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Abstract
Purpose  Volumetric assessments, such as extent of resection (EOR) or residual tumor volume, are essential criterions in 
glioma resection surgery. Our goal is to develop and validate segmentation machine learning models for pre- and postopera-
tive magnetic resonance imaging scans, allowing us to assess the percentagewise tumor reduction after intracranial surgery 
for gliomas.
Methods  For the development of the preoperative segmentation model (U-Net), MRI scans of 1053 patients from the Multi-
modal Brain Tumor Segmentation Challenge (BraTS) 2021 as well as from patients who underwent surgery at the University 
Hospital in Zurich were used. Subsequently, the model was evaluated on a holdout set containing 285 images from the same 
sources. The postoperative model was developed using 72 scans and validated on 45 scans obtained from the BraTS 2015 
and Zurich dataset. Performance is evaluated using Dice Similarity score, Jaccard coefficient and Hausdorff 95%.
Results  We were able to achieve an overall mean Dice Similarity Score of 0.59 and 0.29 on the pre- and postoperative holdout 
sets, respectively. Our algorithm managed to determine correct EOR in 44.1%.
Conclusion  Although our models are not suitable for clinical use at this point, the possible applications are vast, going from 
automated lesion detection to disease progression evaluation. Precise determination of EOR is a challenging task, but we 
managed to show that deep learning can provide fast and objective estimates.
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Introduction

Glioblastomas (GBM), Oligodendrogliomas and Astrocy-
tomas are the most common primary brain tumors [34, 49]. 
Magnetic resonance imaging (MRI) brain scans provide 
an essential modality for diagnosis, planning of therapeu-
tic strategy and surveillance of such gliomas [45]. T1, T2, 
FLAIR and contrast T1 weighted are the standard imaging 
protocols used to fulfill these tasks [11, 43, 45]. Early post-
operative MRI imaging is commonly carried out by most 
European centers, but still only a small fraction report a 

percentage wise reduction of tumor volume [43]. Extent of 
resection (EOR) achieved by maximum safe resection is a 
critical predictor for overall and disease-free survival as well 
as quality of life [6, 7, 22, 32, 33, 39], which is why early 
postoperative MRI imaging remains paramount [10, 23, 36]. 
However, manual segmentation of brain lesions is extremely 
laborious, somewhat imprecise and requires a certain degree 
of anatomical and pathological knowledge [5].

The latest convolutional neural networks (CNN), to 
which the UNet belongs, have been able to segment vari-
able anatomical and pathological structures reliably and 
autonomously in a wide variety of medical images [18, 25, 
30, 50]. Therefore, we believe that deep learning can be a 
valuable asset to improve patient care by facilitating vol-
ume calculations and streamlining EOR determination. We 
develop and validate deep learning models for segmentation 
of perioperative MRI scans, allowing volumetric assessment 
of variable grade gliomas.

MRI scans of gliomas can be divided into three sub-
regions: enhancing tumor (ET), which corresponds to a 
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region of relative hyperintensity in the contrast enhanced T1 
sequence, non-enhancing tumor (NET), which is an area of 
relative hypointensity, often surrounded by ET in high grade 
gliomas and, lastly, edema (ED), which is best depicted by 
a hyperintensity in the FLAIR sequence. The union of these 
three regions is defined as whole tumor (WT) [11, 24]. An 
example of this partition is shown in Fig. 2.

Methods

Overview

To obtain a representative data set, first, an imaging reg-
istry of pre- and postoperative MRI scans from patients 
who underwent glioma resection surgery at the Depart-
ment of Neurosurgery, University Hospital Zurich was 
hand-labeled. Using the said data together with addi-
tional data from the Multimodal Brain Tumor Segmen-
tation Challenge 2015 and 2021 (BraTS), two ensemble 
learning model consisting of UNets were then trained and 
validated to segment ET, NET as well as WT on pre- and 
postoperative images.

Ethical considerations

Patient data were treated according to the ethical stand-
ards of the Declaration of Helsinki and its amendments as 
approved by our institutional committee (Cantonal Ethics 
Committee Zürich, BASEC ID: 2021–01,147).

Data sources

A database of 87 pre- and 92 postoperative images from 
patients that had variable grade gliomas resected at the 
Department of Neurosurgery of the University Hospital 
Zurich was hand-labeled by medical students, who had 
received prior expert teaching exclusively for this study 
(Zurich dataset).

For the preoperative model development MRI scans 
of 1053 patients from both the BraTS 2021 training set 
[2–4, 24] and Zurich were used. In a following step, the 
model was evaluated on a holdout set containing 285 
images from the same sources. The BraTS 21 validation 
and testing data was not used in this study. The postoper-
ative model was developed using 72 scans and validated 
on 45 scans, respectively obtained from both the BraTS 
2015 [24, 57] and Zurich dataset. Detailed information 
on our dataset compositions can be found in Table 1.

Operative procedures and preoperative assessments 
were conducted according to the current standards of 
care [42, 48]. Patients from the Zurich database were 
only selected, if all necessary 3 Tesla MRI protocols, 
namely T1, contrast enhanced T1 and FLAIR, were 
available in sufficient resolution and axial orientation. 
Preoperative imaging as well as postoperative scans no 
later than 3 months after surgery had to be available. 
Accordingly, patients with incomplete imaging as well 
as pediatric scans were excluded. However, a minority of 
patients included in this study already underwent prior 
brain tumor resection surgery but presented with recur-
rent lesions that required repeat surgery.

Outcome measures

The segmentation models were trained to autonomously 
segment the glioma subregions ET, NET and WT on pre- 
and postoperative images of variable grade gliomas. The 
EOR was measured in an early postoperative MRI scan 
for 34 patients from the holdout set as the percentagewise 
reduction of tumor volume compared to baseline tumor 
volume on preoperative MRI.

Metrics for segmentation evaluation

For evaluation of our deep learning–based glioma seg-
mentations, we chose three metrics: The DICE similarity 

Table 1   Data sources and 
allocation to study training and 
holdout sets. Cases from the 
Zurich dataset that underwent 
prior surgery are indicated in 
square brackets

LGG, low grade glioma; HGG, high grade glioma; USZ, University Hospital Zurich, BraTS, Brain Tumor 
Segmentation challenge

Source Study datasets

datasets Training Holdout

Preoperative
(n = 1053)

Postoperative
(n = 72)

Preoperative
(n = 285)

Postoperative
(n = 45)

Zurich (USZ) 53 (5.0%) 58 (80.6%) 34 (11.9%) 34 (75.6%)
LGG 20 (37.7%) [4 (7.5%)] 22 (37.9%) 12 (35.3%) [4 (11.8%)] 12 (35.3%)
HGG 33 (62.3%) [4 (7.5%)] 36 (62.1%) 22 (64.7%) [4 (11.8%)] 22 (64.7%)
BraTS 2021 1000 (95.0%) - 251 (88.1%) -
BraTS 2015 - 14 (19.4%) - 11 (24.4%)
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score and the Jaccard similarity coefficient, as overlap 
based metrics, and the Hausdorff metric, a distance-based 
calculation between two point sets [11]. As we used a two-
dimensional UNet for image segmentations, consequently 
two-dimensional implementations were applied to calculate 
the metrics.

DICE Similarity Score (DSC, Sørensen–Dice coefficient, F1 
Score)

The DSC considers the true positives, the false positives, 
and the false negatives. It is a measure of overlap being 
defined as twice the overlap between two areas A and B 
divided by their sum. It does not take true negatives into 
account [40, 56].

Jaccard Score (IoU, Intersection over Union Score)

The IoU is defined as the intersection over the union of two 
areas A and B [13]:

The two metrics are very similar and positively cor-
related. Both range from zero — indicating no overlap 
— to one for perfect congruence.

Hausdorff 95% distance (HD95): The HD95 is defined 
as the 95th percentile of the Hausdorff distance. The 
Hausdorff distance corresponds to the maximum distance 
from a border point of one area to the nearest point on 
the boundary of a second area, smaller values thus rep-
resenting better performance. To eliminate the impact 
of outlying regions, the 95th percentile of the Hausdorff 
distance is used [12, 14]. Note that HD95 scores were 
only calculated over regions that both contain informa-
tion on the ground truth as well as algorithm segmenta-
tion concurrently.

Model development and validation

As we take a clinical approach to deep learning and semantic 
segmentation, we primarily focus on basic procedures out-
lining their importance, rather than discussing every aspect 
in detail. All evaluations were executed using python 3.9.0 
running Tensorflow 2.5.0 and keras 2.5.0 [1, 9, 46].

DSC =
2|A ∩ B|

|A|+|B|

IoU =
|A ∩ B|

|A ∪ B|

Pre‑Processing

Medical imaging information is typically stored using the 
DICOM (Digital Imaging and Communications in Medi-
cine) format. This, however, is not suitable for machine 
learning, thus making conversion to NIfTI (Neuro-
imaging Informatics Technology Initiative) filetype 
imperative [19]. In subsequent steps, the different MRI 
sequences need to be spatially aligned, the voxel size and 
image dimensions harmonized and lastly skull and soft 
tissue have to be removed to set the focus on brain paren-
chyma. We used a rigid transformation technique from 
SimpleITK for image coregistration [17] and MATLAB 
SPM12 fMRI tool for skull stripping. Skull stripping 
was carried out on T1 images and the brainmask was 
subsequently applied to all remaining sequences. These 
first few steps were not necessary for the images from 
the BraTS challenge datasets as they already fulfill the 
mentioned requirements. As a final step, the image inten-
sity normalization was applied to each MRI sequence of 
each patient.

All steps described need to be carried out in a uniform 
manner when validating or using the models on new data.

Model development

The Python package Keras allows for a straightforward model 
training process by providing an efficient and user-friendly foun-
dation for deep learning [9]. We used a basic 2D UNet struc-
ture [30] without any hyperparameter tuning during the model 
training process. Figure 1 illustrates a schematic of the model 
architecture. Although only two-dimensional, axial slices of the 
MRIs were used for 2D UNet model training and evaluation, 
the final segmentation results are three-dimensional. A fivefold 
cross validation [29] was used to train 5 models for each of the 
three tumor regions ET, NET, and WT which were subsequently 
ensembled. For ET and NET, the model was trained on T1 con-
trast-enhanced sequences while for WT, the FLAIR-weighted 
images were applied. The validation set was only used to 
observe the network’s performance during the training process 
and to assess its performance after training completion. Ranger 
optimizer, a combination of Rectified Adam [20] and Looka-
head [55] optimizer, was used for stochastic optimization with 
binary cross entropy as loss function. The loss was computed 
batchwise using a batch size of 32. Each fold was trained for 40 
epochs for preoperative models and 15 epochs for postoperative 
models with a learning rate of 0.001. To prevent overfitting, the 
below data augmentation techniques were applied:

–	 rotation range: ± 7 degrees
–	 zoom range: 90% (zoom in) and 110% (zoom out),
–	 horizontal and vertical image flip
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For postoperative model training, we applied transfer 
learning, by retraining the preoperative models on post-
operative data. This allowed us to transfer some of the 
knowledge already gained on the preoperative dataset 
into segmentation of postoperative imaging [44].

Post‑processing

Outlying regions with a volume of less than 250 mm3 
(0.25 ml) in preoperative and 50 mm3 (0.05 ml) in post-
operative scans were removed.

Model evaluation

Training as well as testing performance were assessed 
using the above-mentioned DSC, IoU and HD95 metrics 
as well as volume correlation.

EOR was defined as the percentagewise volume 
reduction of ET + NET in postoperative MRI compared 
to baseline MRI before surgery. Algorithm segmenta-
tion deviation by more than 5% from ground truth EOR 
was considered incorrect. In contrast only values, whose 
deviation of the algorithm determined EOR from ground 
truth was less than 5%, were regarded as correct. EOR 
was evaluated on 34 patients from pre- and postopera-
tive holdout set. It has to be noted that only patients 
that underwent surgery at the University Hospital Zurich 
were included in EOR evaluation, as the BraTS chal-
lenge datasets do not have reliable pre- and postoperative 
ground truth segmentations for the same patients. GTR 
was considered as EOR of 100% and performance of 
automated GTR determination was assessed using accu-
racy, sensitivity, specificity, positive predictive value, 
and negative predictive value metrics.

Results

Model performance

Segmentation task

Resampled and validation performance were assessed con-
cordantly for the preoperative and postoperative models. The 
preoperative models achieved a mean DSC of 0.62 (± 0.30), 
0.43 (± 0.34) and 0.73 (± 0.18) for ET, NET, and WT, respec-
tively, on the holdout set. The Pearson coefficients for volume 
correlation amounted to 0.97 for ET and 0.37 for NET. WT 
volume correlation was 0.94.

Postoperative performance on the holdout set amounted to a 
mean DSC of 0.21 (± 0.23) and 0.07 (± 0.16) for ET and NET, 
as well as a DSC of 0.59 (± 0.24) for WT. Volume correlation 
was 0.89 for ET while the coefficient for NET amounted to 
0.40. WT correlation reached 0.91.

Examples of our algorithm-based segmentations can be 
seen in Figs. 2 and 3. For a more detailed information on 
model performance, refer to Tables 2 and 3 as well as Fig. 4.

EOR determination

Our algorithm was able to measure correct EOR (deviation of 
less than 5% from ground truth EOR) in 15 out of 34 patients, 
which corresponds to 44.11% of patients (cf. Table 3). We 
managed to achieve a Pearson correlation of 0.40 on all 34 
cases and 0.81 for 22 high grade glioma patients only (cf. Fig-
ure 5 and Table 5.

Discussion

In this study, the feasibility of deep learning application 
in automated, volumetric lesion assessment as well as 
evaluation of EOR after surgical treatment of gliomas was 

Fig. 1   The baseline model architecture. A classic U-Net architecture is used, consisting of four levels with two consecutive sequences of convo-
lution on the encoding as well as decoding part
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investigated. With data from multiple registries ensemble 
learning models were trained and subsequently validated. 
The performance of our models was satisfactory on preop-
erative imaging and, given the difficulty of the task, accept-
able on postoperative imaging. This showed that there is 
significant potential for clinical application of semantic 
segmentation algorithms. The objectivity and speed with 
which such models can assess volumetric information is 
unmatched. It is certain that further, systematic optimiza-
tion of hyperparameters during model training and the use 
of pretrained segmentation models will further improve our 
model performance in the future [37].

There are a multitude of different architectures that are 
applied in medical imaging segmentation, the U-Net, on 
which we rely in this study, as well as different variations 
of convolutional neural networks (CNN) being among the 
most successful ones [30, 35]. Recently, Vision Transform-
ers, have gained in popularity. Transformer models, which 
originally come from the field of natural language process-
ing, are less computationally expensive and achieve perfor-
mances comparable to state of the art CNNs [16, 26].

A main strength of our study is the inclusion of MRI 
scans from numerous different centers and scanners. Unlike 
Computer Tomography scans, intensities in MRI images are 
predisposed to significant statistical shift depending on dif-
ferent scanners and local protocols [51]. Including data from 
different centers therefore allows achieving a high level of 
generalizability, which is vital for projects intended to be 
applied in clinical practice. However, conversely this has a 
direct impact on model performance, potentially explaining 
the lack of better segmentation performance to some degree 
[51]. Additionally, the inclusion of some cases that under-
went prior surgery in the Zurich dataset allows to extend 
applications of our models by making the dataset more 
comparable with “real world” data. As this might impede 
achieving higher segmentation performances, the effect of 
these secondary resection cases was compared to perfor-
mance on primary resection cases only, as can be seen in 
Table 4, where no differences were observed. This is likely 
due to the low number of secondary resection cases included 
in this study.

Further, we counteracted overfitting by implement-
ing image augmentation techniques and always carefully 

Fig. 2   Preoperative holdout set 
results: Cases were differenti-
ated as best, median or worst 
according to patient wise mean 
DSC. Within each row, the skull 
stripped FLAIR image is shown 
to the left, the T1 contrast 
enhanced image in the middle 
and an overlay with the gener-
ated segmentation to the right 
side. Edema is displayed in 
green, enhancing tumor in yel-
low and necrosis/non-enhancing 
tumor in red. Metrics are given 
as DSC: (A) best: ET 0.90, 
NET 0.97, WT 0.93, mean 0.93; 
(B) median: ET 0.67, NET 
0.55, WT 0.82, mean 0.68; (C) 
worst: ET 0.0, NET 0.0, WT 
0.0, mean 0.0
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assessed its extent by comparing training against valida-
tion performance [38]. It cannot be excluded that the differ-
ence in performance between the training and holdout set 
of the preoperative NET model is partly due to overfitting, 
but apart from that, our results do not show major signs of 
overfitting.

We successfully applied transfer learning techniques 
which boosted performance of the postoperative models. 
Transfer learning makes it possible to relay some knowl-
edge learned in a similar task into model training [44, 53]. 
By retraining the preoperative models on the postoperative 
data, we were able to partly compensate for low sample size 
and poor ground truth quality of the postoperative dataset.

A major challenge encountered during conducting this 
study was the evaluation of the postoperative model’s 
performance, especially for ET. This is due to multiple 
factors: First, the DSC and IoU punish false positives rig-
orously. As the residual-enhancing tumor areas for most 
subtotally resected high-grade gliomas are minuscule, 
even tiny false positive areas can have a huge impact on 
the final score [2]. However, it is much more probable to 
get false positives, as normal postoperative changes take 

up contrast agent. This represents a major challenge for 
all segmentation algorithms [5, 21]. An example can be 
seen in Fig. 3B; where the enhancing tumor is adequately 
labeled, but minor false positive areas in image slices that 
are not shown pull down the DSC for ET.

Secondly, there is a rather low interrater reliability for 
all postoperative ground truth segmentations [47]. This 
is commonly a known problem for postoperative imag-
ing segmentations in general, as supervised learning tech-
niques can only ever be as good as the “ground truth” data 
they have been trained on.

For the said reasons, it was a difficult task to derive reli-
able information on performance of postoperative models. 
We try to counteract this issue to some degree by sup-
plementing volume correlation scatter plots, which can 
be seen in Fig. 4 and demonstrate a great comparability 
between algorithm results and ground truth segmentations 
for ET and WT.

Differences in interrater agreement of ground truth seg-
mentations are also interesting topic for preoperative imag-
ing: Since annotations of the BraTS and Zurich datasets are 
refined by a single annotator for each case and annotations 

Fig. 3   Postoperative holdout 
set results: Cases were selected 
as best, median and worst 
according to patient wise mean 
DSC. Within each row, the 
skull stripped FLAIR image 
is shown to the left, the T1 
contrast enhanced image in the 
middle and an overlay with the 
algorithm generated segmenta-
tion to the right side. Edema is 
displayed in green, enhancing 
tumor in yellow and necrosis/
non-enhancing tumor in red. 
Metrics are given as DSC: (A) 
best: ET 0.63, NET 0.50, WT 
0.85, mean 0.66; (B) median: 
ET 0.12, NET 0.00, WT 0.74, 
mean 0.28; (C) worst: ET 0.0, 
NET 0.0, WT 0.05, mean 0.02
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are only approved by a second expert, it is not possible 
to provide any information specific for our data on the 
matter [2]. However, current literature suggests that pre-
operative interrater agreement is rather high [27, 47]. As 
discussed before, this is not the case for postoperative 
imaging.

Achieving a safe but high EOR is highly important 
for overall survival as well as disease-free survival, even 
if GTR is not reached [6, 7, 32, 33, 39]. Therefore, it is 
imminent to have the best possible understanding of the 
achieved EOR in order to deliver an accurate prognosis. 
However, segmentation models will always have a certain 
error rate. Thus, machine learning should never replace 
the careful study of imaging results. Rather, it should be 
seen as supplemental information available to physicians, 

aiming to facilitate, standardize and accelerate the pro-
cesses involved in determining EOR.

There are studies with good results that used deep 
learning–based volumetric analysis of tumors to assess 
disease progression [28, 52], but to the best of the 
authors knowledge, no other studies have been con-
ducted yet that aim at determining extent of resection on 
pre- and postoperative MRI imaging for brain tumors. A 
meta-analysis on the performance of machine learning 
algorithms by van Kempen et al. found the overall DSC 
to be 0.84 for preoperative glioma segmentations [15]. 
In a semi-automated approach for postoperative glioma, 
segmentation by Zeng et al. achieved an overall DSC of 
about 0.59 [15, 54].

Table 2   Model performance on training and holdout set. Metrics are 
given as cohort wise mean with median and interquartile range in 
brackets. Note that while DSC and IoU are calculated over all slices 

that contain segmentations in either ground truth or algorithm seg-
mentation, HD95 is only calculated over frames that contain segmen-
tations in both ground truth and algorithm segmentation

SD, standard deviation; IQR, interquartile range

Thresh DICE
Similarity coefficient

Intersection over Union (Jaccard Score) Hausdorff 95%

Region Training (n = 285) Holdout (n = 1053) Training (n = 1053) Holdout (n = 285) Training (n = 1053) Holdout
(n = 285)

Preoperative performance
Enhancing tumor (ET)
mean ± SD
median
(IQR)

0.5 0.73 ± 0.20
0.79
(0.68–0.86)

0.62 ± 0.30
0.75
(0.47–0.82)

0.66 ± 0.20
0.71
(0.58–0.80)

0.56 ± 0.28
0.67
(0.37–0.76)

4.19 ± 4.67
2.77
(1.85–4.64)

5.30 ± 5.48
3.25
(2.13–5.85)

Non enhancing tumor (NET)
mean ± SD
median
(IQR)

0.4 0.64 ± 0.28
0.74
(0.49–0.85)

0.43 ± 0.34
0.51
(0.02–0.74)

0.57 ± 0.28
0.66
(0.41–0.79)

0.38 ± 0.32
0.40
(0.01–0.66)

5.87 ± 7.51
3.56
(2.00–7.01)

10.26 ± 11.14
5.94
(2.48–13.14)

Whole tumor (WT)
mean ± SD
median
(IQR)

0.5 0.77 ± 0.15
0.80
(0.70–0.87)

0.73 ± 0.18
0.78
(0.67–0.85)

0.70 ± 0.16
0.74
(0.63–0.82)

0.67 ± 0.18
0.72
(0.60–0.80)

7.46 ± 6.43
5.41
(3.60–8.80)

8.07 ± 6.75
5.74
(3.59–9.99)

Overall mean 0.71 0.59 0.65 0.53 5.84 7.88
Training (n = 72) Holdout (n = 45) Training (n = 72) Holdout (n = 45) Training (n = 72) Holdout

(n = 45)
Postoperative performance
Enhancing tumor (ET)
mean ± SD
median
(IQR)

0.1 0.18 ± 0.19
0.12
(0.0–0.31)

0.21 ± 0.23
0.13
(0.0–0.34)

0.14 ± 0.16
0.08
(0.0–0.23)

0.17 ± 0.19
0.10
(0.0–0.28)

11.56 ± 7.90
10.11
(5.51–16.06)

13.18 ± 9.02
10.14
(6.09–20.04)

Non enhancing tumor (NET)
mean ± SD
median
(IQR)

0.25 0.02 ± 0.05
0.0
(0.0–0.02)

0.07 ± 0.16
0.0
(0.0–0.06)

0.01 ± 0.03
0.0
(0.0–0.01)

0.05 ± 0.13
0.0
(0.0–0.04)

24.66 ± 13.65
19.39
(15.63–29.48)

20.16 ± 10.49
18.84
(14.11–24.49)

Whole tumor (WT)
mean ± SD
median
(IQR)

0.25 0.57 ± 0.22
0.63
(0.44–0.73)

0.59 ± 0.24
0.63
(0.43–0.80)

0.47 ± 0.20
0.52
(0.34–0.65)

0.50 ± 0.22
0.52
(0.33–0.69)

13.54 ± 8.17 12.22
(7.56–17.48)

14.18 ± 10.51
10.02
(6.34–18.13)

Overall mean 0.26 0.29 0.21 0.24 16.57 15.84
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Overall, the models developed in this study demon-
strated adequate generalizability, performing similarly 
well on both test and training data. However, model per-
formance depends on a multitude of variables, among them 
(sub)region of interest for segmentation, the imaging planes 
on which the model has been trained on, and the methods 
of segmentation metric calculation among others. These 
variables are handled inconsistently in current literature 
[41]. Using two-dimensional calculations for the metrics, 
as done in this study, leaves less room for error and impedes 
achieving higher scores compared to the respective three-
dimensional implementations.

Besides automated EOR determination, our algorithm can 
be easily adapted to be able to autonomously detect lesions 
or evaluate tumor progression.

Segmentation of complex structures, like gliomas, 
remains a difficult task, but semantic segmentation algo-
rithms can already provide adequate volumetric information 
in this study.

Limitations

One limitation of our study is the relatively low sample size 
for postoperative model training. A decent surgical cohort of 
over 72 patients was included in training the models, which 
however still is a rather low sample size for deep learning 
[8]. Larger amounts of data and further hyperparameter 
tuning during model training would likely improve general 
model performance.

Furthermore, our algorithm was unable to segment NET 
of low-grade glioma in both pre- and postoperative models. 
This is also reflected in Table 3, where NET segmentation 
performance for low grade gliomas (DSC 0.14) is signifi-
cantly lower than for high grade gliomas (DSC 0.58). The 
NET model, trained on T1 contrast enhanced sequences, 
often did not segment anything in low grade gliomas. This 
is due to the fact that the morphology of NET in glioblasto-
mas differs fundamentally compared to low grade gliomas 
[47] and our models were not able to grasp this difference. 

Table 3   Model performance of low grade compared to high grade gliomas from 34 patients out of the Zurich part of the holdout set. Metrics are 
given as cohort wise mean with median and interquartile range in brackets 

SD, standard deviation; IQR, interquartile range

Thresh DICE
Similarity coefficient

Intersection over Union (Jaccard 
Score)

Hausdorff 95%

Region Low grade High grade Low grade High grade Low grade High grade

Preoperative performance
Enhancing tumor (ET)
mean ± SD
median
(IQR)

0.5 0.43 ± 0.39
0.42
(0.00–0.82)

0.74 ± 0.11
0.78
(0.71–0.82)

0.38 ± 0.35
0.32
(0.00–0.75)

0.64 ± 0.1
0.67
(0.60–0.70)

4.93 ± 4.29
3.5
(2.71–4.23)

3.29 ± 1.4
3.21
(2.17–3.77)

Non enhancing tumor (NET)
mean ± SD
median
(IQR)

0.4 0.14 ± 0.24
0.00
(0.00–0.15)

0.58 ± 0.28
0.65
(0.55–0.76)

0.11 ± 0.19
0.00
(0.00–0.08)

0.49 ± 0.25
0.54
(0.44–0.66)

21.12 ± 11.78
23.1
(7.96–31.33)

6.91 ± 6.24
5.15
(2.00–8.67)

Whole Tumor (WT)
mean ± SD
median
(IQR)

0.5 0.65 ± 0.23
0.72
(0.59–0.79)

0.80 ± 0.13
0.83
(0.79–0.87)

0.57 ± 0.21
0.72
(0.59–0.79)

0.72 ± 0.14
0.76
(0.69–0.81)

11.18 ± 9.17
8.09
(6.72–9.95)

7.89 ± 5.6
5.88
(4.71–8.29)

Overall mean 0.41 0.71 0.36 0.62 12.41 6.03
Postoperative performance
Enhancing tumor (ET)
mean ± SD
median
(IQR)

0.1 0.07 ± 0.14
0.00
(0.00–0.05)

0.21 ± 0.22
0.14
(0.00–0.33)

0.05 ± 0.11
0.00
(0.00–0.03)

0.17 ± 0.18
0.11
(0.00–0.26)

12.83 ± 7.63
12.89
(5.29–20.43)

12.73 ± 10.8
7.49
(5.23–18.50)

Non enhancing tumor (NET)
mean ± SD
median
(IQR)

0.25 0.01 ± 0.03
0.00
(0.00–0.00)

0.11 ± 0.22
0.00
(0.00–0.07)

0.01 ± 0.02
0.00
(0.00–0.00)

0.08 ± 0.19
0.00
(0.00–0.04)

21.21 ± 1.70
21.21
(20.36–22.06)

15.52 ± 12.22
13.23
(8.00–18.39)

Whole Tumor (WT)
mean ± SD
median
(IQR)

0.25 0.44 ± 0.26
0.39
(0.29–0.66)

0.67 ± 0.22
0.75
(0.57–0.83)

0.36 ± 0.23
0.31
(0.22–0.54)

0.58 ± 0.21
0.65
(0.47–0.73)

15.75 ± 10.29
12.89
(8.52–17.73)

12.38 ± 10.35
7.93
(6.12–15.40)

Overall mean 0.18 0.35 0.14 0.28 17.60 13.54
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Additionally, in T1 contrast–weighted images alone, the 
discrimination between edema and low-grade tumor can be 
extremely difficult, which further impedes accurate segmen-
tation. However, even though overall performance for low 

grade gliomas was lower (cf. Table 3), the WT model, pre-
dicting on FLAIR sequences, was able to reliably segment 
low grade lesions with rather low discrepancy compared to 
the ground truths. This is essential, as it is common practice 

Fig. 4   Volume Correlations on preoperative (A) and postoperative 
(B) holdout set. Within each row, ET volume correlation is shown to 
the left, the NET volume correlation in the middle and an WT vol-

ume correlation to the right. Pearson correlation coefficients are indi-
cated inside the graph

Fig. 5   EOR correlation for 22 high grade gliomas only (A), for 12 low grade gliomas only (B) and over all 34 patients (C). Patients for whom 
the preoperative model did not segment any tumor were assigned a EOR of 0%. Pearson correlation is indicated in the graph
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to carry out volumetric assessments of low-grade gliomas 
on FLAIR or T2 sequences [39].

As expert labels are very difficult to obtain, we mainly 
relied on postoperative ground truth segmentations from 
medical students and the BraTS 15 dataset for this study. 
However, the BraTS 15 postoperative ground truth labels 
are algorithm-based and therefore not on the qualitative level 
that would be desirable.

There are two further important drawbacks that are inher-
ent when working with machine learning in general. First, 
all machine learning models are unable to reliably work 
with extreme cases that fall outside the range of the training 
data (extrapolation). If for example, a patient presents with 
glioma of the cerebellum, which is uncommon but realistic, 
a machine learning model trained on cerebral gliomas will 
not be able to segment it with the same reliability.

Second, the commonly known “black box” problem [31]: 
Especially with deep learning, one is often confronted with 
the inability to understand, why certain predictions have 
been made. By catering the algorithm with the required data, 
an accurate outcome can be derived. However, it remains 
unknown based on what aspects of the data these conclu-
sions have been reached. While there are a lot of methods 

to make such models more transparent, most of them lack 
practical applicability.

Conclusions

Precise determination of EOR after glioma resection surgery 
remains a challenging task, but deep learning offers potential 
in helping to provide faster and more objective estimates, 
which could aid in improving patient care. Especially for 
preoperative MRI imaging, the volumetric measurements 
correlate well with ground truth. Although our models are 
not ready for clinical application at present, we were able 

Table 4   Model performance of primary resection cases only on the 
holdout set

Thresh DICE
Similarity coefficient

Region Holdout (n = 277)
Preoperative performance
Enhancing tumor (ET)
mean ± SD
median (IQR)

0.5 0.62 ± 0.30
0.75 (0.47–0.82)

Non enhancing tumor (NET)
mean ± SD
median (IQR)

0.4 0.43 ± 0.34
0.50 (0.02–0.76)

Whole tumor (WT)
mean ± SD
median (IQR)

0.5 0.74 ± 0.17
0.79 (0.67–0.85)

Overall mean 0.60
Region Holdout (n = 37)
Postoperative performance
Enhancing tumor (ET)
mean ± SD
median (IQR)

0.1 0.21 ± 0.23
0.14 (0.00–0.32)

Non enhancing tumor (NET)
mean ± SD
median (IQR)

0.25 0.07 ± 0.17
0.00 (0.00–0.02)

Whole tumor (WT)
mean ± SD
median (IQR)

0.25 0.61 ± 0.23
0.66 (0.46–0.81)

Overall mean 0.30

Table 5   Volumetric model performance from holdout dataset com-
pared to ground truth

Measurement (285 cases)
Preoperative Volume
Enhancing tumor Correlation (Pearson) 0.97
Non enhancing tumor Correlation (Pearson) 0.37
Whole tumor Correlation (Pearson) 0.94
Postoperative Volume
Enhancing tumor Correlation (Pearson) 0.89
Non enhancing tumor Correlation (Pearson) 0.40
Measurement (34 cases)
EOR [%]
Correlation EOR (Pearson) 0.40
Difference in EOR [Median (IQR)] 6.5% (2.0–21.8%)
Difference in EOR [Mean ± SD] 36.9% ± 37.0%
Correlation EOR high grade only (Pearson) 0.81
Difference in EOR high grade only [Median 

(IQR)]
3.5% (1.3–11.5%)

Difference in EOR high grade only 
[Mean ± SD]

7.9% ± 11.0%

Correlation EOR low grade only (Pearson)  − 0.14
Difference in EOR low grade only [Median 

(IQR)]
29.0% (16.5–

88.75%)
Difference in EOR low grade only [Mean ± SD] 46.25% ± 38.74%
GTR total
Accuracy 0.59
Sensitivity 0.08
Specificity 0.86
PPV 0.25
NPV 0.63
GTR high grade
Accuracy 0.64
Sensitivity 0.00
Specificity 0.88
GTR low grade
Accuracy 0.58
Sensitivity 0.20
Specificity 0.86
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to deliver promising results developing and subsequently 
validating segmentation models for automatic volumetric 
measurements in patients that underwent surgery for vari-
able grade gliomas.
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