Skip to main content

Advertisement

Log in

Moyamoya disease-specific extracellular vesicle-derived microRNAs in the cerebrospinal fluid revealed by comprehensive expression analysis through microRNA sequencing

  • Original Article
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Purpose

To examine the specific changes that occur in the expression levels of extracellular vesicle-derived microRNAs (miRNAs) in intracranial cerebrospinal fluid (CSF) in moyamoya disease.

Methods

Patients with arteriosclerotic cerebral ischemia were used as controls to eliminate the effects of cerebral ischemia. Intracranial CSF was collected from moyamoya disease and control patients during bypass surgery. Extracellular vesicles (EVs) were extracted from the CSF. Comprehensive expression analysis of miRNAs extracted from EVs by next-generation sequencing (NGS) and validation by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed.

Results

Experiments were conducted on eight cases of moyamoya disease and four control cases. In the comprehensive miRNA expression analysis, 153 miRNAs were upregulated, and 98 miRNAs were downregulated in moyamoya disease compared to the control cases (q-value < 0.05 and |log2 fold change|> 1). qRT-PCR performed on the four most variable miRNAs (hsa-miR-421, hsa-miR-361-5p, hsa-miR-320a, and hsa-miR-29b-3p) associated with vascular lesions among the differentially expressed miRNAs gave the same results as miRNA sequencing. On gene ontology (GO) analysis for the target genes, cytoplasmic stress granule was the most significant GO term.

Conclusions

This study is the first comprehensive expression analysis of EV-derived miRNAs in the CSF of moyamoya disease patients using NGS. The miRNAs identified here may be related to the etiology and pathophysiology of moyamoya disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The miRNA sequencing data are available in the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE193012.

References

  1. Anderson P, Kedersha N (1849) Ivanov P (2015) Stress granules, P-bodies and cancer. Biochim Biophys Acta 7:861–870

    Google Scholar 

  2. Anderson P, Kedersha N (2002) Stressful initiations. J Cell Sci 115(16):3227–3234

    Article  CAS  PubMed  Google Scholar 

  3. Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172(6):803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33(3):141–150

    Article  CAS  PubMed  Google Scholar 

  5. Ash PEA, Vanderweyde TE, Youmans KL, Apicco DJ, Wolozin B (2014) Pathological stress granules in Alzheimer’s disease. Brain Res 1584:52–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  7. Berchtold D, Battich N, Pelkmans L (2018) A systems-level study reveals regulators of membrane-less organelles in human cells. Mol Cell 72(6):1035-1049.e5

    Article  CAS  PubMed  Google Scholar 

  8. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301(5631):336–338

    Article  CAS  PubMed  Google Scholar 

  9. Chen C, Wang Y, Yang S, Li H, Zhao G, Wang F, Yang L, Wang DW (2015) MiR-320a contributes to atherogenesis by augmenting multiple risk factors and down-regulating SRF. J Cell Mol Med 19(5):970–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Enderle D, Spiel A, Coticchia CM et al (2015) Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column-based method. PLoS One 10(8):e0136133

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fröhlich D, Kuo WP, Frühbeis C, Sun J-J, Zehendner CM, Luhmann HJ, Pinto S, Toedling J, Trotter J, Krämer-Albers E-M (2014) Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philos Trans R Soc Lond B Biol Sci 369:20130510

    Article  PubMed  PubMed Central  Google Scholar 

  12. Frühbeis C, Fröhlich D, Kuo WP et al (2013) Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol 11(7):e1001604

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hamano E, Kataoka H, Morita N, Maruyama D, Satow T, Iihara K, Takahashi JC (2017) Clinical implications of the cortical hyperintensity belt sign in fluid-attenuated inversion recovery images after bypass surgery for moyamoya disease. J Neurosurg 126(1):1–7

    Article  PubMed  Google Scholar 

  14. Hoshi H, Ohnishi T, Jinnouchi S, Futami S, Nagamachi S, Kodama T, Watanabe K, Ueda T, Wakisaka S (1994) Cerebral blood flow study in patients with moyamoya disease evaluated by IMP SPECT. J Nucl Med 35(1):44–50

    CAS  PubMed  Google Scholar 

  15. Hoshino H, Izawa Y, Suzuki N (2012) Epidemiological features of moyamoya disease in Japan. Neurol Med Chir (Tokyo) 52(5):295–298

    Article  PubMed  Google Scholar 

  16. Houkin K, Kuroda S, Ishikawa T, Abe H (2000) Neovascularization (angiogenesis) after revascularization in moyamoya disease. Which technique is most useful for moyamoya disease? Acta Neurochir (Wien) 142(3):269–76

    Article  CAS  PubMed  Google Scholar 

  17. Houkin K, Ito M, Sugiyama T, Shichinohe H, Nakayama N, Kazumata K, Kuroda S (2012) Review of past research and current concepts on the etiology of moyamoya disease. Neurol Med Chir (Tokyo) 52(5):267–277

    Article  PubMed  Google Scholar 

  18. Jeyaram A, Jay SM (2017) Preservation and storage stability of extracellular vesicles for therapeutic applications. AAPS J 20(1):1

    Article  PubMed  Google Scholar 

  19. Kamada F, Aoki Y, Narisawa A et al (2011) A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. J Hum Genet 56(1):34–40

    Article  CAS  PubMed  Google Scholar 

  20. Kanitz A, Imig J, Dziunycz PJ, Primorac A, Galgano A, Hofbauer GFL, Gerber AP, Detmar M (2012) The expression levels of microRNA-361-5p and its target VEGFA are inversely correlated in human cutaneous squamous cell carcinoma. PLoS One 7(11):e49568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karasawa J, Kikuchi H, Furuse S, Sakaki T, Yoshida Y, Ohnishi H, Taki W (1977) A surgical treatment of “moyamoya” disease “encephalo-myo synangiosis.” Neurol Med Chir (Tokyo) 17pt1(1):29–37

    Article  Google Scholar 

  22. Karasawa J, Kikuchi H, Furuse S, Kawamura J, Sakaki T (1978) Treatment of moyamoya disease with STA-MCA anastomosis. J Neurosurg 49(5):679–688

    Article  CAS  PubMed  Google Scholar 

  23. Kim SH, Yun SW, Kim HR, Chae SA (2020) Exosomal microRNA expression profiles of cerebrospinal fluid in febrile seizure patients. Seizure 81:47–52

    Article  PubMed  Google Scholar 

  24. Kinugasa K, Mandai S, Kamata I, Sugiu K, Ohmoto T (1993) Surgical treatment of moyamoya disease: operative technique for encephalo-duro-arterio-myo-synangiosis, its follow-up, clinical results, and angiograms. Neurosurgery 32(4):527–531

    Article  CAS  PubMed  Google Scholar 

  25. Kuroda S, Houkin K (2008) Moyamoya disease: current concepts and future perspectives. Lancet Neurol 7(11):1056–1066

    Article  PubMed  Google Scholar 

  26. Kwon S, Zhang Y, Matthias P (2007) The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev 21(24):3381–3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Larson A, Rinaldo L, Lanzino G, Klaas JP (2000) High prevalence of pro-thrombotic conditions in adult patients with moyamoya disease and moyamoya syndrome: a single center study. Acta Neurochir 162:1853–1859

    Article  Google Scholar 

  28. Li YR, King OD, Shorter J, Gitler AD (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201(3):361–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li J-H, Liu S, Zhou H, Qu L-H, Yang J-H (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42(Database issue):D92-7

    Article  CAS  PubMed  Google Scholar 

  30. Liu W, Morito D, Takashima S et al (2011) Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS One 6(7):e22542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mahboubi H, Stochaj U (2017) Cytoplasmic stress granules: dynamic modulators of cell signaling and disease. Biochim Biophys Acta (BBA) Mol Basis Dis 1863(4):884–895

  33. Marchand A, Proust C, Morange P-E, Lompré A-M, Trégouët D-A (2012) miR-421 and miR-30c inhibit SERPINE 1 gene expression in human endothelial cells. PLoS One 7(8):e44532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mizoi K, Kayama T, Yoshimoto T, Nagamine Y (1996) Indirect revascularization for moyamoya disease: is there a beneficial effect for adult patients? Surg Neurol 45(6):541–8 (discussion 548-9)

    Article  CAS  PubMed  Google Scholar 

  35. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9(AUG):402

    Article  PubMed  Google Scholar 

  36. Ou P, Dupont P, Bonnet D (2006) Fibromuscular dysplasia as the substrate for systemic and pulmonary hypertension in the setting of Moya-Moya disease. Cardiol Young 16(5):495–497

    Article  PubMed  Google Scholar 

  37. Research Committee on the Pathology and Treatment of Spontaneous Occlusion of the Circle of Willis, Health Labour Sciences Research Grant for Research on Measures for Infractable Diseases (2012) Guidelines for diagnosis and treatment of moyamoya disease (spontaneous occlusion of the circle of Willis). Neurol Med Chir (Tokyo) 52(5):245–266

    Article  Google Scholar 

  38. Saugstad JA, Lusardi TA, van Keuren-Jensen KR et al (2017) Analysis of extracellular RNA in cerebrospinal fluid. J Extracell Vesicles 6:1317577

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tang W, Guo J, Gu R, Lei B, Ding X, Ma J, Xu G (2020) MicroRNA-29b-3p inhibits cell proliferation and angiogenesis by targeting VEGFA and PDGFB in retinal microvascular endothelial cells. Mol Vis 26:64–75

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Théry C, Witwer KW, Aikawa E et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750

    Article  PubMed  PubMed Central  Google Scholar 

  41. Veziroglu EM, Mias GI (2020) Characterizing extracellular vesicles and their diverse RNA contents. Front Genet 11:700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang G, Wen Y, Faleti OD, Zhao Q, Liu J, Zhang G, Li M, Qi S, Feng W, Lyu X (2020) A panel of exosome-derived miRNAs of cerebrospinal fluid for the diagnosis of moyamoya disease. Front Neurosci 14:548278

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang G, Wen Y, Chen S, Zhang G, Li M, Zhang S, Qi S, Feng W (2021) Use of a panel of four microRNAs in CSF as a predicted biomarker for postoperative neoangiogenesis in moyamoya disease. CNS Neurosci Ther 27(8):908–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamada I, Himeno Y, Matsushima Y, Shibuya H (2000) Renal artery lesions in patients with moyamoya disease: angiographic findings. Stroke 31(3):733–737

    Article  CAS  PubMed  Google Scholar 

  45. Zhang N, Wang Y, Liu H, Shen W (2020) Extracellular vesicle encapsulated microRNA-320a inhibits endometrial cancer by suppression of the HIF1α/VEGFA axis. Exp Cell Res 394(2):112113

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by KAKENHI grants from the Japan Society for the Promotion of Science to Y. A. (no. 7118K08967) and K. Y. (no. 20K17961).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinya Yokoyama.

Ethics declarations

This study protocol was carried out in accordance with the Declaration of Helsinki and with the approval of the Bioethics Review Board of Nagoya University Hospital (approval number 2020–0131). Written informed consent was obtained from all patients or responsible family members.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Supplementary file2 (DOCX 31 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ota, S., Yokoyama, K., Kanamori, F. et al. Moyamoya disease-specific extracellular vesicle-derived microRNAs in the cerebrospinal fluid revealed by comprehensive expression analysis through microRNA sequencing. Acta Neurochir 165, 2045–2055 (2023). https://doi.org/10.1007/s00701-023-05579-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-023-05579-6

Keywords

Navigation