Skip to main content

Advertisement

Log in

Increased cerebrospinal fluid S100B protein levels in patients with trigeminal neuralgia and hemifacial spasm

  • Original Article - Functional Neurosurgery - Other
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

The pathophysiology of neurovascular compression syndrome has not been fully elucidated, and cerebrospinal fluid levels of nerve tissue-related markers involved in this disorder have not yet been reported.

Methods

We measured cerebrospinal fluid levels of S100B protein, neuron-specific enolase, and myelin basic protein in 21 patients with trigeminal neuralgia, 9 patients with hemifacial spasms, and 10 patients with non-ruptured intracranial aneurysms (control). Cerebrospinal fluid levels of these markers were determined using commercially available assay kits.

Results

Both trigeminal neuralgia and hemifacial spasm groups showed significantly increased cerebrospinal fluid levels of S100B compared with the control group (1120 [IQR 391–1420], 766 [IQR 583–1500], and 255 [IQR 190–285] pg/mL, respectively; p = 0.001). There were no statistically significant differences in cerebrospinal fluid levels of neuron-specific enolase or myelin basic protein among the groups.

Conclusion

Cerebrospinal fluid S100B levels were significantly higher in patients with trigeminal neuralgia and hemifacial spasm than in controls, which suggests the involvement of S100B in the underlying pathophysiology of neurovascular compression syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. An JX et al (2011) A new animal model of trigeminal neuralgia produced by administration of cobra venom to the infraorbital nerve in the rat. Anesth Analg 113:652–656

    Article  PubMed  Google Scholar 

  2. Arrais AC et al (2022) S100B protein: general characteristics and pathophysiological implications in the Central Nervous System. Int J Neurosci 132:313–321

    Article  CAS  PubMed  Google Scholar 

  3. Brisby H, Olmarker K, Rosengren L, Cederlund CG, Rydevik B (1999) Markers of nerve tissue injury in the cerebrospinal fluid in patients with lumbar disc herniation and sciatica. Spine (Phila. Pa) 24:742–746

    Article  CAS  Google Scholar 

  4. Campos-Benitez M, Kaufmann AM (2008) Neurovascular compression findings in hemifacial spasm. J Neurosurg 109:416–420

    Article  PubMed  Google Scholar 

  5. Chabok SY et al (2012) Neuron-specific enolase and S100BB as outcome predictors in severe diffuse axonal injury. J Trauma Acute Care Surg 72:1654–1657

    Article  CAS  PubMed  Google Scholar 

  6. Donato R (2003) Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 60:540–551

    Article  CAS  PubMed  Google Scholar 

  7. Donato R et al (2012) Functions of S100 Proteins. Curr Mol Med 13:24–57

    Article  Google Scholar 

  8. Gerlach R et al (2006) Active secretion of S100B from astrocytes during metabolic stress. Neuroscience 141:1697–1701

    Article  CAS  PubMed  Google Scholar 

  9. Gonzalez LL, Garrie K, Turner MD (2020) Role of S100 proteins in health and disease. Biochim Biophys Acta Mol. Cell Res 1867:32057918

    Article  Google Scholar 

  10. Griffin WST et al (1995) Overexpression of the neurotrophic cytokine S100β in human temporal lobe epilepsy. J Neurochem 65:228–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guclu B et al (2011) Cranial nerve vascular compression syndromes of the trigeminal, facial and vago-glossopharyngeal nerves: Comparative anatomical study of the central myelin portion and transitional zone; Correlations with incidences of corresponding hyperactive dysfunctio. Acta Neurochir (Wien) 153:2365–2375

    Article  PubMed  Google Scholar 

  12. Haque A, Polcyn R, Matzelle D, Banik NL (2018) New insights into the role of neuron-specific enolase in neuro-inflammation, neurodegeneration, and neuroprotection. Brain Sci 8:1–2

    Article  Google Scholar 

  13. Hofmann MA et al (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889–901

    Article  CAS  PubMed  Google Scholar 

  14. Huttunen HJ et al (2000) Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 275:40096–40105

    Article  CAS  PubMed  Google Scholar 

  15. Huttunen HJ, Fages C, Rauvala H (1999) Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-κB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem 274:19919–19924

    Article  CAS  PubMed  Google Scholar 

  16. Jannetta PJ (1967) Arterial compression of the trigeminal nerve at the pons in patients with trigeminal neuralgia. J Neurosurg 26:159–162

    Article  Google Scholar 

  17. Kligman D, Marshak DR (1985) Purification and characterization of a neurite extension factor from bovine brain. Proc Natl Acad Sci USA 82:7136–7139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuroki A, Møller AR (1994) Facial nerve demyelination and vascular compression are both needed to induce facial hyperactivity: a study in rats. Acta Neurochir (Wien) 126:149–157

    Article  CAS  PubMed  Google Scholar 

  19. Langeh U, Singh S (2020) Targeting S100B protein as a surrogate biomarker and its role in various neurological disorders. Curr Neuropharmacol 19:265–277

    Article  Google Scholar 

  20. Leclerc E, Fritz G, Weibel M, Heizmann CW, Galichet A (2007) S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J Biol Chem 282:31317–31331

    Article  CAS  PubMed  Google Scholar 

  21. Leung Brain K et al (2012) Basic Science An Animal Model for Trigeminal Neuralgia by Compression of the Trigeminal Nerve Root. Pain Physician 15:187–196

    Google Scholar 

  22. Maiti R et al (2018) Effect of anti-seizure drugs on serum S100B in patients with focal seizure: a randomized controlled trial. J Neurol 265:2594–2601

    Article  CAS  PubMed  Google Scholar 

  23. Michetti F et al (2019) The S100B story: from biomarker to active factor in neural injury. J Neurochem 148:168–187

    Article  CAS  PubMed  Google Scholar 

  24. Missler U, Wiesmann M, Friedrich C, Kaps M (1997) S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke 28:1956–1960

    Article  CAS  PubMed  Google Scholar 

  25. Noga MJ et al (2012) Metabolomics of cerebrospinal fluid reveals changes in the central nervous system metabolism in a rat model of multiple sclerosis. Metabolomics 8:253–263

    Article  CAS  PubMed  Google Scholar 

  26. Perrone L, Peluso G, Melone MAB (2008) RAGE recycles at the plasma membrane in S100B secretory vesicles and promotes Schwann cells morphological changes. J Cell Physiol 217:60–71

    Article  CAS  PubMed  Google Scholar 

  27. Riehl A, Németh J, Angel P, Hess J (2009) The receptor RAGE: bridging inflammation and cancer. Cell Commun Signal 7:8–9

    Article  Google Scholar 

  28. Rong LL et al (2004) Antagonism of RAGE suppresses peripheral nerve regeneration. FASEB J 18:1812–1817

    Article  CAS  PubMed  Google Scholar 

  29. Sakatani S et al (2008) Neural-activity-dependent release of S100B from astrocytes enhances kainate-induced gmma oscillations in vivo. J Neurosci 28:10928–10936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Selinfreund RH, Barger SW, Pledger WJ, Van Eldik LJ (1991) Neurotrophic protein S100β stimulates glial cell proliferation. Proc Natl Acad Sci U S A 88:3554–3558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shashoua VE, Hesse GW, Moore BW (1984) Proteins of the brain extracellular fluid: evidence for release of S-100 protein. J Neurochem 42:1536–1541

    Article  CAS  PubMed  Google Scholar 

  32. Sindou MP (2005) Microvascular decompression for primary hemifacial spasm. Importance of intraoperative neurophysiological monitoring. Acta Neurochir (Wien) 147:1019–1026

    Article  CAS  PubMed  Google Scholar 

  33. Sindou M, Keravel Y (2009) Traitement neurochirurgical du spasme hémifacial primaire par décompression vasculaire microchirurgicale. Neurochirurgie 55:236–247

    Article  CAS  PubMed  Google Scholar 

  34. Sindou M, Leston J, Decullier E, Chapuis F (2007) Microvascular decompression for primary trigeminal neuralgia: Long-term effectiveness and prognostic factors in a series of 362 consecutive patients with clear-cut neurovascular conflicts who underwent pure decompression. J Neurosurg 107:1144–1153

    Article  PubMed  Google Scholar 

  35. Sindou M, Howeidycevedo T, GAcevedo G (2022) Anatomical observations during microvascular decompression for idiopathic trigeminal neuralgia ( with correlations between topography of pain and site of the neurovascular conflict). Prospect Stud Ser Patients 579 144:1–2

    Google Scholar 

  36. Sorci G, Riuzzi F, Agneletti AL, Marchetti C, Donato R (2004) S100B Causes apoptosis in a myoblast cell line in a RAGE-independent manner. J Cell Physiol 199:274–283

    Article  CAS  PubMed  Google Scholar 

  37. Steiner J et al (2008) S100B is expressed in, and released from, OLN-93 oligodendrocytes: Influence of serum and glucose deprivation. Neuroscience 154:496–503

    Article  CAS  PubMed  Google Scholar 

  38. Van Eldik LJ, Zimmer DB (1987) Secretion of S-100 from rat C6 glioma cells. Brain Res 436:367–370

    Article  PubMed  Google Scholar 

  39. Wang L et al (2020) Trigeminal neuralgia causes neurodegeneration in rats associated with upregulation of the CD95/CD95L pathway. Mol Pain 16:1–14

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Akira Akabane, Dr. Masato Hara, Dr. Yuri Aimi, Dr. Tomoyuki Noda, and Dr. Yuji Endo for patient recruitment and data collection. The authors received no financial support for this research.

Funding

Open access funding was provided by Nagoya University Graduate School of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

Study design: Eiji Ito, Yukio Seki; data collection: Eiji Ito, Yukio Seki, Kiyoshi Saito; statistical analyses: Eiji Ito, Yukio Seki; manuscript writing and editing: Eiji Ito, Yukio Seki, Ryuta Saito.

Corresponding author

Correspondence to Eiji Ito.

Ethics declarations

Ethics approval

All procedures were conducted in accordance with the policies of the ethics committees of Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital (IRB No. 20110628–3).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Functional Neurosurgery - Other

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, E., Seki, Y., Saito, K. et al. Increased cerebrospinal fluid S100B protein levels in patients with trigeminal neuralgia and hemifacial spasm. Acta Neurochir 165, 959–965 (2023). https://doi.org/10.1007/s00701-022-05434-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-022-05434-0

Keywords

Navigation