EDITORIAL (BY INVITATION)

Mid- and long-term outcome after treatment with the Woven EndoBridge (WEB)

Tommy Andersson^{1,2}

Received: 2 June 2023 / Accepted: 6 June 2023 / Published online: 27 June 2023 © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023

The Woven EndoBridge device (WEB), approved both in Europe and in the USA, has, together with other similar devices [1, 4], provided the neurointerventional community with another strategy to treat intracranial aneurysms, not least those defined as broad-based. It has been proven safe and effective for both ruptured [5] as well as unruptured [7] aneurysms, at least in the shorter, 6–12 months, perspective. For instance, 683 patients were retrospectively included in the WorldWideWEB Consortium study showing 57.8% complete occlusion, 85.7% adequate occlusion, 7.8% retreatment rate, and 7.5% thromboembolic complication rate, as documented on the last follow-up after a *median of 11 months* [2].

Good short-term results are also nicely shown in a recent interesting paper in Acta Neurochirurgica, where the outcomes after WEB-treatment were evaluated in a large North American cohort. But what is really needed today, at least in my mind, are solid mid- and long-term data on technical, radiological, and clinical outcome after aneurysm treatment with the WEB. Is WEB-treatment as reliable in the long term as coiling and/or clipping? In the mentioned Acta-study, the analysis, including the multivariate logistic regression analysis, is based on the 12-month follow-up, despite that only 67 of the 103 patients successfully treated with a WEB were available for follow-up at 1 year, and even less, 22 patients, were available for follow-up after 24-months. With 35% and almost 79% of the patients missing, respectively, I find it hard to view these presented data as trustworthy mid- and long-term results. It must, however, be pointed out that this phenomenon, a high percentage of patients lost to followup, seems to be a persistent theme in many studies reporting outcome after WEB-treatment [8].

In this context, it may be preferential to *at least* wait until the 12-month mark has passed and all patients have had the chance to be investigated before performing the analysis. And perhaps, if patient compliance is a problem, conduct the study in a health care system in which patients are likely to show up for follow-up investigations, a strength of, for instance, several Finnish studies on brain-AVMs [6]. My personal opinion is that conclusions drawn regarding adequate occlusion at 12 and 24 months with a more than significant drop-out rate are simply incorrect. If you want to make a clear statement on 12- and 24-month outcome, you must make sure that you have a sufficient number of patients, or you make your analysis on 6-month follow-up and say nothing on mid- and long-term results.

But is not 6 months enough time to say that a perfect, or at least an acceptable, radiological and clinical patient outcome after WEB-treatment will remain stable? In my personal experience, I have indeed seen *late* aneurysm recurrences, WEB-compactions, and clinical deteriorations, something that have also been described in the literature. For instance, in one of the few studies reporting on what at least could be regarded as a "reasonable" long-term outcome after WEB-treatment, the retreatment rate was 19.5% after a mean follow-up time of 15.3 months [3].

What is most needed today in relation to WEB-treatment is, in my opinion, solid and reliable mid- and long-term results, as there is already a substantial number of reports on short-term efficacy and safety. I strongly believe that an analysis should always be focused on time points for which there is sufficient data, without extrapolating to something that more resembles wishful thinking.

References

 Bhogal P, Udani S, Cognard C et al (2019) Endosaccular flow disruption: where are we now? J NeuroInterv Surg 11:1024–1025

Tommy Andersson tommy.andersson99@gmail.com; tommy.andersson@regionstockholm.se; tommy.andersson@azgroeninge.be

¹ Karolinska Univ Hospital, Stockholm, Sweden

² AZ Groeninge, Kortrijk, Belgium

- 2. Dmytriw AA, Diestro JDB, Dibas M et al (2022) International study of intracranial aneurysm treatment using Woven Endo-Bridge: results of the WorldWideWEB Consortium. Stroke 53:e47-49
- 3. Fujimoto M, Lylyk I, Bleise C et al (2020) Long-term outcomes of the WEB device for treatment of wide-neck bifurcation aneurysms. AJNR Am J Neuroradiol 41:1031–6
- Hecker C, Broussalis E, Griessenauer CJ, Killer-Oberpfalzer M (2023) A mini-review of intrasaccular flow diverters. J Neurointerv Surg 15:70–74
- 5. Monteiro A, Lazar AL, Waqas M et al (2022) Treatment of ruptured intracranial aneurysms with the Woven EndoBridge device: a systematic review. J Neurointerv Surg 14:366–370
- 6. Ondra SL, Troupp H, George ED, Schwab H (1990) The natural history of symptomatic arteriovenous malformations of the brain: a 24-year follow-up assessment. J Neurosurg 73:387–91

- Pierot L, Moret J, Barreau X et al (2018) Safety and efficacy of aneurysm treatment with WEB in the cumulative population of three prospective, multicenter series. J Neurointerv Surg 10:553–559
- Spelle L, Herbreteau D, Caroff J et al (2022) CLinical Assessment of WEB device in Ruptured aneurYSms (CLARYS): results of 1-month and 1-year assessment of rebleeding protection and clinical safety in a multicenter study. J Neurointerv Surg 14:807–814

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.