Skip to main content

Advertisement

Log in

Ganglionic blockade alters behavioral and cerebral metabolic responses to corticotropin releasing factor in the rat

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Corticotropin releasing factor (CRF) has potent stimulating effects on behavior and cerebral metabolism. To investigate the role of altered peripheral autonomic function in central actions of CRF, we measured the effects of intracerebroventricular CRF (2 μg) on locomotor activity and regional cerebral metabolic rates for glucose (rCMRglc) in control, saline pretreated rats and in rats pretreated with the ganglionic receptor blocker hexamethonium bromide (HEX) (5 mg/kg). Locomotor activity was assessed in a familial environment with an activity meter. rCMRglc were measured in 74 brain regions with the quantitative autoradiographic [14C]2-deoxy-d-glucose technique. In control rats, CRF increased the spontaneous locomotor activity and rCMRglc in 14 sensorimotor, limbic, hypothalamic and brainstem regions. HEX pretreatment blunted locomotor activations induced by CRF. While HEX did not affect cerebral metabolic activation by CRF in sensorimotor areas, it reduced metabolic activations in hippocampal and hypothalamic regions and increased metabolic activations in the brainstem reticular formation. These data indicate that CRF increases rCMRglc in the sensorimotor areas by direct CNS activity and in the limbic areas by indirect, autonomically mediated, activity. Autonomic activation also accounts, at least in part, for the motor activating properties of CRF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Borsody MK, Weiss JM (1996) Influence of corticotropin-releasing hormone on electrophysiological activity of locus coeruleus neurons. Brain Res 724:149–168

    Article  PubMed  CAS  Google Scholar 

  • Britton DR, Indyk E (1989) Effects of ganglionic blocking agents on behavioral responses to centrally administered CRF. Brain Res 478:205–210

    Article  PubMed  CAS  Google Scholar 

  • Cole BJ, Koob GF (1988) Propranolol antagonizes the enhanced conditioned fear produced by corticotropin releasing factor. J Pharmacol Exp Ther 247:902–910

    PubMed  CAS  Google Scholar 

  • de Jong IE, Oitzl MS, de Kloet ER (2007) Adrenalectomy prevents behavioural sensitisation of mice to cocaine in a genotype-dependent manner. Behav Brain Res 177:329–339

    Article  PubMed  Google Scholar 

  • Dubé T, Brunson T, Nehlig A, Baram TZ (2000) Activation of specific neuronal circuits by corticotropin releasing hormone as indicated by c-fos expression and glucose metabolism. J Cereb Blood Flow Metab 20:414–424

    Google Scholar 

  • Freo U (1996) Cerebral metabolic effects of serotonin drugs and neurotoxins. Life Sci 59:877–891

    Article  PubMed  CAS  Google Scholar 

  • Freo U, Ori C, Weiss SR, Perini GI (2005) Time- and dose-dependent effects of corticotropin releasing factor on cerebral glucose metabolism in rats. J Neural Transm 112:1447–1462

    Article  PubMed  CAS  Google Scholar 

  • Gosnell BA, Morley JE, Levine AS (1983) Adrenal modulation of the inhibitory effect of corticotropin releasing factor on feeding. Peptides 4:807–812

    Article  PubMed  CAS  Google Scholar 

  • Kawabe T, Chitravanshi VC, Kawabe K, Sapru HN (2006) Cardiovascular effects of adrenocorticotropin microinjections into the rostral ventrolateral medullary pressor area of the rat. Brain Res 1102:117–126

    Google Scholar 

  • Korte SM, Eisinga W, Timmerman W, Nyakas C, Bohus B (1992) Behavioral and cardiac responses after intracerebroventricular corticotropin-releasing hormone (CRH) administration: role of adrenal cortical hormones. Horm Behav 26:375–384

    Article  PubMed  CAS  Google Scholar 

  • Küchler M, Fouad K, Weinmann O, Schwab ME, Raineteau O (2002) Red nucleus projections to distinct motor neuron pools in the rat spinal cord. J Comp Neurol 448:349–359

    Article  PubMed  Google Scholar 

  • Lenz HJ, Raedler A, Greten H, Brown MR (1987) CRF initiates biological actions within the brain that are observed in response to stress. Am J Physiol 252:R34–R39

    PubMed  CAS  Google Scholar 

  • Liang KC, Melia KR, Miserendino MJ, Falls WA, Campeau S, Davis M (1992) Corticotropin-releasing factor: long-lasting facilitation of the acoustic startle reflex. J Neurosci 12:2303–2312

    PubMed  CAS  Google Scholar 

  • London ED, Wilkerson G, Ori C, Kimes AS (1990) Central action of psychomotor stimulants on glucose utilization in extrapyramidal motor areas of the rat brain. Brain Res 512:155–158

    Article  PubMed  CAS  Google Scholar 

  • McNamara D, Larson DM, Rapoport SI, Soncrant TT (1990) Preferential metabolic activation of subcortical brain areas by acute administration of nicotine to rats. J Cereb Blood Flow Metab 10:48–56

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Matsui T, Kuze B, Asanome M, Nakajima K, Matsuyama K (1999) Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. J Neurophysiol 82:290–300

    PubMed  CAS  Google Scholar 

  • Nijsen MJ, Croiset G, Stam R, Bruijnzeel A, Diamant M, de Wied D, Wiegant VM (2000) The role of the CRH type 1 receptor in autonomic responses to corticotropin-releasing hormone in the rat. Neuropsychopharmacology 22:388–399

    Article  PubMed  CAS  Google Scholar 

  • Nijsen MJ, Croiset G, Diamant M, de Wied D, Wiegant VM (2001) CRH signalling in the bed nucleus of the stria terminalis is involved in stress-induced cardiac vagal activation in conscious rats. Neuropsychopharmacology 24:1–10

    Article  PubMed  CAS  Google Scholar 

  • Page ME, Abercrombie ED (1999) Discrete local application of corticotropin-releasing factor increases locus coeruleus discharge and extracellular norepinephrine in rat hippocampus. Synapse 33:304–313

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, Orlando

    Google Scholar 

  • Ren T, Sagar SM (1992) Induction of c-fos immunostaining in the rat brain after the systemic administration of nicotine. Brain Res Bull 29:589–597

    Article  PubMed  CAS  Google Scholar 

  • Rivier C, Vale W (1983) Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature 305:325–327

    Article  PubMed  CAS  Google Scholar 

  • Sharkey J, Appel NM, De Souza EB (1989) Alterations in local cerebral glucose utilization following central administration of corticotropin-releasing factor in rats. Synapse 4:80–87

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L (1982) The radioactive deoxyglucose method—theory, procedure and applications for the measurements of local glucose utilization in the central nervous system. Adv Neurochem 4:1–82

    Article  CAS  Google Scholar 

  • Sokoloff L, Reivich AA, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD et al (1977) The (14C)2-deoxyglucose method for the measurement of local cerebral glucose metabolism. Theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  • Soncrant TT, Holloway HW, Stipetic M, Rapoport SI (1988) Cerebral glucose utilization in rats is not altered by hindlimb restraint or by femoral artery and vein cannulation. J Cereb Blood Flow Metab 8:720–726

    Article  PubMed  CAS  Google Scholar 

  • Strome EM, Wheler GH, Higley JD, Loriaux DL, Suomi SJ, Doudet DJ (2002) Intracerebroventricular corticotropin-releasing factor increases limbic glucose metabolism and has social context-dependent behavioral effects in nonhuman primates. Proc Natl Acad Sci USA 99:15749–15754

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Vaccarino FJ, Amalric M, Koob GF (1986) The neural substrates for the motor-activating properties of psychostimulants: a review of recent findings. Pharmacol Biochem Behav 25:233–248

    Article  PubMed  CAS  Google Scholar 

  • Taylor P (2001) Agents acting at the neuromuscular junction and autonomic ganglia. In: Hardman GJ, Limbird LE, Gilman AG (eds) Goodman and Gilman’s: the pharmacological basis of therapeutics, 10th edn. McGraw-Hill Press, New York, pp 193–213

    Google Scholar 

  • Tazi A, Swerdlow NR, LeMoal M, Rivier J, Vale W, Koob GF (1987) Behavioral activation by CRF: evidence for the involvement of the ventral forebrain. Life Sci 4:41–49

    Article  Google Scholar 

  • Yang XM, Gorman AL, Dunn AJ (1990) The involvement of central noradrenergic systems and corticotropin-releasing factor in defensive-withdrawal behavior in rats. J Pharmacol Exp Ther 255:1064–1070

    PubMed  CAS  Google Scholar 

  • Zhang JJ, Swiergiel AH, Palamarchouk VS, Dunn AJ (1998) Intracerebroventricular infusion of CRF increases extracellular concentrations of norepinephrine in the hippocampus and cortex as determined by in vivo voltammetry. Brain Res Bull 47:277–284

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. B. Vitiello for the revision of the manuscript. This study was supported solely by Departmental funds.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulderico Freo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freo, U., Ori, C. Ganglionic blockade alters behavioral and cerebral metabolic responses to corticotropin releasing factor in the rat. J Neural Transm 120, 267–274 (2013). https://doi.org/10.1007/s00702-012-0866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0866-z

Keywords

Navigation