine induce synthesis of L-Dopa and norepinephrine in human lymphocytes. J Neuroimmunol 74(1–2):117–120

    Article  CAS  PubMed  Google Scholar 

  • Nagai Y, Ueno S, Saeki Y, Soga F, Hirano M, Yanagihara T (1996) Decrease of the D3 dopamine receptor mRNA expression in lymphocytes from patients with Parkinson’s disease. Neurology 46(3):791–795

    Article  CAS  PubMed  Google Scholar 

  • Nakagome K, Imamura M, Okada H, Kawahata K, Inoue T, Hashimoto K, Harada H, Higashi T, Takagi R (2011) Dopamine D1-like receptor antagonist attenuates Th17-mediated immune response and ovalbumin antigen-induced neutrophilic airway inflammation. J Immunol 186(10):5975–5982

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Matsushita S (2007) The immunomodulatory effect of dopamine. Arerugi 56(7):679–684

    CAS  PubMed  Google Scholar 

  • Nakano K, Higashi T, Hashimoto K, Takagi R, Tanaka Y, Matsushita S (2008) Antagonizing dopamine D1-like receptor inhibits Th17 cell differentiation: preventive and therapeutic effects on experimental autoimmune encephalomyelitis. Biochem Biophys Res Commun 373(2):286–291

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Higashi T, Takagi R, Hashimoto K, Tanaka Y, Matsushita S (2009a) Dopamine released by dendritic cells polarizes Th2 differentiation. Int Immunol 21(6):645–654

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Matsushita S, Saito K, Yamaoka K, Tanaka Y (2009b) Dopamine as an immune-modulator between dendritic cells and T cells and the role of dopamine in the pathogenesis of rheumatoid arthritis. Nihon Rinsho Meneki Gakkai Kaishi 32(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Yamaoka K, Hanami K, Saito K, Sasaguri Y, Yanagihara N, Tanaka S, Katsuki I, Matsushita S, Tanaka Y (2011) Dopamine induces IL-6-dependent IL-17 production via D1-like receptor on CD4 naive T cells and D1-like receptor antagonist SCH-23390 inhibits cartilage destruction in a human rheumatoid arthritis/SCID mouse chimera model. J Immunol 186(6):3745–3752

    Article  CAS  PubMed  Google Scholar 

  • Nakashioya H, Nakano K, Watanabe N, Miyasaka N, Matsushita S, Kohsaka H (2011) Therapeutic effect of D1-like dopamine receptor antagonist on collagen-induced arthritis of mice. Mod Rheumatol 21(3):260–266

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan D, Green L, Stone S, Zareie P, Kharkrang M, Fong D, Connor B, La Flamme AC (2014) Treatment with the antipsychotic agent, risperidone, reduces disease severity in experimental autoimmune encephalomyelitis. PLoS One 9(8):e104430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pacheco R, Prado CE, Barrientos MJ, Bernales S (2009) Role of dopamine in the physiology of T-cells and dendritic cells. J Neuroimmunol 216(1–2):8–19

    Article  CAS  PubMed  Google Scholar 

  • Pacheco R et al. (2014a) Dopaminergic regulation of T-cell mediated response involved in Multiple Sclerosis and Parkinson’s disease. Abstract of talk in 2nd International Nerve-Driven Immunity meeting, Stockhom. http://ndimeetings.org/previous-meetings/. Accessed 20 August 2014

  • Pacheco R, Contreras F, Zouali M (2014) The dopaminergic system in autoimmune diseases. Front Immunol 5:117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prado C, Contreras F, González H, Díaz P, Elgueta D, Barrientos M, Herrada AA, Lladser Á, Bernales S, Pacheco R (2012) Stimulation of dopamine receptor D5 expressed on dendritic cells potentiates Th17-mediated immunity. J Immunol 188(7):3062–3070

    Article  CAS  PubMed  Google Scholar 

  • Qiu YH, Peng YP, Jiang JM, Wang JJ (2004) Expression of tyrosine hydroxylase in lymphocytes and effect of endogenous catecholamines on lymphocyte function. NeuroImmunoModulation 11(2):75–83

    Article  CAS  PubMed  Google Scholar 

  • Reynolds AD, Stone DK, Mosley RL, Gendelman HE (2009) Nitrated (Alberio et al.)-synuclein-induced alterations in microglial immunity are regulated by CD4+ T cell subsets. J Immunol 182(7):4137–4149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricci A, Bronzetti E, Felici L, Tayebati SK, Amenta F (1997a) Dopamine D4 receptor in human peripheral blood lymphocytes: a radioligand binding assay study. Neurosci Lett 229(2):130–134

    Article  CAS  PubMed  Google Scholar 

  • Ricci A, Mariotta S, Greco S, Bisetti A (1997b) Expression of dopamine receptors in immune organs and circulating immune cells. Clin Exp Hypertens 19(1–2):59–71

    Article  CAS  PubMed  Google Scholar 

  • Ricci A, Bronzetti E, Mignini F, Tayebati SK, Zaccheo D, Amenta F (1999) Dopamine D1-like receptor subtypes in human peripheral blood lymphocytes. J Neuroimmunol 96(2):234–240

    Article  CAS  PubMed  Google Scholar 

  • Riskind PN, Massacesi L, Doolittle TH, Hauser SL (1991) The role of prolactin in autoimmune demyelination: suppression of experimental allergic encephalomyelitis by bromocriptine. Ann Neurol 29(5):542–547

    Article  CAS  PubMed  Google Scholar 

  • Rocc P, De Leo C, Eva C, Marchiaro L, Milani AM, Musso R, Ravizza L, Zanalda E, Bogetto F (2002) Decrease of the D4 dopamine receptor messenger RNA expression in lymphocytes from patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 26(6):1155–1160

    Article  PubMed  Google Scholar 

  • Saha B, Mondal AC, Majumder J, Basu S, Dasgupta PS (2001a) Physiological concentrations of dopamine inhibit the proliferation and cytotoxicity of human CD4+ and CD8+ T cells in vitro: a receptor-mediated mechanism. NeuroImmunoModulation 9(1):23–33

    Article  CAS  PubMed  Google Scholar 

  • Saha B, Mondal AC, Basu S, Dasgupta PS (2001b) Circulating dopamine level, in lung carcinoma patients, inhibits proliferation and cytotoxicity of CD4+ and CD8+ T cells by D1 dopamine receptors: an in vitro analysis. Int Immunopharmacol 1(7):1363–1374

    Article  CAS  PubMed  Google Scholar 

  • Sailer M, Heinze HJ, Schoenfeld MA, Hauser U, Smid HG (2000) Amantadine influences cognitive processing in patients with multiple sclerosis. Pharmacopsychiatry 33(1):28–37

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S (2011) Regulatory T cells: history and perspective. Methods Mol Biol 707:3–17

    Article  CAS  PubMed  Google Scholar 

  • Santambrogio L, Lipartiti M, Bruni A, Dal Toso R (1993) Dopamine receptors on human T- and B-lymphocytes. J Neuroimmunol 45(1–2):113–119

    Article  CAS  PubMed  Google Scholar 

  • Sarkar C, Das S, Chakroborty D, Chowdhury UR, Basu B, Dasgupta PS, Basu S (2006) Cutting Edge: stimulation of dopamine D4 receptors induce T cell quiescence by up-regulating Kruppel-like factor-2 expression through inhibition of ERK1/ERK2 phosphorylation. J Immunol 177(11):7525–7529

    Article  CAS  PubMed  Google Scholar 

  • Sarkar C, Basu B, Chakroborty D, Dasgupta PS, Basu S (2010) The immunoregulatory role of dopamine: an update. Brain Behav Immun 24(4):525–528

    Article  CAS  PubMed  Google Scholar 

  • Saussez S, Laumbacher B, Chantrain G, Rodriguez A, Gu S, Wank R, Levite M (2014) Towards neuroimmunotherapy for cancer: the neurotransmitters glutamate, dopamine and GnRH-II augment substantially the ability of T cells of few head and neck cancer patients to perform spontaneous migration, chemotactic migration and migration towards the autologous tumor, and also elevate markedly the expression of CD3zeta and CD3epsilon TCR-associated chains. J Neural Transm 121(8):1007–1027

    Article  CAS  PubMed  Google Scholar 

  • Strell C, Sievers A, Bastian P, Lang K, Niggemann B, Zänker KS, Entschladen F (2009) Divergent effects of norepinephrine, dopamine and substance P on the activation, differentiation and effector functions of human cytotoxic T lymphocytes. BMC Immunol. 8(10):62

    Article  CAS  Google Scholar 

  • Tabaddor K, Wolfson LI, Sharpless NS (1978) Ventricular fluid homovanillic acid and 5-hydroxyindoleacetic acid concentrations in patients with movement disorders. Neurology 28(12):1249–1253

    Article  CAS  PubMed  Google Scholar 

  • Tsao CW, Lin YS, Cheng JT (1998) Inhibition of immune cell proliferation with haloperidol and relationship of tyrosine hydroxylase expression to immune cell growth. Life Sci 62(21):PL335–PL344

    Article  CAS  Google Scholar 

  • Venken K, Hellings N, Liblau R, Stinissen P (2010) Disturbed regulatory T cell homeostasis in multiple sclerosis. Trends Mol Med 16(2):58–68

    Article  CAS  PubMed  Google Scholar 

  • Wandinger KP, Hagenah JM, Klüter H, Rothermundt M, Peters M, Vieregge P (1999) Effects of amantadine treatment on in vitro production of interleukin-2 in de-novo patients with idiopathic Parkinson’s disease. J Neuroimmunol 98(2):214–220

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Nakayama T, Nagakubo D, Hieshima K, Jin Z, Katou F, Hashimoto K, Yoshie O (2006) Dopamine selectively induces migration and homing of naive CD8+ T cells via dopamine receptor D3. J Immunol 176(2):848–856

    Article  CAS  PubMed  Google Scholar 

  • White SR, Bhatnagar RK, Bardo MT (1983) Norepinephrine depletion in the spinal cord gray matter of rats with experimental allergic encephalomyelitis. J Neurochem 40(6):1771–1773

    Article  CAS  PubMed  Google Scholar 

  • Zaffaroni M, Marino F, Bombelli R, Rasini E, Monti M, Ferrari M, Ghezzi A, Comi G, Lecchini S, Cosentino M (2008) Therapy with interferon-beta modulates endogenous catecholamines in lymphocytes of patients with multiple sclerosis. Exp Neurol 214(2):315–321

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Huang Y, Liu Z, Cao BB, Peng YP, Qiu YH (2013) Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway. PLoS One 8(6):e65860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zozulya AL, Wiendl H (2008) The role of regulatory T cells in multiple sclerosis. Nat Clin Pract Neurol 4(7):384–398

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mia Levite.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levite, M., Marino, F. & Cosentino, M. Dopamine, T cells and multiple sclerosis (MS). J Neural Transm 124, 525–542 (2017). https://doi.org/10.1007/s00702-016-1640-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-016-1640-4

Keywords

Navigation