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Gentamicin loading of calcium phosphate implants:
implications for cranioplasty

Jimmy Sundblom1
& Sara Gallinetti2 & Ulrik Birgersson3

& Håkan Engqvist2 & Lars Kihlström4

Received: 19 November 2018 /Accepted: 25 March 2019 /Published online: 30 April 2019
# The Author(s) 2019

Abstract
Background Surgical site infections (SSI) are a significant risk in cranioplasty, with reported rates of around 8–9%. The most
common bacteria associated with these nosocomial infections are of the Staphylococcus species, which have the ability to form
biofilm. The possibility to deliver antibiotics, such as gentamicin, locally rather than systemically could potentially lower the
early postoperative SSI. Various antibiotic dosages are being applied clinically, without any true consensus on the effectiveness.
Methods Drug release from calcium phosphate (CaP), polyetheretherketone (PEEK), and titanium (Ti) samples was evaluated.
Microbiological studies with Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) including strains from clinical
infection were used to establish clinically relevant concentrations.
Results The CaP samples were able to retain and release gentamicin overtime, whereas the Ti and PEEK samples did not show
any drug uptake or release. A gentamicin loading concentration of 400 μg/ml was shown to be effective in in vitro microbio-
logical studies with both SA and SE.
Conclusions Out of the three materials studied, only CaP could be loaded with gentamicin. An initial loading concentration of
400 μg/ml appears to establish an effective gentamicin concentration, possibly translating into a clinical benefit in cranioplasty.
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Abbreviations
ATCC American Type Culture Collection
BET Brunnauer–Emmet–Teller method
CaP Calcium phosphate
CFU Colony-forming unit
EU European Union
PEEK Polyetheretherketone
SA Staphylococcus aureus

SE Staphylococcus epidermidis
SSA Specific surface area
SSI Surgical site infections
Ti Titanium
US United States of America

Introduction

Surgical site infections (SSI) in cranioplasty pose a significant
risk with reported rates of around 8–9% [1–7]. The most com-
mon bacteria associated with nosocomial infections are of the
Staphylococcus species. Out of these, the most predominant
are Staphylococcus epidermidis (SE) and Staphylococcus
aureus (SA) [4, 8, 9]. They are generally carried asymptom-
atically on the skin, especially in moist skin regions [4, 8–10].
Both SE [11] and SA [12] bacteria strains are able to form
biofilms, which was recently associated with 65% of all the
microbial bone infections treated by clinicians in the devel-
oped world [13]. Host immune responses against persistent
biofilm infections are largely ineffective and can lead to
chronic infection, which is associated with difficult post-op
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treatments [12]. Antibiotic prophylaxis is usually adminis-
tered before cranioplasty, even though its use is still debated,
due to the risk of creating resistant strains if administrated
inadequately [14].

Antibiotics can be delivered both systemically and/or lo-
cally. The advantages of local administration over systemic
are lower cost, lower risk of toxicity, and significantly higher
concentrations of antibiotics at the desired site [15]. Loading a
device with antibiotics could allow for a lower systemic con-
centration while obtaining the same effect locally, reducing
the drawbacks of systemic delivery, including development
of resistant strains. For these reasons, local delivery of drugs
has been applied into different applications, such as in ortho-
pedics or dentistry [16, 17]. In order to obtain an effective
treatment as well as limiting the drugs cytotoxic effects, a
critical concentration between 8 to 16 μg/ml and 100 μg/ml
seems to be necessary [11, 18–23].

Calcium phosphate (CaP) cements have been loaded with
vancomycin and gentamicin in order to decrease the number
of bone infections, especially in orthopedics [16]. The antibi-
otics have been added to the cement either in liquid form [24,
25] or as a solid phase [26, 27]. Antibiotic immersion of tita-
nium (Ti) implants such as pedicle screws used in spine sur-
gery has been tested and showed decreased rates of SSI [28].
Gentamicin is one of the most commonly used antibiotics in
cranioplasty and the focus of this paper. While efficient
against infections, gentamicin has been shown to negatively
influence cell proliferation [19, 20, 22] making the tuning of
the concentration vital.

The aim of the study was to evaluate the drug uptake and
release for the three most widespread commercially available
materials used for patient-specific custom-made implants
for cranioplasty, namely CaP, polyetheretherketone
(PEEK), and Ti, and to test the bactericidal effect against
strains of SA and SE.

Material and methods

In vitro studied materials

Hexagonal CaP cement tiles (OssDsign AB) composed of
monetite, calcium pyrophosphate and beta tricalcium phos-
phate [29], and medical grade PEEK (ESSADE AB) and Ti
medical grade 5 (Livallco stål AB) discs with diameter Φ =
10 mm and height h = 6 mm were purchased. All samples
were steam sterilized.

The porosity was measured using the Archimedes method
in distilled water [30]. Specific surface area (SSA) of CaP was
determined by nitrogen adsorption at 77 K according to the
Brunnauer–Emmet–Teller method (BET) [31] in an ASAP
2020 (Micromeritics).

Gentamicin in vitro uptake-release

Gentamicin (Sanofi AB) was mixed with Ringer’s solu-
tion (Baxter) at concentrations of 200 μg/ml and
400 μg/ml. The drug concentrations were tested for
CaP, PEEK, and Ti. Samples were loaded by soaking
in the solution at room temperature for 15 min (time to
reach saturation). Control samples were soaked in
Ringer’s only.

The samples were transferred after loading into 4 ml
PBS solution (Sigma Aldrich) at 37 °C for the release
with slow orbital media agitation. Two hundred micro-
liter samples were withdrawn after 0.5 h, 1 h, 2 h, 4 h,
6 h, 24 h, and 48 h and replaced with fresh media at
37 °C. The samples were stored at 4 °C protected from
light prior to analysis. Gentamicin amount was quanti-
fied using a colorimetric method using spectrophotome-
try based on o–phthaldialdehyde reaction with gentami-
cin amino groups (Sampath [32] with modifications by
Zhang [33]) considering the volume sampling.

Agar diffusion test

Gentamicin solutions in Ringer’s (Baxter) were prepared at
concentrations of 200 μg/ml and 400 μg/ml. The solutions
were filtered with a 0.2-μm sterile filter (Thermo Fisher
Scientific). Control samples were loaded with Ringer solution
only. Three different bacteria strains were tested:
Pharmacopeia US and EU standard for Staphylococcus aureus
(SA, ATCC 6538) and Staphylococcus epidermidis (SE,
ATCC 14990), and a SA strain derived from a clinical case
of postoperative infection including empyema after revision
cranioplasty with custom made calcium phosphate implant
(OssDsign AB). Subsequent revisionwith an identical implant
was uneventful. Gentamicin soaking of the implant was per-
formed at both surgical procedures, but postoperative images
after initial surgery revealed significant dead space beneath
the cranioplasty.

Bacteria were seeded at a concentration of 106 CFU on agar
(ISO-SENSITESTAGAR, Oxoid) plates. The plates were in-
cubated at 32.5 ± 2.5 °C for 20 h. The inhibition zones were
calculated and compared with the performance standards for
antimicrobial susceptibility testing according to the Clinical
and Laboratory Standard Institute (2013).

Statistics

Statistical differences were determined using one-way
ANOVA with Tukey’s post-hoc test (95%) using Minitab 18
software (Minitab Inc., State College, PA). Statistical signifi-
cance was indicated when p < 0.05.
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Results

Material characterization

Total porosity of CaP cement was 42.3%± 1.4%, PEEK was
0.5%± 0.5%, while the one of titanium (Ti) was 0.7%± 0.3%.
CaP are intrinsically porous, which allows aqueous solution up-
take. This porous microstructure of the CaP and its interlocking
crystals gives a surface area of approximately 4 m2/g.

Antibiotic release

The release profile of the antibiotic for CaP was characterized
by a burst release within the first 24 h of 48 ± 10% for
200 μg/ml and 39 ± 7% for 400 μg/ml, followed by a gradual
stabilization. Within the timeframe, no measurable drug deg-
radation occurred. Zero to minimal release was measured for
Ti and PEEK (Fig. 1).

Agar diffusion tests for CaP showed that there was a slight
difference in the inhibition zone at low concentrations but not
significant (p > 0.05), as expected, the higher the concentra-
tion, the wider the inhibition zone. Here, it is noteworthy that
the SA strain derived from the patient was less sensitive to the
drug than ATCC 6538 but still in the range of sensitivity. For
the SE strain, both gentamicin concentrations used for loading
the CaP were effective.

Discussion

In comparison to solid implants, a major advantage of a po-
rous material is its ability to absorb liquids, allowing them to
be used as drug carriers. By pre-loading a cranial implant,
local delivery of antibiotics can be achieved which is more
effective and less harmful for the body [16].

In this study, the CaP material characteristics result in a
large surface area which facilitates a reasonably quick drug
uptake (saturation is reached after 15 min soaking in aqueous
solution), while in the case of both PEEK and titanium genta-
micin loading remains difficult to achieve. Whether this im-
mediately translates to a clinical advantage is possible but has
not been addressed in this study.

The release profile of gentamicin for CaP was character-
ized by a burst release within the first 24 h followed by a
gradual stabilization. Noteworthy, the CaP retained a high
amount of gentamicin, likely due to a strong affinity of the
drug to the sample, which is similar to the observations made
by Canal et al. [34] for a different drug with a similar CaP
composition. Therefore, the loading and release profile for
different antibiotics and concentrations has to be evaluated
in vitro to ensure that clinically relevant concentrations can
be obtained in vivo. Even though it did not come as a surprise
that there was no gentamicin uptake or release for both titani-
um and PEEK, however, they were still evaluated in this study
as it remains common practice to pre-treat different metal [28]
and plastic implants in the OR with antibiotics even if its
efficacy is mostly unknown.

An initial concentration of 400 μg/ml for the CaP implant
would not be harmful for the cells as this would translate into a
concentration of approximately 80 μg/ml after 6 h given that
in the first 6 h around 40% of the drug is released and diluted
by half when taking the space between the skin and dura and
inter-tile spaces into consideration. In the presence of addi-
tional dead space, the gentamicin concentration would be fur-
ther diluted and thus impacting the drug’s efficacy. In clinical
use, many other factors could possibly influence the drug con-
centration, such as the use of wound drain, drug absorption by
surrounding vascularized tissue, and use of suction during
wound closure, making the systematic use of this feature of
CaP implants contingent on further in vivo studies and ran-
domized trials.

Fig. 1 Release from CaP tiles (CaP 200 μg/ml), PEEK (PEEK
200 μg/ml), and Ti (Ti 200 μg/ml) loaded with a gentamicin solution of
200 μg/ml; and CaP (CaP 400 μg/ml), PEEK (PEEK 400 μg/ml), and Ti
(Ti 400 μg/ml), respectively, loaded with a gentamicin solution of
400 μg/ml displayed as a percentage released and b amount of drug
released
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Conclusions

Out of the three clinically used, and here studied, materials
only CaP could be loaded with gentamicin. This observed
feature may create a substantial clinical opportunity in
cranioplasty with potential of limiting the number of infec-
tions. An initial loading concentration of 400 μg/ml can po-
tentially reduce surgical site infections, establishing an effec-
tive localized gentamicin concentration sustained over time.
To truly appraise the potential clinical benefits of gentamicin
loading, a randomized trial is needed.
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