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Abstract
Background The marginal delineation of gliomas cannot be
defined by conventional imaging due to their infiltrative
growth pattern. Here we investigate the relationship be-
tween changes in glioma metabolism by proton magnetic
resonance spectroscopic imaging (1H-MRSI) and histopath-
ological findings in order to determine an optimal threshold
value of choline/N-acetyl-aspartate (Cho/NAA) that can be
used to define the extent of glioma spread.
Method Eighteen patients with different grades of glioma
were examined using 1H-MRSI. Needle biopsies were per-
formed under the guidance of neuronavigation prior to cra-
niotomy. Intraoperative magnetic resonance imaging (MRI)
was performed to evaluate the accuracy of sampling. Hae-
matoxylin and eosin, and immunohistochemical staining
with IDH1, MIB-1, p53, CD34 and glial fibrillary acidic
protein (GFAP) antibodies were performed on all samples.

Logistic regression analysis was used to determine the rela-
tionship between Cho/NAA and MIB-1, p53, CD34, and the
degree of tumour infiltration. The clinical threshold ratio
distinguishing tumour tissue in high-grade (grades III and
IV) glioma (HGG) and low-grade (grade II) glioma (LGG)
was calculated.
Results In HGG, higher Cho/NAA ratios were associated
with a greater probability of higher MIB-1 counts, stronger
CD34 expression, and tumour infiltration. Ratio threshold
values of 0.5, 1.0, 1.5 and 2.0 appeared to predict the speci-
mens containing the tumour with respective probabilities of
0.38, 0.60, 0.79, 0.90 in HGG and 0.16, 0.39, 0.67, 0.87 in
LGG.
Conclusions HGG and LGG exhibit different spectroscopic
patterns. Using 1H-MRSI to guide the extent of resection
has the potential to improve the clinical outcome of glioma
surgery.
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Introduction

Delineating the boundaries of cerebral gliomas plays a vital
role in glioma surgery because maximal resection of glio-
mas contributes greatly to prolonged survival, reduced rates
of recurrence and morbidity [5, 29]. For the purpose of
treatment planning, the extent of glioma is generally based
on post-gadolinium MRI, together with T1- or T2-weighted
magnetic resonance (MR) images [11]. The boundaries of
tumour invasion are difficult to define because of the char-
acteristic infiltrative growth pattern of gliomas. Contrast
enhancement on T1-weighted images only illustrates the
locations where the blood–brain barrier is compromised.
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Tumour cell infiltration could be detected over an area
measuring from 6 to 14 mm from the outer area adjacent
to the tumour edge as defined by the post-contrast MR
imaging (MRI) [37]. Other studies, using biopsy findings
to confirm histopathological data, reported that the extent of
spread of glioma exceeded that defined by T2-weighted
signal change [10, 31]. Thus, in general terms, routine
anatomical imaging with MRI sequence techniques cannot
be relied upon to indicate the true extent of spread of
gliomas. Proton MR spectroscopy (1H-MRS) imaging (1H-
MRSI) has been used in a number of studies to obtain
biochemical information about local cellular metabolism.
The technique, based on chemical shift imaging (CSI),
facilitates characterisation of the tumour and surrounding
normal brain tissue by determining the metabolic ratios of
choline-containing compounds (Cho), N-acetyl-aspartate
(NAA) and creatine (Cr) that are detected in the spectra
[16, 33]. Compared with a normal brain, the signal of Cho
is often elevated in the presence of tumorous tissue, which is
thought to be due to increased membrane synthesis in rap-
idly dividing tumour cells [18, 26]. NAA, which is recog-
nised as a putative internal neuronal marker, is decreased
due to neuronal loss or dysfunction [7]. The Cr peak is the
signal from both Cr and phosphocreatine and plays a role in
the tissue energy metabolism [12]. Compared with single-
voxel 1H-MRS, multi-voxel 1H-MRS is advanced in detect-
ing the spatial distribution of metabolic changes in brain
lesions because of its successive feature. It provides consec-
utive information about biochemical transformations in
areas with low tumour infiltration and can be used to assist
treatment planning [16, 33]. Better understanding of the
relationships between 1H-MRS findings and glioma metab-
olism may enable physicians to distinguish normal tissue
from infiltrated parenchyma in glioma.

Here we investigate the relationship between Cho/NAA
ratio and MIB-1, p53, CD34 and tumour infiltration in order
to evaluate the ability of Cho/NAA ratio to provide a unique
parameter for glioma delineation.

Materials and methods

Patients

The study population included 18 patients (12 men and 6
women) with a mean age of 49.3 years (range, 18–69 years)
who had newly diagnosed supratentorial gliomas. None of
the patients had previously undergone surgery or received
chemotherapy or radiotherapy. Details of the types and
locations of tumours are summarised in Table 1.

The study was approved by the Huashan Committee on
Human Research at the University of Fudan. Informed con-
sent was obtained from all patients.

MRI and spectroscopy

Conventional MRI

Each patient underwent an MRI and spectroscopy examina-
tion less than 24 h prior to surgery. The MRI studies were
performed using an intraoperative MRI (MAGNETOM
Verio 3.0 T, Siemens, Germany) integrated neurosurgical
suite (IMIRIS, Winnipeg, Canada) equipped with an eight-
channel head coil. T1- and T2-weighted images were ac-
quired before 1H-MRS was performed.

The protocol for conventional MRI consisted of a sagittal
T1-weighted fluid-attenuated inversion-recovery sequence
(T1FLAIR, TR/TE/TI 2,000/9/860 ms), an axial T2-
weighted turbo spin echo sequence (TSE, TR/TE 6,000-
7,540/95-98 ms), axial T1-weighted fluid-attenuated
inversion-recovery sequence (T1FLAIR, TR/TE/TI 2,000/9/
860 ms), axial T2-weighted fluid-attenuated inversion-
recovery (T2FLAIR, TR/TE/TI 8,500/94/2,440ms), and axial
T1-weighted contrast-enhanced gradient echo sequence

Table 1 Type, grade, and location of the investigated gliomas in 18
eligible subjects

Subject no./sex/
age(years)

Tumour type WHO
grade

Tumour location

1/M/59 Anaplastic
astrocytoma

III Right occipital

2/M/61 Glioblastoma
multiforme

IV Right temporo-
occipital

3/F/54 Glioblastoma
multiforme

IV Left frontal

4/F/18 Astrocytoma II Left frontal

5/M/48 Glioblastoma
multiforme

IV Multipule
occupation

6/M/46 Oligoastrocytoma II Right frontal

7/M/52 Anaplastic
atrocytoma

III Right
frontotemporal

8/F/46 Oligoastrocytoma II Left frontal

9/M/56 Anaplastic
astrocytoma

III Right frontal

10/M/69 Astrocytoma II Right frontal

11/F/54 Oligoastrocytoma II Right frontal

12/F/41 Anaplastic
astrocytoma

III Right Parietal

13/M/53 Glioblastoma
multiforme

IV Left Insula

14/M/38 Oligoastrocytoma II Right frontal

15/M/40 Glioblastoma
multiforme

IV Left temporo-
occipital

16/M/58 Anaplastic
oligodendroglioma

III Right frontal

17/M/41 Anaplastic
astrocytoma

III Left frontal

18/F/54 Astrocytoma II Right frontal

WHO World Health Organisation
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(GRE, TR/TE 2,000/9 ms). A three-dimensional (3D) ana-
tomic magnetisation prepared rapid acquisition gradient echo
sequence (MPRAGE, TR/TE/TI 1,900/2.94/900 ms, FOV
250 mm×250 mm, 1 mm isotropic, and 176 slices) or turbo
spin echo sequence (TSE, TR/TE 3,200/332 ms, FOV
250 mm×250 mm, slice thickness 2.0 mm, and 64 slices)
was performed to obtain a neuron-navigation MRI data sets
for the lesion either with or without contrast enhancement.

For registration to the frameless stereotactic system, six to
eight adhesive skin fiducial marks were placed in a scattered
pattern on the head surface. Before imaging, an 18- or 20-
gauge intravenous catheter was inserted in the antecubital area
as a contrast agent (Gadodiamide, GE Healthcare Ireland,
0.1 mmol/kg body weight) administration.

1H-MRSI

The proton CSI raw data were achieved using the multivoxel
point-resolved spectroscopy sequence (PRESS, TR/TE 1,700/
135 ms, 15-mm section thickness, 16×16 phase-encoding
steps, FOV 120 mm×120 mm) after obtaining the contrast-
enhancing images. Water suppression was achieved by using
three chemical shift-selective pulses prior to the PRESS exci-
tation. The position of the CSI slice was chosen to cross the
largest diameter of the lesion on the T2-weighted images. The
volume of interest (VOI) was positioned to include the en-
hancing lesion or abnormal signal region on the T2-weighted
MRI, peritumoral region and normal contralateral brain, while
avoiding contamination from scalp fat and skull lipid. The
chemical shift artefact was minimised by four positioned
regional saturation pulses. The resulting nominal spectroscop-
ic voxels measured 7.5 mm×7.5 mm×15 mm.

The total 1H-MRS acquisition required approximately 25
min. At the end of the proton CSI data acquisition, the raw
data file and scout images were exported to the post pro-
cessing workstation (Syngo MultiModality Workplace, Sie-
mens Healthcare, Siemens, Germany).

1H-MRS data analysis

The raw spectral data were reconstructed using spectroscopy
(Siemens Healthcare, Siemens, Germany). The spatial distri-
bution of the metabolite of interest was generated by fitting
curve to peak area. Peak parameters (height, width, area) for
Cho and NAA were estimated on a voxel- by-voxel basis
within each VOI and expressed as integral ratios. Cho/NAA
values were displayed with a rainbow-type colour look-up
table, whereby blue-green-yellow-red corresponded to values
from zero to maximum. A peak information map on the scout
image was displayed using an overlaid grid, which indicated
the anatomical location from which the results had been
derived (Fig. 1a). The overlaid grid consisted of 256 voxels

(16×16) and each voxel was assigned an identification (ID),
which started from the top left.

Selection and label of biopsy targets

Each lesion was subdivided into three regions: tumour core
(TC), immediate peritumoral region (IPR) and distant peri-
tumoral region (DPR). TC was defined as the region with
contrast enhancement on T1-weighted images, the hypoin-
tense region on T1-weighted images or hyperintense region
on T2-weighted images in gliomas without contrast en-
hancement. The IPR was chosen as one voxel (7.5 mm on
the transverse plane and 10.6 mm on the diagonal plane)
distance perpendicular to the most outer margin of the TC.
DPR was chosen as one to two voxels perpendicularly
distant from the most outer margin of the TC. Meanwhile,
three to seven targets in non-eloquent regions for tumour
biopsy were preoperatively determined by referring to the
conventional MR images and MR spectroscopic features of
the lesion and the surgical trajectory was planned with the
operator (J.S.W.). These biopsy targets were located at the
TC, IPR and DPR. The location (ID) of each of the biopsy
targets was recorded. In most situations a linear path was
adopted so that the biopsy needle was inserted along the
same track to reduce the extra brain injury.

The MRS raw data (rda file) and neuronavigation MR
data sets were transferred to an MAC Pro (Apple) computer
for analysis.

Biopsy_NAV software, developed at our laboratory
(W.J.T.) for automatic labelling, was run in a Matlab (7.7.0
[R2008b]) environment. The IDs of the biopsy targets were
entered followed successively by the rda and neuronaviga-
tion files (Fig. 1b). Neuronavigation data sets with labelled
marks were generated automatically, and were subsequently
viewed using medical imaging software OsiriX (v.3.7.1 32-
bit) and sent to a Picture Archiving and Communication
System (PACS; Fig. 1c).

Tissue sampling

Biopsies were conducted within the dedicated intraoperative
MRI integrated neurosurgical suite (IMRIS, Winnipeg, Can-
ada intra-MRI Integrated Neurosurgical Suite). The neuro-
navigational MRI data sets with the labelled marks were
transferred to the planning workstation of the surgical naviga-
tion system (StealthStation Treon, Medtronic, Minneapolis,
MN, USA) and image fusion was performed, with other MRI
sequences that had been obtained beforehand, using Stealth-
Merge software (Medtronic, Minneapolis, MN, USA)
(Fig. 1d).

To minimise the effects of potential brain shift, the biop-
sies were sampled prior to resection of the lesion under the
guidance of neuronavigation using a Passive Biopsy Needle
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Kit (Medtronic, Minneapolis, MN, USA) which was tracked
by the navigation system. A burr hole was made by referring
to the trajectory made beforehand, and a skull-mounted
trajectory guide was used to align and stabilise the biopsy
needle before passing it through the brain to obtain samples
(Fig. 1e). The operator targeted the centre of the voxel for
biopsy specimen retrieval so that the samples would exactly
match the 1H-MRSI. Each sampling location was recorded
during the course of their extraction by using the screen save
feature of the surgical navigation system and was renamed.
Intraoperative MR scanning was subsequently performed to
confirm the accuracy of the needle biopsy (Fig. 1f).

Histopathological evaluation

Each biopsy sample was fixed in 10 % formalin and sent to
the Neuropathology Department of Huashan Hospital. The

samples were embedded in paraffin and cut into sections for
histopathological assessment.

Haematoxylin and eosin (H & E)-stained sections of all
tumours were reviewed under a light microscope (OLYM-
PUS, BX50) by two blinded neuropathologists (H.C. and
Y.W.) and categorised according to the fourth edition of the
World Health Organisation Classification of Tumours of the
Central Nervous System (2007).

Immunohistochemistry was performed using the EnVision
method with diaminobenzidine (DAB) as a chromogen. The
primary antibodies were: IDH1 R132H (Dianova, Hamburg,
Germany, clone H09, monoclonal, 1:200), MIB-1 (Dako,
clone MIB-1, monoclonal, 1:200), p53 (Dako, clone DO-7,
monoclonal, 1:200), CD34 (Dako, monoclonal, 1:200) and
GFAP (Dako, clone 6 F2, monoclonal, 1:200) (Fig. 2).

IDH1 expression was categorised as being negative or
positive based on the negatively or positively stained cell

Fig. 1 a T2-weighted MR image superimposed with coloured voxels
from patient 4 with grade II astrocytoma. b Five voxels (T1, T2, T3,
T4, T5) with IDs 197, 182, 167, 152, 137 corresponded to Cho/NAA
ratio 0.73, 1.12, 2.12, 2.09, 1.16 respectively arranged from right to left
were chosen by referring to the conventional MR images and local

metabolic information together. c The five voxels were labelled in the
neuronavigation data sets. d Positioning and calibration of navigation
probe. e Skull-mounted trajectory guide guarantees the direction of
biopsy needle. f The accurate sampling for needle biopsy was con-
firmed by intraoperative MR scanning
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cytoplasm or cell membrane. The MIB-1 labelling index (LI)
representing tumour cell proliferation was calculated as the
percentage of positively stained nuclei and was classified as:
strong (MIB-1≥10 %), moderate (5≤MIB-1 <10 %), mild
(1≤MIB-1 <5 %), or negative (MIB-1 <1 %).

Evaluation of the p53, CD34 and GFAP expression was
divided into four groups according to the percentage of
positively stained tumour cells: strong (> 50 %, +++), mod-
erate (10–50 %, ++), mild (< 10 %, +), and negative (−).

Observation of cell morphology (magnification×200)
was performed at five random fields of concentrated tumour
cells. Information was collected on cell density, nuclear
abnormalities and mitosis. Tumour infiltration into each
biopsy specimen (Fig. 3) was categorised as: (1) no tumour
infiltration (normal brain or gliosis, MIB-1 <1 %); (2) mild
tumour infiltration (low cell density, mild nuclear abnormal-
ities, 1≤MIB-1 <5 %); (3) moderate tumour infiltration
(moderate cell density, obvious nuclear abnormalities, few
mitoses, 5≤MIB-1 <10 %); (4) marked tumour infiltration
(high cell density, obvious nuclear abnormalities, abundant
mitoses, MIB-1≥10 %). IDH1 was used to ascertain whether
the specimen was infiltrated with glioma cells or not when
debate persisted on the basis of histopathological criteria.

Statistical analysis

All statistical analyses were undertaken using SAS version 9.2
software. Kruskal-Wallis test was performed to compare the
Cho/NAA ratios of biopsy samples from different regions.
The relationship between dependent variables (MIB-1, p53,
CD34, tumour infiltration) and independent variable (Cho/
NAA) was calculated using Logistic Regression (SAS PROC
LOGISTIC). Specimens were categorised into tumour or non-
tumour tissue to further define HGG and LGG specimens with

tumour infiltration. The probability of HGG and LGG speci-
mens containing a tumour cells is calculated using logistic
regression functions when Cho/NAA is 0.5, 1.0 1.5, 2.0.

P values ≤ 0.05 were considered statistically significant
for all tests.

Results

A total of 91 biopsy specimen loci were labelled and docu-
mented on the 3D neuronavigation MRI data sets (Fig. 1).
Image-guided needle biopsies yielded 82 samples and 686
observations. A mean of four to five tissue samples (range,

Fig. 2 H & E (×400) and
immunohistochemical staining
with IDH-1, MIB-1, p53, CD34
and GFAP antibodies (×400,
respectively) were performed
respectively in each biopsy
sample. The maximal Cho/
NAA ratio (2.12) corresponded
to the maximal value of cell
density, MIB-1 and p53. The
minimal Cho/NAA ratio (0.73)
corresponded to the minimal
value of cell density, MIB-1,
and p53. All specimen were
strong immunopositive for
GFAP and moderate immuno-
positive for CD34, but immu-
nonegative for IDH-1

Fig. 3 Criteria for tumour infiltration. a Without tumour infiltration
(normal brain or gliosis) (×400). b Mild tumour infiltration (low cell
density, mild nuclear atypia) (×400). c Moderate tumour infiltration
(moderate cell density, obvious nuclear atypia, few mitoses) (×400). d
Heavy tumour infiltration (high cell density, obvious nuclear atypia,
abundant mitoses) (×400)
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three to seven) and 37 observations per patient were obtained
(Fig. 2). The histological classification identified seven cases
of LGG and 11 cases of HGG (including six grade III gliomas
and five grade IV gliomas).

The number and percentage of biopsy samples at different
biopsy locations and histological classification of the individ-
ual biopsy specimens in HGG and LGG are summarised in
Tables 2 and 3, respectively. Fifty-one biopsy samples collect-
ed from 11 patients with HGG comprised 22 HGG biopsies
(17 grade III gliomas and five grade IV gliomas), 19 LGG
biopsies and 10 samples without neoplastic tissue. Each case
contained at least two biopsy samples with different histolog-
ical grades. The Cho/NAA ratios from these samples at TC,
IPR, DPR were 4.1, 1.04, 0.73 respectively. The difference
between locations was statistically significant (P<0.0001,
Kruskal-Wallis test).

Thirty–one biopsy samples collected from seven patients
with LGG were composed of 20 LGG samples and 11
samples without neoplastic tissue. One biopsy sample that
did not contain any tumour cells came from the TC of a
grade II glioma. The Cho/NAA ratio from these samples at
TC, IPR, DPR were 2.375, 1.13, 0.900 respectively. The
difference of Cho/NAA between these locations was also
statistically significant(P<0.0001, Kruskal-Wallis test).

The number and percentage of HGG and LGG biopsy
samples with negative, mildly positive, moderately positive
and strongly positive staining with MIB-1, p53, CD34,
GFAP and IDH-1 antibodies are shown in Table 4. One of
the specimens from LGG was categorised as gliosis based
on IDH1 immunonegative when uncertainty remained re-
garding histopathology.

Logistic regression analysis identified Cho/NAA as an
independent variable and MIB-1, p53, CD34 and tumour
infiltration as response variables. The relationship between
variables MIB-1, p53, CD34, tumour infiltration and Cho/
NAA was analysed in HGG and LGG samples separately.
The relationships between MIB-1, p53, CD34, tumour in-
filtration and Cho/NAA in HGG are summarised in Table 5.
No correlation was found between Cho/NAA and MIB-1,
p53, C34, tumour infiltration in LGG.

Additional logistic regression analysis undertaken to cat-
egorise specimens into tumour or non-tumour tissue, and
thereby further define specimens with tumour infiltration,
resulted in statistically significant P values for the variable

“tumour” of 0.0379 in HGG and 0.0315 in LGG samples.
The logistic regression functions regarding variables “Cho/
NAA” and variable “tumour” in HGG and LGG are as
follows.

Ln
P tumourð Þ

1� P tumourð Þ
� �

¼ �1:372þ 1:791� Cho=NAA

Ln
PðtumourÞ

1� PðtumourÞ
� �

¼ �2:807þ 2:347� Cho=NAA

A Cho/NAA ratio threshold value of 0.5, 1.0 1.5 and 2.0
respectively was found to predict specimens containing a
tumour cells with a probability of 0.38, 0.60, 0.79, 0.90 in
HGG samples and 0.16, 0.39, 0.67, 0.87 in LGG samples.

Discussion

MRS findings have been shown be closely related to histo-
logical features of glioma cells and can be used in tumour
differentiation, grading, follow-up and radiotherapy plan-
ning [4, 14, 21, 27]. MRS is also a valuable tool for iden-
tifying early changes in glioma metabolism and the extent of
glioma infiltration [19, 22, 31, 32]. The Cho/NAA ratio has
been found to provide a sensitive method for detecting
differences in tumour growth, and provides more reliable
results than the Cho to N-acetyl aspartate index (CNI) or the
Cho/Cr ratio [16].

It has been reported that MIB-1 may be the best index for
predicting the potential of tumour proliferation, tumour grade
and outcome [24]. CD34 has been shown to be closely related
to angiogenesis, which is a key determinant in the progression
of glioma [9, 34, 35]. MIB-1 and CD34 staining in our study
showed strongly positive results in HGG of 18 % and 8 %
respectively. There was much less staining in LGG tissues as
shown in Table 4. These findings suggest that HGG are more
aggressive and more highly vascularised than LGG. TheMRS
results were also different between HGG and LGG. Logistic
regression analysis indicated that higher Cho/NAA ratios
were associated with a high MIB-1 labelling index (P0
0.001) and stronger CD34 expression (P00.0155) in HGG,
no correlation was found in LGG. expression.

Other workers have demonstrated a linear correlation be-
tween Cho andMIB-1 in gliomas that showed a homogeneous
pattern with MRI scanning [13, 30]. Likewise, Matsumura et

Table 2 Classification and location of the specimen from HGG

WHO grade of specimens TC (%)
(n032)

IPR (%)
(n014)

DPR (%)
(n05)

Non-tumour 0 (0. %) 6 (43 %) 4 (80 %)

LGG 13 (41 %) 5 (36 %) 1 (20 %)

HGG 19 (59 %) 3 (21 %) 0 (0 %)

Table 3 Classification and location of the specimen from LGG

WHO grade of specimens TC (%)
(n018)

IPR (%)
(n08)

DPR (%)
(n05)

Non-tumour 1 (6 %) 6 (75 %) 4 (80 %)

LGG 17 (94 %) 2 (25 %) 1 (20 %)

1366 Acta Neurochir (2012) 154:1361–1370



al. [15]. found a positive correlation between Cho and MIB-1
in benign glioma and inverse correlation in malignant glio-
mas. In our study we investigated the relationship between
Cho/NAA and MIB-1, p53, CD34, tumour infiltration. Multi-
voxel 1H-MRSI was used to avoid the limitations related to
single-voxel 1H-MRSI and was able to detect the consecutive
metabolism change of gliomas. It has also been proposed that
the invasive and aggressive nature of malignant astrocytomas
may be related to p53 abnormalities [20]. However, in our
study no statistically significant association was found be-
tween p53 and Cho/NAA.

Many studies have focused on pursuing cut-off value of
different metabolite ratios and have used these ratios in an
attempt to contour gliomas. McKnight and collaborators con-
ducted a study with 1H-MRSI to identify a CNI that predicted
tumour tissue and ruled out normal tissues [16]. They con-
firmed these findings using stereotactic brain biopsies, and
found that active tumours could be differentiated from normal,
edematous, gliotic, or necrotic tissue with 90% sensitivity and
86 % specificity by use of a CNI threshold of 2.5. Rock et al.
[25] found that a Cho/normal creatine ratio of more than 1.79
or a Lip-Lac/normal creatine ratio of less than 0.75 was able to
predict whether a spectroscopic voxel contained tumour or
necrotic tissue. However, Ganslandt et al. [10] failed to find a
common range of Cho/NAA ratios that were predictive for a
given degree of tumour infiltration.

In our study, the metabolite ratio of Cho/NAAwas found to
predict whether or not a spectroscopic voxel contained tumour
cells. We showed that specimens from patients with HGG
contained tumour cells with a probability of 0.60 when the
Cho/NAA ratio was 1.0 and with a probability of 0.67 in

patients with LGG using a Cho/NAA ratio of 1.5. Different
threshold values should, therefore, be adopted to delineate
tumour margins in HGG and LGG. Our Cho/NAA ratio
threshold value for distinguishing tumour from non-tumour
in HGG was comparable to that reported by Widhalm et al.
[36], who defined spectra as pathological whenCho/NAAwas
more than 1.0. The same workers described specific colour-
coded visualisations of distinct intratumoral CSI maxima.

Both glioma grade and the location of glioma need to be
considered when determining the glioma margin. More exten-
sive resection may be required when the tumour is located in a
non-eloquent region and in these cases the boundaries of the
glioma resection should be based on a lower Cho/NAA ratio.
Caution should be taken when the tumour is located in an
eloquent region. For these cases, the resection margins should
be based on a higher Cho/NAA ratio, in accordance with the
functional MRI or intraoperative neurophysiological monitor-
ing, to avoid the potential neurological deficits. A balanced
approach aimed at increasing the extent of resection and
decreasing morbidities, will lead to high quality survival.

To date, no unified criteria exist for assessing tumour
infiltration. Stadlbauer et al. [33] defined glioma infiltration
in terms of relative and absolute tumour cell numbers, with
minimal infiltration being seen when this value was defined a
relative tumour cell number <15 %. Croteau et al. [6] classi-
fied the degree of tumour infiltration into six levels based on
tumour cellularity. Our own criteria for tumour infiltration
were based on cell morphology in terms of cell density,
nuclear abnormalities and mitosis. In additional to the tradi-
tional criteria for tumour infiltration, we introduced IDH1 into
our classification criteria for infiltration to help distinguish
LGG from gliosis at the glioma border zone, which is often
difficult using traditional histopathological criteria. Compared
with other established glioma markers (including GFAP, p53
and WT1) IDH1 has been shown to have high specificity and
sensitivity in differentiating reactive gliosis from neoplastic
cells and even detected a single infiltrating tumour cell at the
infiltrating edge of the gliomas [1–3]. We therefore believe
that the degree of tumour infiltration was evaluated accurately
in our study.

A feature of our study was that the biopsy targets were
consecutive, being located in the TC and tumour border (IPR

Table 4 Number and percentage of biopsy samples with immunohistochemical staining with MIB-1, p53, CD34, GFAP and IDH-1 antibodies

Dependent variable HGG (n051) LGG (n031)

Negative (%) Mild (%) Moderate (%) Strong (%) Negative (%) Mild (%) Moderate (%) Strong (%)

MIB-1 11 (21 %) 22 (43 %) 9 (18 %) 9 (18 %) 16 (52 %) 14 (45 %) 1 (3 %) 0 (0. %)

p53 28 (55 %) 22 (43 %) 1 (2 %) 0 (0. %) 23 (73 %) 3 (10 %) 2 (7 %) 3 (10 %)

CD34 7 (14 %) 36 (70 %) 4 (8 %) 4 (8 %) 1 (4 %) 30 (96 %) 0 (0. %) 0 (0. %)

GFAP 0 (0. %) 2 (4 %) 19 (38 %) 30 (58 %) 0 (0. %) 2 (6 %) 11 (36 %) 18 (58 %)

IDH-1 35 (68 %) 16 (32 %) 0 (0. %) 0 (0. %) 13 (42 %) 18 (58 %) 0 (0. %) 0 (0. %)

Table 5 Statistics on the relationship between Cho/NAA and CD34,
MIB-1, p53 and degree of tumour infiltration in HGG

Dependent variable Parameter Slope P value OR value

MIB-1 Cho/NAA 0.341 0.001 1.407

p53 Cho/NAA 0.037 0.332 1.038

CD34 Cho/NAA 0.179 0.016 1.196

Tumour infiltration Cho/NAA 0.316 0.041 1.372

Statistically significant at P < 0.05
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and/or DPR). The use of consecutive biopsy targets is in
accordance with the biological infiltrative behaviour of glio-
ma. We showed that the Cho/NAA ratio was correlated with
the location of the biopsy. The Cho/NAA ratios at the TC,
IPR, DPR were respectively 4.1, 1.04, 0.73 in HGG and
2.375, 1.13, 0.900 in LGG. The differences in Cho/NAA
ratios at different locations in HGG and LGGwere statistically
significant. The probability of IPR, DPR being infiltrated by
glioma was respectively 57 % and 20 % with HGG and 25 %
and 20 % with LGG. All of HGGs consisted of at least two
different grade compositions. Thirteen biopsies from the TC
in HGG patients were classified as grade II glioma, one biopsy
from the TC of a LGG patient was classified as gliosis indi-
cating that the glioma was profoundly heterogeneous. These
findings were in agreement with McKnight et al.’s study [17].
Cell infiltration into the non-uniform boundaries of gliomas
can therefore, be identified by the Cho/NAA ratio. We found
that, although voxel T1 and voxel T7 were respectively locat-
ed in IPR and DPR, they shared the same Cho/NAA ratio
(Fig. 4), indicating that both regions were infiltrated to a
similar extent. Pathological examination of the two specimens
also demonstrated a similar degree of tumour infiltration. By
contrast, voxel T1 and voxel T6 were both located in IPR, but
displayed different Cho/NAA ratios. Histopathological vali-
dation showed that the specimens from these two voxels had
different cellularity andMIB-1 expression and were infiltrated
to different degrees. These results are in agreement with
previous findings that define the extent of tumour cell

infiltration using non-uniform margins rather than uniform
margins [23]. Tumour cells are more prone to invade the brain
tissue medial to the glioma. It has been proposed that the
differences in tumour infiltration may be associated with
different fibre orientations. Gliomas preferentially infiltrate
along fibres but not perpendicular to the direction that the
fibres run [28]. It is also possible that the degree of infiltration
is related to the abundance of local neovessels. This might
explain why glioma resection along the same distance perpen-
dicular to the outer tumour margin can achieve gross total
resection in one orientation and only partial resection in an-
other, ultimately resulting in recurrence.

In our study we were able to accurately match histolog-
ical specimens with voxels. It is usually difficult to label the
1H-MRSI information on navigational images due to the
different formats of MRI data sets. However, the NAV_-
biopsy software developed at our laboratory enabled us to
successfully label biopsy targets in the navigation sequence
without the need for recording the coordinates of each voxel
preoperatively. In other studies [8, 23], biopsy locations
were tracked back to the exact voxel position in the MRI
data sets by the frameless stereotactic software, which was
not as precise as this study. Furthermore, in our study the
specimens were first obtained through needle biopsy regard-
less of the type of craniotomy that would subsequently be
performed. So brain shift was avoided. And skull-mounted
trajectory guaranteed a more accurate biopsy than could be
achieved freehand (Fig. 1).

Fig. 4 Contrast-enhanced T1-
weighted image superimposed
with coloured voxels (upper
middle) from patient 5 with
glioblastoma multiforme. Seven
voxels (T1, T2, T3, T4, T5, T6,
T7) with IDs 43, 59, 75, 91,
107, 123, 139 arranged from
left to right. A 3-D ideograph of
the case (centre) rendered using
Photoshop. H & E stained sec-
tions (×400) and MIB-1 (×400)
showed the infiltration degree
of T1, T6 and T7. Both T1
(upper left) and T6 (bottom)
were located in IPR but had
different Cho/NAA ratios. His-
topathology confirmed that
specimens from T1 and T6
were infiltrated differently. T1
and T7 (upper right) were lo-
cated in IPR and DPR respec-
tively but they shared the same
Cho/NAA ratio and histopa-
thology confirmed that speci-
mens from T1 and T7 were
infiltrated similarly
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Limitations of our study should, however, be noted. The
1H-MRS technique used to provide cellular metabolic infor-
mation is influenced by the cell growth cycle. Cells in the
growth stage can be detected by 1H-MRS but cells in quies-
cent stage cannot be detected due to their slow metabolism,
which means that 1H-MRSI is not sensitive to metabolically
silent areas. The voxel volumes in our study were large (7.5×
7.5×15 mm) in comparison to the volumes of the specimen
(1.0×1.0×3.0 mm). Smaller voxels would have allowed the
1H-MRS to reflect the specimen exactly. However, smaller
voxels require a long acquisition time which is unbearable for
some patients. Using higher field strengths may solve this
problem in future studies.

Conclusions

The preliminary results of our study demonstrated that Cho/
NAA is closely related to MIB-1, CD34 and tumour infiltra-
tion in HGG. Compared with conventional MRI, 1H-MRSI
can better reflect glioma metabolism and delineate the glioma
boundaries. HGG and LGG exhibited different spectroscopic
patterns and had different threshold values that can predict the
probability of a specimen containing a tumour. Using 1H-
MRSI to guide the extent of resection has the potential to
significantly improve the rate of gross total resection and
subsequently prolong the overall survival time.
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Comment

This is an interesting paper. A sophisticated experimental design per-
mitted the conclusion that Cho/NAA ratio exhibits a close relationship
with glial tumours pattern of infiltration and metabolic characteristics.
Moreover, higher Cho/NAA ratio threshold values (> 1.5-2.0)
appeared to predict the specimen containing the tumour with the high-
est probability. Although not unexpected, these results add another
useful piece of information to the current efforts to help surgeons to
delineate the “true” extent of gliomas.
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