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Abstract
Cloud storage adoption has increased over the years given the high demand for fast 
processing, low access latency, and ever-increasing amount of data being generated 
by, e.g., Internet of Things applications. In order to meet the users’ demands and 
provide a cost-effective solution, cloud service providers offer tiered storage; how-
ever, keeping the data in one tier is not cost-effective. In this respect, cloud stor-
age tier optimization involves aligning data storage needs with the most suitable 
and cost-effective storage tier, thus reducing costs while ensuring data availability 
and meeting performance requirements. Ideally, this process considers the trade-
off between performance and cost, as different storage tiers offer different levels of 
performance and durability. It also encompasses data lifecycle management, where 
data is automatically moved between tiers based on access patterns, which in turn 
impacts the storage cost. In this respect, this article explores two novel classification 
approaches, rule-based and game theory-based, to optimize cloud storage cost by 
reassigning data between different storage tiers. Four distinct storage tiers are con-
sidered: premium, hot, cold, and archive. The viability and potential of the proposed 
approaches are demonstrated by comparing cost savings and analyzing the compu-
tational cost using both fully-synthetic and semi-synthetic datasets with static and 
dynamic access patterns. The results indicate that the proposed approaches have the 
potential to significantly reduce cloud storage cost, while being computationally fea-
sible for practical applications. Both approaches are lightweight and industry- and 
platform-independent.
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1  Introduction

The volume of data generated, collected, processed, and used for advanced analytics 
through artificial intelligence (AI) and machine learning (ML) methodologies con-
tinues to expand drastically [43]. This expansion is propelled by the pervasive use 
of information and communication technologies (ICT), including applications such 
as social media, the Internet of Things (IoT), and sensor networks. For example, 
Heinrich from Lucid Motors [9] shares some estimates on the raw sensor data from 
autonomous vehicles (AV), ranging from 1.4 to 19 TB per hour. Similarly, accord-
ing to Amend [2], Hyundai generates about 10 GB of data every second from its AV 
prototypes; while some of the data is stored on the vehicle, the rest is uploaded to the 
cloud. Cloud computing is pivotal in managing this data surge, offering the scalabil-
ity needed for storage and computational resources. Furthermore, it delivers cost-
effectiveness and an array of quality-of-service (QoS) attributes, including availabil-
ity and security, via the storage-as-a-service (StaaS) paradigm [21]. According to 
a survey among record-keeping professionals [23], 86% of the respondents opt for 
cloud storage to save costs. Due to this, cloud computing, in general, and cloud stor-
age, in particular, have experienced exponential growth in recent years [27, 28, 33, 
34]. Organizations have increasingly embraced cloud services to meet their comput-
ing needs. According to Gartner, 85% of enterprises are expected to adopt a cloud-
first approach by 2025 [32].

The use of cloud storage, i.e., StaaS, [21], instead of local storage, can pro-
vide more flexibility in terms of scalability, fault tolerance, and availability. 
Cloud storage systems (e.g., Amazon S3, Azure Blob Storage, and Google Cloud 
Storage) offer large storage capacity with high fault tolerance, addressing several 
big data-related storage concerns [41]. Leading cloud service providers (CSPs), 
such as Microsoft Azure, Google Cloud, and Amazon S3, offer four storage tier 
options and pricing policies tailored to their specific data storage and access 
requirements. Storage tiers categorize data based on access frequency, perfor-
mance needs, and cost. The premium tier is for high-frequency and high-perfor-
mance data. The hot tier is for data with frequent access patterns, such as daily or 
weekly, and requires fast access times. The cold tier is for infrequently accessed 
data such as backups or archives. The archive tier is for rarely accessed data with 
flexible latency requirements, offering the lowest storage cost but the highest net-
work usage cost. Moving from premium to archive, storage cost decreases, while 
network usage cost increases. For example, for an application with many data 
access requests, the cost of the data stored in the premium tier is the cheapest, 
since the premium tier offers free data retrieval. However, for an application with 
storage objects with diverse access patterns, it is not cost-effective to keep the 
data stored in one tier all the time [15]. This presents an opportunity for users to 
optimize their StaaS cost. For example, Google Cloud Storage provides premium, 
hot, cold, and archive storage tiers. The pricing structure varies across these tiers, 
with the hot tier offering lower access prices but higher storage costs and the cold 
tier offering higher access prices but lower storage cost. This means that storing 
data objects with infrequent access in the cold tier can result in lower expenses 
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compared to the hot tier. As a result, StaaS users can strategically migrate their 
data, i.e., perform storage tier optimization from the hot tier to the cold tier when 
access demands decrease, to reduce the overall cost.

Storage tier optimization organizes data into different tiers based on usage and 
performance requirements [36]. This can help improve storage performance and effi-
ciency by ensuring that the most frequently accessed data is stored on the fastest tier, 
while less frequently accessed data can be stored on a slower, less expensive tier. 
There are many different ways to implement storage tiering. One common method is 
using a storage array with multiple tiers of storage media, such as high-performance 
flash storage, mid-range spinning disk drives, and low-cost nearline or offline stor-
age. The storage array can then automatically move data between tiers based on its 
usage patterns [39]. Another common method of storage tiering is to use a software-
defined storage solution [19]. These solutions typically provide a more flexible and 
scalable approach to storage tiering than traditional storage arrays. Software-defined 
storage solutions can also tier data across multiple physical storage locations, such 
as on-premise and cloud storage. Storage tier optimization can be complex, but it 
can offer significant performance, efficiency, and cost savings benefits. Frequent 
data migrations can increase expenses, undermining efforts to optimize the cost. 
Additionally, the cold storage tier typically imposes a minimum storage duration 
requirement. This means users may face extra charges if the data objects do not meet 
the required minimum storage duration (e.g., 30 days for Amazon S3) before being 
moved to the cold tier. This limitation can hinder the advantages of data migration, 
making cost optimization a complex task for cloud storage users. To navigate this 
challenge successfully, users must diligently leverage the pricing disparities between 
different storage tiers and judiciously plan their data migration strategies. Other-
wise, even a small oversight can result in unexpected additional costs. By carefully 
planning and implementing a storage tiering strategy, organizations can improve the 
performance of their storage infrastructure and reduce their storage cost.

To this end, in this article, we focus on moving data between different tiers in 
a single region and explore storage tier optimization for cost-effective data stor-
age using rule-based and game theory-based classification approaches. These two 
approaches consider four storage tiers instead of just two, do not require intense 
computing resources, and are platform-independent, lightweight, and fast. Three 
integral data characteristics are considered: size, access frequency, and age. For the 
rule-based approach, we propose a set of rules for calculating a score or priority 
score and define a threshold to classify each object stored in cloud storage into pre-
mium, hot, cold, or archive tiers. The approach also allows users to set the priority 
or weight of each data characteristic. It also has the ability to find the most suit-
able weights to achieve maximum cost reduction. The game theory-based approach, 
on the other hand, is an iterative approach that has the ability to take into account 
the feedback from previous iterations. To demonstrate the viability and potential 
of the proposed approaches, we use an evaluation strategy involving the genera-
tion of fully- and semi-synthetic datasets, encompassing various variations to pro-
vide a realistic representation of cloud storage usage. Subsequently, the proposed 
approaches are assessed against these datasets, showcasing their effectiveness in 
substantially reducing storage cost across static and dynamic access patterns. We 
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also present a computational cost analysis to demonstrate the feasibility of the pro-
posed approaches for practical applications in real-world cloud environments.

This article is an extension of our preliminary work on a rule-based classification 
approach on cloud storage tier optimization [12]; more specifically, it extends our 
earlier work by providing:

•	 a novel game theory-based approach as an alternative to the rule-based approach, 
which was previously introduced only at a conceptual level;

•	 an extensive and comparative evaluation of the rule-based and game theory-
based approaches across various scenarios and multiple datasets;

•	 an evaluation of the computational cost of both approaches;
•	 a discussion of the results, including the strengths and limitations of the pro-

posed approaches;
•	 a comprehensive set of notations and derivation of equations for the cost estima-

tion; and,
•	 a more comprehensive overview of the related scientific literature and directions 

for future work.

The rest of the article is structured as follows. Section 2 overviews the cloud stor-
age cost elements. Section 3 introduces the two proposed approaches (Sect. 3.1 for 
the rule-based classification approach and Sect. 3.2 for the game theory-based clas-
sification approach). Section 4 presents an evaluation strategy and the results. Sec-
tion 5 presents an analysis of the computational cost, whereas Sect. 6 discusses the 
proposed approaches’ results and limitations. Section 7 provides a summary and a 
discussion of the related work. Finally, Sect.  8 concludes the article and presents 
some directions for future work.

2 � Cloud storage cost

The cost structure of cloud storage is based on a complex ecosystem. There are sev-
eral pricing models, such as block pricing and pay-as-you-go, as well as various cost 
elements, both mandatory and optional. For example, network usage is a mandatory 
expense when storing data in the cloud, while data management and security costs 
are optional. For cloud storage cost, we consider the following five non-exhaustive 
main categories [13]: (1) data storage; (2) network usage; (3) transaction; (4) data 
retrieval; and (5) data replication/migration. To optimize different elements of cloud 
storage cost, it is important first to understand what they are and how they contribute 
to the total cost. Hence, in this section, we discuss each element separately. Some 
CSPs have a policy of a minimum storage duration for each storage tier that var-
ies from 30 to 180 days, with the former applying to premium and hot tiers and the 
latter to cold and archive tiers. An early migration fee is charged if data is moved 
to another tier. We did not include the early migration fee for our cost estimations, 
but the evaluation is conducted for data stored for at least 90 days. Furthermore, we 
also developed mathematical formulas to calculate the total cost of the respective 
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services, which are further utilized in the proposed approaches and during evalu-
ation. Table  1 shows the actual prices of different cost elements of cloud storage 
by using Google Cloud1,2 as an example, while a comprehensive set of notations is 
listed in Table 2 to provide a clear and consistent reference framework throughout 
the article.

2.1 � Storage cost

Storage cost refers to the cost of storing data in the cloud. It is charged on a per-GB-
per-month basis. Since multiple tiers have unique characteristics, each storage tier 
also has its own pricing structure. It is important to note that the cost of storing data 
in each tier also depends on the amount of data being stored, as some CSPs offer 
block-rate pricing, i.e., the larger the amount of data, the lower the unit costs are 
[26]. For example, there is a certain cost for data between 0 and 50 TB, and then for 
some tiers, it might be cheaper for data over 50 TB. However, this article does not 
consider block-rate pricing when calculating cost estimates. The selection of storage 
tier affects the storage cost and other relevant costs, such as network usage and data 
retrieval. In the scope of this article, cost estimation and evaluation are performed 
based on the accumulated cost of the amount of data stored and the period of time 

Table 1   Cost of data storage by Google Cloud in a single region, Europe - Warsaw (europe-central2)

The cost of data storage is different for dual- and multi-region. Data collected on May 12, 2023
aCost of data egress to worldwide destinations (excluding Asia & Australia)
bTime to first byte typically tens of milliseconds
chttps://​cloud.​google.​com/​blog/​produ​cts/​stora​ge-​data-​trans​fer/​under​stand​ing-​cloud-​stora​ge-​11-​9s-​durab​
ility-​target

Cost element Premium Hot Cold Archive

Official term Standard Nearline Coldline Archive
Storage cost ($\GB\month) 0.023 0.013 0.006 0.0025
GET request ($ per 1000) 0.0004 0.001 0.01 0.05
PUT request ($ per 1000) 0.005 0.01 0.02 0.05
Data retrieval ($\GB) 0 0.01 0.02 0.05
Network usage ($\GB) 0.12 0.12 0.12 0.12a

Minimum duration (days) None 30 90 365
Latency Lowb

Durability 99.999999999%c

Availability Multi-region: > 
99.99%

Dual-regions: 
>99.99%

Regions: 99.99%

99.95%
99.95%
99.9%

99.95%
99.95%
99.9%

99.95%
99.95%
99.9%

1  https://​cloud.​google.​com/​stora​ge/​prici​ng.
2  https://​cloud.​google.​com/​stora​ge/​docs/​stora​ge-​class​es.

https://cloud.google.com/blog/products/storage-data-transfer/understanding-cloud-storage-11-9s-durability-target
https://cloud.google.com/blog/products/storage-data-transfer/understanding-cloud-storage-11-9s-durability-target
https://cloud.google.com/storage/pricing
https://cloud.google.com/storage/docs/storage-classes
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it remains in each storage tier. Equation 1 is formulated accordingly to calculate the 
storage cost. Denoting CSx

 as the cost in Premium (p), Hot (h), Cold (c), or Archive 
(a) tiers for any given amount of time t(x) (recall Table 2), the total storage cost can 
be calculated using Eq. 1:

(1)CSx
=

(
t(x) ⋅ Sx ⋅ Z

)
, where x ∈ {p, h, c, a}.

Table 2   Summary of notations

Description Notation Example

Premium tier p
Hot tier h
Cold tier c
Archive tier a
Data storage cost (recall Table 1) S(x) Sp , Sh , Sc , Sa
Network usage cost (recall Table 1) NW(x) NWp , NWh , NWc , NWa

Data retrieval cost (recall Table 1) R(x) Rp , Rh , Rc , Ra

Cost for GET requests (recall Table 1) G(x) Gp , Gh , Gc , Ga

Cost for PUT requests (recall Table 1) P(x) Pp , Ph , Pc , Pa

Total size of data �

Size of storage object in GB Z
Age of storage object A
Object storage time in each tier (Subset of A) t(x) t(p), t(h), t(c), t(a)
R/W access frequency to an object in a time period Fx Fp , Fh , Fc , Fa

Weights W(x) Ws , Wf  , Wa

Object size score �

Object access frequency score �

Object age score �

Priority score �

Data storage cost in a specific tier CSx
CSp

 , CSh
 , CSc

 , CSa

Total data storage cost for period A CS(A)

Network usage cost in a specific tier CNWx
CNWp

 , CNWh
 , CNWc

 , CNWa

Total network cost usage for period A CNW (A)

Transaction cost in a storage tier CTx
CTp

 , CTh
 , CTc

 , CTa

Total transaction cost for period A CT (A)

Data retrieval cost in a specific storage tier CRx
CRp

 , CRh
 , CRc

 , CRa

Total data retrieval cost for period A CR(A)

Data migration cost CM

Accumulated storage cost for object i in each tier C(i)x C(i)p , C(i)h , C(i)c , C(i)a
Data storage cost matrix of object i in tier j CM(i, j)
Probability matrix for storing object i in tier j P(i, j)
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Here, Sx is the data storage cost, and Z is the size of the storage object in GB. An 
object’s total accumulated storage cost across different tiers for its entire age (A) can 
be calculated using Eq. 2:

2.2 � Network usage cost

The quantity of data read from or sent between the buckets is known as network 
consumption or usage. The HTTP response headers reflect data transmitted by cloud 
storage through egress. Hence, network usage cost is defined as the bandwidth cost 
out of the cloud storage server. It is charged on a per-GB basis. In addition, network 
usage cost also varies based on the amount of data transferred, as it offers differ-
ent slabs for different amounts of data. The higher the amount of data transferred, 
the cheaper the cost. Google Cloud offers two separate network tiers, each with its 
own pricing structure and quality of service characteristics. Microsoft Azure and 
Amazon S3 do not offer multiple network tiers; however, in all three CSPs, network 
usage cost varies based on the storage tier in which data is stored. Equations 3 and 4 
are formulated to calculate the network usage cost for an object stored in each stor-
age tier for a certain amount of time and the accumulated network usage cost for the 
whole lifespan of a storage object, respectively:

Here, NWx is the cost of network usage for tier x, Fx denotes the access frequency, 
and Z is the size of storage object in GB (recall Table 2).

2.3 � Transaction cost

Transaction cost refers to managing, monitoring, and controlling a transaction 
when reading or writing data to cloud storage [29]. Regarding data storage, cloud 
providers charge for the amount of data transferred over the network and the num-
ber of operations it takes. Transaction cost deals with the number of operations. 
These costs are associated with managing, monitoring, and controlling a transac-
tion when reading or writing data to cloud storage. Different types of transactions 
incur different costs. For example, READ and WRITE operations carry distinct 
charges determined by the number of requests made. DELETE and CANCEL 
requests, on the other hand, are free. The types of requests include PUT, COPY, 
POST, LIST, GET, and SELECT. In Google Cloud, transaction cost is referred to 

(2)CS(A) =
∑

x=p,h,c,a

(
CSx

)
.

(3)CNWx
=

(
NWx ⋅ Fx ⋅ Z

)
, where x ∈ {p, h, c, a}.

(4)CNW (A) =
∑

x=p,h,c,a

(
CNWx

)
.
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as “operation charges”, encompassing the expense incurred for all requests made 
to Google Cloud Storage. Since we are taking into account mainly the cost of 
GET requests, Eqs. 5 and 6 are formulated to calculate the transaction cost for an 
object stored in each storage tier for a certain amount of time and accumulated 
transaction cost for the whole lifespan of a storage object respectively in different 
storage tiers:

Here Gx denotes the cost for GET request whereas Fx denotes the access frequency, 
i.e., the number of times a storage object is accessed; similarly, Px denotes the cost 
for PUT request (recall Table 2).

2.4 � Data retrieval

Data retrieval fees refer to the charges incurred when retrieving or accessing data 
from a storage system or service. Data retrieval fees may apply when retrieving 
stored files or information in various cloud storage or object storage platforms. 
These fees are typically associated with the data transfer or bandwidth used dur-
ing retrieval. However, it is also important to know that data retrieval cost is in 
addition to the cost of network usage and is charged on a per-GB basis. Data 
access frequency in this context is important when considering data retrieval’s 
impact on cost and data availability. Like network usage, data retrieval cost also 
varies based on the tier in which the data is stored. Google Cloud charges no fee 
for data retrieval if the data is stored in the premium tier, making it a highly suita-
ble choice for frequently accessed data; however, network usage cost still applies. 
Therefore, carefully considering this cost trade-off is necessary when moving 
data from the premium tier to other tiers. Equations 7 and 8 are used to calculate 
the cost of data retrieval in each storage tier for a certain amount of time and 
accumulated data retrieval cost for the whole lifespan of a storage object, respec-
tively in different storage tiers:

Here, Z denotes the storage object size in GB, while Rx denotes the cost of data 
retrieval per GB of data (recall Table 2).

(5)CTx
=

(
Gx ⋅ Fx

)
, where x ∈ {p, h, c, a}.

(6)CT (A) =
∑

x=p,h,c,a

(
CTx

)
+ Px.

(7)CRx
=

(
Z ⋅ Rx

)
, where x ∈ {p, h, c, a}.

(8)CR(A) =
∑

x=p,h,c,a

(
CRx

)
.
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2.5 � Migration cost

Different CSPs provide the capability to migrate data objects between tiers throughout 
their lifecycles, presenting a valuable opportunity for cost optimization. The migration 
process involves retrieving the complete object from the source tier and submitting a 
PUT request to the destination tier to inform it of the impending object. As such, the 
data migration operation is subject to expenses associated with data retrieval, calculated 
based on the object size in the source tier and expenses associated with the PUT request 
in the destination tier. Moreover, there is a penalty cost associated with the migration 
of storage objects from one tier to another if data is moved before a specific period of 
time. The time period varies for each specific storage tier, with a shorter minimum stor-
age time requirement for premium and hot tiers and longer for cold and archive tiers. 
In this article, we are not factoring in the cost of migration, neither for cost estimation 
nor evaluation purposes. However, in the future, this cost can be calculated using Eq. 9. 
Here Z denotes the size of storage object in GB, CMN denotes the cost of network usage, 
and CT denotes the cost of a transaction (GET/PUT) (recall Table 2).

2.6 � Total cost

In the context of evaluation, and specifically, while classification in the game theory-
based approach, we rely on the mathematical expressions represented by Eqs. 1, 3, 
5, and 7. These equations are the building blocks of our analysis, allowing us to 
assess the cost components with precision. They play an important role in the for-
mulation of Eq.  10, which is further used to calculate the total cost of an object, 
denoted as i, stored within a particular storage tier, denoted as x.

The equations merely reflect the complexity hidden within the cloud storage cost 
structure. The total cost encompasses multiple cost elements and unique costs asso-
ciated with four different tiers. It is important to note that these equations estimate 
the cost that a user might incur when utilizing a cloud storage service, but these 
do not provide the exact cost. Additionally, they are for data stored in one region 
with a single redundancy model, excluding the cost of data migration between dif-
ferent regions. Furthermore, these equations are a fundamental component of the 
proposed methodology and pivotal in optimizing resource allocation and facilitating 
well-informed decision-making.

3 � Cloud storage tier optimization

Cloud storage tier optimization involves classifying storage objects into different 
storage tiers to reduce cost. Several studies are dedicated to addressing this particu-
lar challenge, discussed in Sect. 7. In this section, we propose two novel approaches: 

(9)CM = CWN ⋅ Z + CT .

(10)C(i)x = CSx
+ CWNx

+ CTx
+ CRx

.
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rule-based classification and game theory-based classification. Each of these 
approaches takes into account four distinct storage tiers. The following are general 
rules used to determine which characteristics are appropriate for each tier. 

1.	 Premium tier should be used for data with the highest frequency of access, 
such as data accessed continuously or near-continuously, requiring the highest 
performance and durability levels. For example, mission-critical databases or 
high-performance computing workloads. The premium tier has the highest data 
storage cost but a lower network usage cost, making it suitable for data with a 
lower volume and higher access frequency.

2.	 Hot tier should be used for data with frequent access patterns, such as data that is 
accessed daily or weekly and requires fast access times. For example, this might 
include frequently accessed files, frequently used application data, or logs that 
require analysis regularly. The hot tier has a slightly lower cost of data storage 
than the premium tier, but it is still higher than the other tiers and slightly more 
expensive in network usage than the premium tier.

3.	 Cold tier should be used for data with infrequent or irregular access patterns, 
such as data accessed monthly, quarterly, etc. For example, backups, archives, 
or historical data that are rarely accessed but need to be kept for long periods 
for compliance or other reasons. This tier offers a cheaper cost for data storage, 
making it suitable for large amounts of data, but a higher network usage cost, only 
suitable for rarely accessed data.

4.	 Archive tier is designed for rarely accessed data with minimal retrieval require-
ments. It is typically used for long-term storage and compliance purposes. This 
tier is suitable for data with infrequent access patterns, such as annual or less 
frequent. It is also suitable for long-term backups (i.e., backups that must be kept 
for years), compared to the more short-term ones. In terms of cost, this tier offers 
the cheapest cost for data storage but the most expensive network usage cost. In 
summary, as we move towards the archive tier from the premium tier, storage cost 
decreases while network usage cost increases.

3.1 � Rule‑based classification approach

The term rule-based classification can refer to any classification scheme that uses IF-
THEN rules for class prediction [37], as depicted in Fig. 1. The classification model 
can be deployed on a compute or serverless instance within the same zone/region 
as the storage instance. Object meta-data and access logs are fetched and then com-
bined with user-defined weights to calculate the priority score, and based on that, 
each object is classified into one of the four tiers within the same storage instance. 
The proposed approach does not classify or move data between different regions.

In this approach, we define rules that assign each object to a storage tier based 
on specific criteria, such as the frequency of access, the data size, and the stored 
object’s age. For example, we define a rule that assigns objects accessed frequently 
to a high-performance storage tier and those accessed less frequently to a lower-
performance storage tier.
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The process of the proposed approach is as follows. We first define the weights 
(W) for each factor (size (Z), access frequency (F), and age (A)) as Wz , Wf  , and Wa , 
respectively (recall Table 2). Then, the data is defined as a list of dictionaries, where 
each dictionary represents an object and contains its size, access frequency, and age. 
Afterward, the priority score for each object is calculated using the defined weight-
ings using Eq. 11 for size score ( � ), Eq. 12 for access frequency score ( � ), Eq. 13 for 
age score ( � ) and Eq. 14 for calculating priority score ( �):

For the access frequency, the following are the nineteen possible windows: hourly 
(1, 2, 3, 4, 6, 8, 12), daily (1, 2, 3, 4), weekly (1, 2), monthly (1, 2, 3, 4, 6), and 
yearly. In this case, we have taken the frequency for a 90-day period and the whole 
period for which data was stored. The weight (W) of data indicates its priority or 
significance, allowing for varied importance levels across data objects, often deter-
mined by business criteria; for instance, vital data could bear a greater weight, 
directing it to higher-tier storage. Data size, access frequency, and age are pivotal 
determinants in storage choices, where larger values may entail increased storage 
cost. Applying the logarithm of these values, such as log10(X) , facilitates data nor-
malization and mitigates the potential dominance of extreme values in classification. 

(11)� = Wz ⋅ log10(Z).

(12)� = Wf ⋅ log10(F).

(13)𝛾 = Wa ⋅

{(
A

12

)
days >= 100

A days < 100.

(14)� = � + � + � .

Fig. 1   The complete process of the proposed rule-based classification approach. The classification model 
can be deployed on a compute or serverless instance in the same zone with the storage server. Object 
meta-data is fetched and then combined with user-defined weights to calculate the priority score, and 
based on that, each object is classified into one of the four tiers
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This logarithmic transformation ensures a balanced scale for storage tiers, effec-
tively accommodating a wide range of data sizes.

In this context (recall Table 2):

•	 Z represents the size of the storage object in Gigabytes (GB);
•	 F denotes the total number of R/W operations for an object in a specified 

period of time; and,
•	 A represents the age of the data in months.

Finally, the objects are divided into groups based on the available storage tiers 
by iterating over each object and checking if its priority score is greater than or 
equal to the threshold for each tier. If so, it is added to the corresponding group.

3.1.1 � Priority score threshold

We set priority scores to classify each object into premium (1.0), hot (0.7), cold 
(0.4), or archive (0.1) tiers.

The selection of priority score thresholds for each storage tier aims to bal-
ance the trade-offs between data size, access frequency, and age. The premium 
tier, with a threshold of 1.0, represents the highest priority for critical and fre-
quently accessed data. This tier ensures fast and reliable access to the most valu-
able information. The hot tier, set at 0.7, accommodates data with slightly lower 
priority but still significant access requirements. It provides a balance between 
performance and cost for frequently accessed data. With a threshold of 0.4, the 
cold tier caters to less frequently accessed data, offering cost-effective storage 
without compromising data availability. Lastly, archive tier 0.1 is a long-term 
storage solution for rarely accessed data, providing cost optimization while pre-
serving data retention. These thresholds enable the effective allocation of data to 
the appropriate storage tiers based on their priority scores, ensuring optimal cost 
management while meeting the needs of data access and availability.

The selection of these specific thresholds, such as 0.7 for the hot tier, is based 
on the characteristics of the data and the need to balance several factors, such 
as data access frequency, storage object size, and storage duration. Data in the 
hot tier is accessed frequently; therefore, it must be readily available. A higher 
threshold means more data will be classified as “hot” and kept readily acces-
sible, but if the object size is large, this comes at a higher storage cost. Another 
factor is the cost; lowering the threshold to, for example, 0.65 might include 
more data in the hot tier, hence increasing the cost if the volume is too high. The 
chosen threshold of 0.7 results from a cost-benefit analysis, ensuring that the 
most frequently accessed data is readily available without incurring excessive 
costs. However, these thresholds for data classification are not immutable. They 
can be adjusted based on changes in data access patterns, system performance, 
and cost considerations.
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3.2 � Game theory‑based approach

Game theory [25] is the study of mathematical models of strategic interaction 
between rational decision-makers. It can analyze and optimize decision-making 
in various scenarios, including storage tier optimization. In the context of stor-
age tier optimization, a game theory-based approach could be used to model the 
decision-making of various actors involved in the system, such as users, applica-
tions, and storage providers. For example, a game theory-based approach could 
be used to model the decision-making of users who access data stored in dif-
ferent storage tiers. By considering the trade-offs between access latency, data 
transfer cost, and storage cost, it is possible to identify the optimal storage tier for 
each object based on the users’ access patterns. Similarly, a game theory-based 
approach could be used to model the decision-making of storage providers who 
must allocate resources to different storage tiers based on the demand from users 
and the cost of storage.

One possibility is using a multi-armed bandit problem variant [4, 5], where the 
agents are the arms and the storage tiers are the bandits. In this way, each agent 
maintains a probability distribution over the storage tiers and selects a storage tier 
to store an object based on the distribution. The distribution is updated based on the 
feedback from the system, which includes the storage cost and the retrieval time. 
The objective is to minimize the total cost while ensuring the retrieval time meets 
the service-level agreements. One possible implementation of this solution is the 
Thompson Sampling algorithm [35], which is a Bayesian approach to the multi-
armed bandit problem. In this algorithm, each agent maintains a Beta distribu-
tion over the storage tiers, where the distribution parameters represent the number 
of successes and failures in selecting a storage tier. The agent selects a storage tier 
based on the highest sampled value from the distribution. The update of the distribu-
tion is done after the storage operation is completed, based on the feedback from the 
system. Specifically, if the storage cost is lower than the expected cost from the dis-
tribution, the Beta distribution parameters are updated to reflect success. Similarly, 
if the retrieval time is longer than the expected retrieval time from the distribution, 
the Beta distribution parameters are updated to reflect a failure.

Applying Bayesian game theory to the storage tier optimization problem involves 
modeling the decision-making process of multiple players (e.g., data objects, users, 
or applications) and their interactions. A general outline of the steps involved in 
deriving the formulas for Bayesian game theory is given in the following. 

1.	 Define the players, i.e., to identify the relevant players in the game, such as data 
objects or applications that need to choose a storage tier. In this scenario, it’s just 
the software application that is responsible for doing storage object classification.

2.	 Specify the strategies, i.e., to determine the possible strategies or choices that 
each player can make. The strategies are the different storage tiers available (i.e., 
premium, hot, cold, and archive).

3.	 Assign payoffs, i.e., define each player’s payoffs or utility functions, which rep-
resent their preferences or objectives. The payoffs could be based on factors like 
cost, performance, durability, or access frequency, but in this case, we will choose 
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the cost. Assigning numerical values to the cost factor allows for quantifying the 
payoffs.

4.	 Specify beliefs, i.e., to determine each player’s beliefs about the other players’ 
choices and payoffs. These beliefs are based on historical data about the cost-
effectiveness of previous decisions.

Based on the information above, we derived a formula for storage tier optimiza-
tion using Bayesian game theory using the following variables (recall Table 2).

•	 Number of data objects N.
•	 Set of available storage tiers T.
•	 Cost matrix of storing data object i in storage tier j: 

CM =

⎡
⎢⎢⎢⎢⎢⎣

C(1)p C(1)h C(1)c C(1)a
C(2)p C(2)h C(2)c C(2)a
C(3)p C(3)h C(3)c C(3)a
⋮ ⋮ ⋮ ⋮

C(N)p C(N)h C(N)c C(N)a

⎤
⎥⎥⎥⎥⎥⎦

•	 Probability that data object i is assigned to storage tier j based on historical 
data P(i, j).

We define the objective as minimizing the total cost, considering the size, age, 
and access frequency of each data object, defined according to Eq. 15:

•	 Probability Matrix P of shape N × 4 , where N is the number of data objects, 
and 4 represents the storage tiers. Initially, P is initialized with: 1

4
 for all ele-

ments.
•	 Expected Cost Matrix (EC) of the same shape as cost matrix C, representing 

the expected cost for each data object and storage tier. We calculate the EC for 
each data object i in each storage tier j based on the existing probabilities: 

To achieve this, we propose the following steps. 

1.	 Calculate the expected total cost or ETC for each storage tier j based on the 
expected costs of all data objects assigned to it: 

(15)
N∑
i=1

(∑
j

P(i, j) ⋅ CM(i, j)

)
∀j ∈ T .

(16)EC(i, j) =
∑
k

(
P(i, k) × CM(i, k)

)
for all k ∈ T

(17)ETC(j) =

N∑
i=1

(
P(i, j) × EC(i, j)

)
for all i ∈ N
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2.	 Update the probabilities P based on the observed historical data and the cost 
associated with each storage tier in previous assignments using the following 
formula: 

3.	 Calculate the minimum expected cost along with the corresponding storage tier: 

 Using Eq. 19, the minimum cost ( ∧ ) is updated if the calculated value is less 
than the current value: 

 Similarly, using the value acquired from Eq.  19, the appropriate storage tier 
( Tieri ) is selected, which is the one with the minimum cost: 

4.	 Assign each data object i to the storage tier j that minimizes its expected cost: 

4 � Evaluation

This section evaluates the two proposed approaches, assessing their efficiency, accu-
racy, and overall effectiveness. The presented evaluations validate the theoretical 
concepts on which algorithms are developed and provide a means of benchmark-
ing, enabling comparisons with existing scenarios, i.e., when data is stored in a sin-
gle storage tier for the whole duration. The comparison is conducted in two ways. 
Firstly, a cost estimation is calculated if the data remains in the same tier through-
out. Secondly, the cost estimate is computed by considering data movement between 
different tiers based on the classification performed by the proposed approaches. 
Finally, the two proposed approaches are also compared against each other. In order 
to determine the viability and potential of the proposed approaches, a software tool 
has been developed to provide cost estimations based on the values obtained from 
Google Cloud storage—recall Table 1.

Due to limitations in acquiring a real dataset, our evaluations involve the gen-
eration of multiple datasets, both fully synthetic and semi-synthetic, covering 

(18)P(i, j) = exp

(
−
∑
j

|CM(i, j) − ETC(j)|
)

for all j ∈ T

(19)Cost_i =

T∑
k=1

(
P(i, k)×CM(i, j)

)
for all i ∈ N.

(20)∧i =

{
Cost_i if Cost_i < ∧i

∧i otherwise
.

(21)Tieri =

{
j if Cost_i < ∧i

None otherwise.

(22)P(i, j) =

{
1 if j = Tieri
P(i, j) otherwise

for all i ∈ N
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the context of an IoT scenario as well, such as the third-party data preparation 
workflow used at Bosch [44], where data is generated from IoT sensors and fur-
ther used for processing. We performed two detailed experiments. Experiment 1 
includes fully synthetic datasets, as the evaluations are conducted on the data-
set variations generated by increasing the size of storage objects within a semi-
synthetic dataset. The comparison is presented with a static access pattern for 
the datasets, implying an assumption that the access frequency of storage objects 
remains constant. In Experiment 2, a dataset with dynamic access patterns is 
employed. This means that datasets from a website application are collected 
over a 180-days period, with half of the dataset utilized as input for classification 
approaches and the remaining half employed for evaluation. This setup allows for 
an even more realistic evaluation, considering the variability in access patterns 
over time.

These datasets are crucial in facilitating comprehensive evaluations across possi-
ble scenarios. By utilizing these datasets, we thoroughly assess the performance and 
robustness of the proposed approach under different conditions, thereby ensuring 
a more rigorous and reliable evaluation process. However, the utilization of small 
object sizes with a high frequency of access and large object sizes with low access 
frequency is not recommended for evaluation, as their placement is intuitively clear; 
small objects with high access should be placed in the premium tier, while large 
objects with low access frequency are better suited for the archive tier.

4.1 � Experiment 1: static access pattern

Three synthetic datasets were generated based on publicly available data on Kaggle. 
It is an access log of a software application deployed on the cloud for a period of 
almost 2.5 years. Figure 2 shows the access pattern based on the average number of 
accesses of all objects over the whole storage time period. Additionally, some of the 
key features of the dataset are as follows:

•	 total time of data storage: A = 871 days;
•	 total number of objects: N = 14, 321;
•	 total number of GET Requests: g(t) = 2, 906, 097 ; and,
•	 total number of PUT Requests: p(t) = 14, 321.

Fig. 2   Data access pattern over the whole time period; y-axis and x-axis represent the number of 
accesses and the date, respectively
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4.1.1 � Dataset preparation

Information regarding the size of the data objects was unavailable. Therefore, for the 
purposes of testing, we assigned a random size to each object and subsequently cre-
ated a total of four variations for this dataset. The specific variations for the datasets 
can be found in Table 3, representing various access patterns associated with dif-
ferent data sizes. This approach offers several benefits, including continuing testing 
and analysis despite the initial lack of data size information. By assigning random 
sizes to data objects and creating four dataset variations, the testing process becomes 
more comprehensive, enabling the discovery of potential issues and patterns that 

Table 3   Dataset variations: 
different dataset variations are 
created while maintaining the 
same access patterns

This involves (1) defining distinct size ranges for data storage objects 
and (2) using different total sizes for the dataset

Object size range Total data size

Variation 1 50–100 MB 1052.45 GB
Variation 2 200–400 MB 4192.91 GB
Variation 3 800–1600 MB 16821.18 GB
Variation 4 3.2–6.4 GB 67215.39 GB

Fig. 3   The dataset CSV file after the normalization process

Fig. 4   Comparison of the cost of data storage for the first 871 days with each object having variable age 
vs. the cost of data storage if it is not moved between tiers for the next 871 days
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might not be apparent in a single dataset. This approach also seeks to mimic real-
world scenarios with varying data sizes, enhancing the realism of the testing pro-
cess. The dataset CSV file after the normalization process (i.e., converting access 
logs in the form of a text file into a structured CSV file) is shown in Fig. 3.

4.1.2 � Cost comparison

Figure 4 compares the data storage cost if it remained static in one storage tier. The 
calculation is done keeping in view that the access pattern that objects will follow 
for the next 871 days will be similar to the first 871 days. Due to the high number of 
data access requests and free data retrieval for the premium tier, the cost of storing 
data in the premium tier is the cheapest. However, when calculating the cost of data 
storage for the next 871 days, the premium tier, although still cheaper than the rest 
of the tiers, shows the highest difference in the cost because of the low cost of data 
retrieval in the premium tier.

4.1.3 � Weights

For the rule-based classification, weights play an important role. If 30% weight is set 
for size, 20% for access frequency, and 50% for the age of the data, the combination 
of weights would be (0.3, 0.2, 0.5). Generally, the sum of the total weights should be 
equal to 1. In that case, there are a total of 36 possible combinations of weights. By 

Fig. 5   Cost comparison between different combinations of weights for size, age, and access frequency. 
Cost in US Dollars is specified on the y-axis, whereas the combination number (#) is shown on the x-axis

Fig. 6   Cost comparison between rule-based classification and game theory-based classification, and 
when data remains in a single storage tier for the entire duration
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removing the condition of the sum being equal to 1, we created a total of 286 com-
binations. Then, the priority score was calculated for each combination of weights, 
and subsequently, the cost was calculated. Out of 286, the cost calculation script 
returned 169 unique values for the cost. The comparison of cost with those combi-
nations for the first variation of the dataset is shown in Fig. 5.

4.1.4 � Results

Cost is calculated using the proposed rule-based and game theory-based classifica-
tion, and a comparison is presented in Fig. 6. The effectiveness of the weights can 
vary according to the dataset’s characteristics; hence, for dataset variation 1, the 
most suitable combination turned out to be size: 20%, access frequency: 80%, and 
age: 0%. It can be seen that with the proposed rule-based classification approach, 
the cost of data storage is $473.39. In contrast, if the data is stored in the pre-
mium tier for the whole time, the total cost is $694.35 (the cost of data migration 
is not included in this calculation). Additionally, the cost of the game theory-based 
approach is $469 for this particular case; however, the computational time was less 

Fig. 7   A comparison of cost estimation is made for the scenario where data remains static within each 
storage tier and when classified between different storage tiers using the game theory-based (GT) and 
rule-based (RB) classification approaches. Furthermore, comparisons are presented for four different 
variations of the dataset in (a–d), with the most suitable weights combination specified under each sub-
figure
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as the calculations didn’t have to be done for multiple combinations of weights, 
which is explained in more detail in Sect. 5.

In Fig.  7, a comprehensive comparison of costs is depicted as the data size 
quadruples at each step (as indicated in Fig. 7a–d), all while maintaining the same 
access pattern. The rule-based approach achieves approximately 32% cost reduction, 
whereas the game theory-based approach achieves approximately 33%. Moreover, 
this figure offers insights into cost comparisons under two distinct scenarios: one 
where the data remains exclusively within a single tier throughout the entire duration 
and another where it dynamically migrates between different tiers, with migration 
strategies determined by game theory-based and rule-based approaches. The com-
parison is presented in percentages instead of exact dollar amounts. This approach is 
employed to provide a more relative and standardized perspective, with the cost of 
the premium tier serving as the pivotal benchmark for assessment. By expressing the 
costs in percentages, we facilitate a more meaningful understanding of how different 
tiers perform in the premium tier, offering a clearer picture of the cost dynamics as 
data sizes increase.

4.2 � Experiment 2: dynamic access pattern

For the second dataset, we once again downloaded the access log for a web appli-
cation, spanning a period of 90 days, and calculated its cost. We expanded our 
approach to conduct a more realistic evaluation and take advantage of the oppor-
tunity to obtain the most up-to-date web application access logs. In this case, cost 
evaluation is no longer solely based on the assumption of static access patterns. 
Instead, access logs were downloaded for a period of 180 days. The initial 90 days 
of data were used for classification, and the classified data was subsequently com-
pared with the data from the following 90 days. This extended approach allows for a 
more comprehensive evaluation by incorporating real-world variations in access pat-
terns, enhancing the accuracy of cost calculations, and providing valuable insights 
into the dynamics of web application usage. Some of the key features of the dataset 
are as follows:

•	 total time of data storage: A = 90 days;
•	 total Size of the data: � = 6139.80 GB;
•	 total number of objects N = 149, 603;
•	 total number of GET requests: g(t) = 2, 847, 838 ; and,
•	 total number of PUT requests: p(t) = 149, 603.

4.2.1 � Results

Promising results were achieved from the second dataset shown in Fig.  8. The first 
evaluation was performed on a dataset with larger data chunks stored for longer. How-
ever, this dataset reflects a scenario where relatively smaller data is stored for a shorter 
period of time, specifically 90 days. Figure 8a presents the cost comparison between 
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storage tiers before and after the data is classified using rule-based and game theory-
based approaches.

To further enhance the comprehensiveness of the evaluation process, another varia-
tion of the dataset is created with a larger data volume but for the same storage period. 
The cost comparison is shown in Fig.  8b. This evaluation approach demonstrates a 
thorough exploration of diverse scenarios, including storing larger data chunks for an 
extended period and relatively smaller data for a shorter duration. Figure 8c and Fig. 8d 
show the comparison of the cost when the complete dataset is divided into two chunks, 
one used for classification while the second half is used for evaluation. This breadth 
of investigation allows for a well-rounded assessment of cost implications and perfor-
mance variations, potentially leading to adaptable and optimized storage strategies.

Fig. 8   A comparison of cost estimation is made for the scenario where data remains static within each 
storage tier and when classified between different storage tiers using the game theory-based (GT) and 
rule-based (RB) classification approaches. Furthermore, comparisons are presented for two different sce-
narios. In (a, b), the comparison when the access pattern remains static (i.e., the dataset follows a pattern 
in the future) is shown, whereas in (c, d), the comparison with the dynamic access pattern (i.e., dataset 
divided into two chunks, one for classification and one for testing) is shown
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5 � Computational cost

To calculate the execution time of the proposed algorithms, we examined the com-
putational cost associated with the proposed rule-based and game theory-based clas-
sification approaches. As elaborated in Sect. 3.1, the rule-based approach calculates 
the priority score of the data objects. Our evaluation focuses on calculating the exe-
cution time of the rule-based classification approach for each object throughout its 
lifespan. The results are visually depicted in Fig. 9 in the form of a scatter graph 
showcasing the distribution of execution times for each data object. Figure 9a illus-
trates the total computational cost of the rule-based approach across all 286 combi-
nations. Figure 9b provides insights into the computational cost of the rule-based 
approach when employing pre-set weight combinations.

Notably, our findings reveal that the computation time consistently falls within 
the millisecond range even when the priority score is calculated 286 times for each 
object, a performance characteristic that remains virtually imperceptible to the cloud 
infrastructure. This observation holds significance, especially in light of the typi-
cal latency of requests to the cloud, which tends to range from tens to hundreds of 

Fig. 9   Comparative analysis of computational costs. In (a), the total computational cost of the rule-based 
approach across all 286 combinations is illustrated. In (b), insights into the computational cost of the 
rule-based approach when employing pre-set weight combinations are provided. These analyzes shed 
light on the computational efficiency of the rule-based approach under varying conditions and weight 
configurations

Fig. 10   Demonstration of computational time as a function of the number of storage objects in the Game 
theory-based classification approach



1 3

Cloud storage tier optimization through storage object…

milliseconds. Hence, the proposed rule-based approach can be implemented without 
significantly impacting cloud storage performance while achieving substantial cost 
savings.

The game theory-based approach operates on a distinct principle. Instead of 
assessing individual objects by computing priority scores, it employs an iterative 
process to determine probabilities. This iterative nature implies that the computa-
tional cost increases with the number of objects involved. Figure 10 illustrates the 
relationship between the execution time, denoted on the y-axis in seconds, and the 
number of objects, represented in thousands on the x-axis. The graphical representa-
tion shows that the execution time correlates directly with the number of objects. It 
provides valuable insights into the scalability of the approach because, even though 
the execution time increases with the increase in the total number of storage objects, 
the change is not drastic. Even for big data applications and workflows with a large 
number of storage objects, the proposed approach can perform classification quickly 
while consuming very few compute resources.

Our evaluation provides insights into the performance characteristics of the rule-
based and game theory-based classification approaches. The rule-based method 
showcases remarkable efficiency when the weights are pre-defined, consistently 
delivering computation times within the millisecond range for each object. This 
attribute positions the rule-based approach as an excellent choice for scenarios 
where weight combinations are fixed. Conversely, the game theory-based approach 
operates on a different principle, utilizing an iterative process to determine prob-
abilities. While this methodology may result in increased computational cost as the 
number of objects rises, it provides flexibility and adaptability in scenarios where 
weights are dynamic or need frequent adjustments. Therefore, the choice between 
these approaches ultimately depends on the specific requirements and characteristics 
of the cloud storage scenario, with the rule-based approach excelling in static sce-
narios and the game theory-based approach offering versatility for dynamic weight 
assignments.

6 � Discussion

The rule-based classification approach has shown promising results in reducing stor-
age cost. According to the evaluation, the cost reduction is nearly 30–35%; even 
when factoring in the cost of data migration, the difference would be significant. 
However, it lacks the ability to consider feedback regarding each classification. 
There is a chance that the classification of a storage object may not be cost-effec-
tive, and to enhance the algorithm’s performance, it is crucial to incorporate that 
information as feedback. To tackle this challenge, we proposed an approach that 
uses game theory to classify storage objects into different tiers. The game theory-
based approach involves modeling the decision-making process of multiple play-
ers and their interactions and can anticipate their behavior and make more accu-
rate predictions. It considers the access patterns and metadata of storage items and 
can optimize the storage tier selection in a multi-agent system. While the rule-based 
approach is simpler and more straightforward, the game theory-based approach is 
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more complex but can potentially lead to a greater cost reduction. During our evalu-
ations, the game theory-based approach yielded slightly lower costs but significantly 
reduced computational cost.

Rule-based and game theory-based approaches perform effectively across varying 
data sizes and make accurate classification decisions regardless of the data storage 
duration. Data with a high access frequency is best suited for storage in the premium 
tier, while data with a low access frequency can be stored in the cold or archive 
tiers. While this scenario is straightforward, the evaluations have demonstrated that 
the algorithms are suitable for simple cases and useful in more complex scenarios. 
These scenarios involve dynamic access patterns and the potential for significant 
fluctuations. In addition to the technical aspects, the rule-based and game theory-
based classification approaches have practical implications in real-world scenarios. 
Both approaches are lightweight and industry- and platform-independent, making 
them suitable for various industries and applications where reducing storage cost 
is paramount. This adaptability means they can seamlessly integrate into various 
industry verticals, such as e-commerce, healthcare, logistics, etc. In these diverse 
sectors, the common challenge of reducing storage cost looms as data volumes 
surge.

While the proposed approaches exhibit promise and efficiency, it’s important to 
note their limitations. First, these approaches do not factor in migration fees, which 
could yield even greater cost reductions if incorporated into cost estimation and 
decision-making processes. Second, block-rate pricing of storage and network usage 
costs could provide a more comprehensive understanding of the cost landscape to 
enhance evaluation accuracy. Finally, it’s worth noting that both approaches excel 
when data is stored for relatively extended durations, typically at least 90 days. How-
ever, the potential for promising results even for data stored for shorter periods exists 
by incorporating the missing cost components, ensuring these approaches remain 
adaptable and effective across various timeframes. In conclusion, the rule-based 
classification approach demonstrates notable efficiency, particularly when prede-
fined weights are in play. This advantage stems from its ability to bypass the exhaus-
tive exploration of all conceivable weight combinations. Conversely, the execution 
time of the game theory-based approach exhibits a different dependency. It hinges 
on the total count of storage objects in consideration. While the rule-based approach 
excels in scenarios with established weight values, the game theory approach show-
cases its strengths in addressing datasets with varying sizes and complexities.

7 � Related work

This section provides an overview of the related work on storage tier optimiza-
tion. Existing work on storage tiering has primarily focused on two tiers: hot and 
cold. Hot data is frequently accessed and requires high-performance storage. Cold 
data is accessed infrequently and can be stored on lower-cost storage. Many ear-
lier studies have focused on cutting costs in systems that use multiple clouds. Some 
of these studies have specifically looked at finding the most cost-effective ways to 
store data in different locations in multi-cloud environments, such as [11, 14, 16, 
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38]. Additionally, some studies aim to create tiered cloud storage that uses multiple 
clouds to suit different data types. Tiered storage is a popular topic in the physical 
layer, where different storage mediums like HDDs and SSDs are combined. This is 
done to examine how performance can be improved and reduce costs, such as in [8]. 
CSPs also offer storage tier migration services such as Google Autoclass [7], but it 
comes with additional management fee and enablement charge.

Liu et  al. [18] proposed RLTiering, an auto-tiering system that uses deep rein-
forcement learning to place data in the most cost-effective tier in cloud storage. 
They also proposed a randomized online migration algorithm [17] for cost optimiza-
tion. Similarly, Erradi et al. [6] proposed two online cost optimization algorithms for 
tiered cloud storage services. They are designed to minimize the overall cost of stor-
age, while meeting users’ QoS requirements. The first algorithm is a greedy algo-
rithm that places data in the cheapest tier that meets the QoS requirements of users. 
The second reinforcement learning algorithm learns to place data in the most cost-
effective tier over time. Alshawabkeh et al. [1] developed an automated and adap-
tive framework using efficient Markov chain correlation-based clustering to move 
active data to high-performance and inactive data to low-cost/high-capacity storage 
tiers. This framework can predict workload changes and group similar storage units, 
enhancing performance, reliability, and availability and reducing cost. On the con-
trary, we propose approaches to storage tiering that consider four storage tiers: pre-
mium, hot, cold, and archive.

Hsu et al. [10] proposed an approach to predict the data condition using learn-
ing-based techniques and then saved them in local or cloud storage. This could be 
used in cloud services with hot and cold tiers. However, it’s difficult for cloud users 
or new businesses to get past access traces to train their learning-based techniques, 
as these traces are private in public clouds. At the same time, the predicted out-
comes aren’t always trustworthy, and running the process regularly might make their 
method not instantaneous. Blamey et al. [3] utilized hot and cold tiers to optimize 
the costs of keeping top-K documents in streaming workloads; however, their meth-
ods were specifically designed for streaming workloads and can not be generalized 
to other workloads.

Mansouri and Erradi [22], as well as Erradi and Mansouri [6], introduced a series 
of deterministic online algorithms to address cost reduction in this particular prob-
lem. However, access frequency, specifically the number of access requests, was not 
considered during their decision-making process. Our approach, however, consid-
ers three main factors when determining which tier to store an object size, age, and 
access frequency. Moreover, Zhang et al. [42] investigated how cloud providers can 
maximize their profits by using hot and cold storage tiers, but our research focuses 
on how cloud users can minimize their costs by using hot and cold storage tiers. 
Some scientific studies also introduce the multi-cloud setting that considers migrat-
ing data among multiple clouds for achieving cost-effective geo-distributed work-
loads [20, 30, 31]. In [24], Facebook developed a storage tier optimization approach 
and targeted two storage tiers. In addition, their proposed approach made decisions 
based on the characteristics of the whole bucket. Our approaches take decisions on 
objects rather than buckets, proposing a more flexible approach. In addition to that, 
they are generic, platform-, and industry-independent.
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In summary, existing work on storage tiering has traditionally concentrated on 
two tiers: hot and cold. Hot data, frequently accessed and demanding high-per-
formance storage, contrasts with cold data, which is seldom accessed and can be 
efficiently stored on more cost-effective storage solutions. Moreover, previous stud-
ies explored cost reduction strategies for multi-cloud systems, aiming to identify 
optimal data storage methods across diverse cloud locations. While tiered storage 
discussions typically revolve around physical mediums like HDDs and SSDs, seek-
ing to enhance performance and minimize costs, this article introduces a novel per-
spective. It proposes innovative approaches that leverage rules and game theory to 
optimize storage tiering within cloud environments, a novel approach compared to 
previous research. These methods stand out for their lightweight nature and minimal 
computational overhead, rendering them exceptionally suitable for practical imple-
mentation in cloud storage environments.

8 � Conclusions and future work

Maintaining data in a single tier continuously is ineffective and expensive, such as 
in the case of an IoT application, where data is generated from multiple sources and 
stored for processing. Storage tier optimization organizes data into different tiers 
based on its usage and performance requirements. This process helps reduce cost 
and improve storage performance and efficiency by ensuring that the most frequently 
accessed data is stored on the fastest media, while less frequently accessed data can 
be stored on slower, less expensive media. We explored two novel approaches: (1) 
a rule-based approach and (2) a game theory-based approach. The former exam-
ines object metadata and access patterns for storage tier optimization. The rule-
based classification was demonstrated to be successful on a synthetic dataset and 
is straightforward and simple to use using � = � + � + � for priority score calcula-
tions. The latter approach is more complex, considers the dynamic nature of cloud 
storage pricing and user demand, and provides a flexible and adaptive solution to 
cloud storage tier optimization.

The proposed approaches can effectively minimize storage cost and provide a 
flexible cloud storage tier optimization solution. We demonstrated the viability and 
potential of the proposed approaches by evaluating them using fully- and semi-
synthetic datasets, encompassing various variations to provide a realistic represen-
tation of cloud storage usage. The proposed approaches are assessed against these 
datasets, showcasing their effectiveness in substantially reducing storage cost across 
static and dynamic access patterns. Moreover, the proposed approaches are not plat-
form- or industry-specific and are not very resource-intensive in computation. We 
presented a comprehensive computational cost analysis to demonstrate the practical-
ity of the proposed approaches in a real cloud environment. They can, therefore, be 
considered appropriate for various software applications. Additionally, the findings 
indicate that while developing such an algorithm, it is crucial to consider the access 
patterns and metadata of storage items.

In the future, to make the estimations and comparisons more accurate and con-
cise, there is a need for comprehensive mathematical modeling that not only 
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correctly calculates the costs but also takes into account the following: (1) network 
usage cost based on block pricing; (2) data migration cost; and (3) penalty fees if 
an object is removed before the minimum time period specified for that particular 
tier. Moreover, we aim to conduct further evaluations for different Big Data and IoT 
workflows from different domains. These should be used to generate accurate and 
concise estimates and compare the cost of different storage options. In terms of prac-
tical applications, we intend to extend this research into a software tool that can be 
integrated with cloud storage systems, executing the classification of storage objects 
through cloud storage APIs. Furthermore, the future directions for the expansion of 
the proposed work include: 

1.	 investigating the use of machine learning algorithms to improve the accuracy of 
the proposed approaches for storage tier optimization;

2.	 exploring the use of the proposed approaches in conjunction with other optimi-
zation techniques, such as data compression and deduplication [40], to further 
reduce storage cost; and,

3.	 evaluating the proposed approaches on real-world datasets to validate their effec-
tiveness in practical cloud storage environments.

Acknowledgements  We thank Nikolay Nikolov for the initial discussions around the topic of cloud cost 
optimization that helped to shape the direction of the work in this article.

Funding  Open access funding provided by NTNU Norwegian University of Science and Technology 
(incl St. Olavs Hospital - Trondheim University Hospital). This work was partly funded through the EC-
funded projects DataCloud (H2020 101016835), enRichMyData (HE 101070284), Graph-Massivizer 
(HE 101093202), UPCAST (HE 101093216), and INTEND (HE 101135576).

Data availibility  No research data outside the submitted manuscript file.

Declarations 

Ethical approval  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Alshawabkeh M, Riska A, Sahin A, Awwad M (2012) Automated storage tiering using markov 
chain correlation based clustering. In: Proceedings of the 11th international conference on machine 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


	 A. Q. Khan et al.

1 3

learning and applications (ICMLA 2012). IEEE, vol 1, pp 392–397. https://​doi.​org/​10.​1109/​
ICMLA.​2012.​71

	 2.	 Amend JM (2018) Storage almost full: driverless cars create data crunch. https://​www.​wards​auto.​
com/​techn​ology/​stora​ge-​almost-​full-​drive​rless-​cars-​create-​data-​crunch. Accessed 5 Dec 2023

	 3.	 Blamey B, Wrede F, Karlsson J, Hellander A, Toor S (2019) Adapting the secretary hiring problem 
for optimal hot-cold tier placement under top-K workloads. In: Proceedings of the 19th IEEE/ACM 
international symposium on cluster, cloud and grid computing (CCGRID 2019). IEEE, pp 576–583. 
https://​doi.​org/​10.​1109/​CCGRID.​2019.​00074

	 4.	 Bubeck S, Cesa-Bianchi N et al (2012) Regret analysis of stochastic and nonstochastic multi-armed 
bandit problems. Found Trends Mach Learn 5(1):1–122. https://​doi.​org/​10.​1561/​22000​00024

	 5.	 Dzhoha A, Rozora I (2023) Multi-armed bandit problem with online clustering as side information. 
J Comput Appl Math 427:115132. https://​doi.​org/​10.​1016/j.​cam.​2023.​115132

	 6.	 Erradi A, Mansouri Y (2020) Online cost optimization algorithms for tiered cloud storage services. J Syst 
Softw 160:110457. https://​doi.​org/​10.​1016/j.​jss.​2019.​110457

	 7.	 Google: feedbackAutoclass (2024). https://​cloud.​google.​com/​stora​ge/​docs/​autoc​lass. Accessed 9 Feb 2024
	 8.	 Guerra J, Pucha H, Glider J, Belluomini W, Rangaswami R (2011) Cost effective storage using extent 

based dynamic tiering. In: Proceedings of the 9th USENIX conference on file and storage technologies 
(FAST 11). USENIX Association

	 9.	 Heinrich S (2017) Flash memory in the emerging age of autonomy. https://​www.​flash​memor​ysumm​it.​
com/​Engli​sh/​Colla​terals/​Proce​edings/​2017/​Proce​edings_​Chrono_​2017.​html. Accessed 5 Dec 2023

	10.	 Hsu YF, Irie R, Murata S, Matsuoka M (2018) A novel automated cloud storage tiering system through 
hot-cold data classification. In: Proceedings of the IEEE 11th international conference on cloud com-
puting (CLOUD 2018). IEEE, pp 492–499. https://​doi.​org/​10.​1109/​CLOUD.​2018.​00069

	11.	 Ikken S, Renault E, Barkat A, Tari A, Kechad T (2017) Cost-efficient big intermediate data placement 
in a collaborative cloud storage environment. In: Proceedings of the IEEE 19th international conference 
on high performance computing and communications; IEEE 15th international conference on smart 
city; IEEE 3rd international conference on data science and systems (HPCC/SmartCity/DSS 2017). 
IEEE, pp 514–521. https://​doi.​org/​10.​1109/​HPCC-​Smart​City-​DSS.​2017.​67

	12.	 Khan AQ, Nikolov N, Matskin M, Prodan R, Bussler C, Roman D, Soylu A (2023) Towards cloud stor-
age tier optimization with rule-based classification. In: Proceedings of the 10th IFIP WG 6.12 European 
conference on service-oriented and cloud computing (ESOCC 2023). LNCS. Springer, vol 14183, pp 
205–216. https://​doi.​org/​10.​1007/​978-3-​031-​46235-1_​13

	13.	 Khan AQ, Nikolov N, Matskin M, Prodan R, Song H, Roman D, Soylu A (2023) A taxonomy for cloud 
storage cost. In: The 15th international conference on management of digital ecosystems (MEDES 
2023). CCIS. Springer, vol 2022, pp 317–330. https://​doi.​org/​10.​1007/​978-3-​031-​51643-6_​23

	14.	 Khan AQ, Nikolov N, Matskin M, Prodan R, Roman D, Sahin B, Bussler C, Soylu A (2023) Smart data 
placement using storage-as-a-service model for big data pipelines. Sensors 23(2):564. https://​doi.​org/​
10.​3390/​s2302​0564

	15.	 Krumm N, Hoffman N (2020) Practical estimation of cloud storage costs for clinical genomic data. 
Pract Lab Med 21:e00168. https://​doi.​org/​10.​1016/j.​plabm.​2020.​e00168

	16.	 Liu G, Shen H (2017) Minimum-cost cloud storage service across multiple cloud providers. IEEE/
ACM Trans Netw 25(4):2498–2513. https://​doi.​org/​10.​1109/​ICDCS.​2016.​36

	17.	 Liu M, Pan L, Liu S (2021) Keep hot or go cold: a randomized online migration algorithm for cost opti-
mization in STaaS clouds. IEEE Trans Netw Serv Manag 18(4):4563–4575. https://​doi.​org/​10.​1109/​
TNSM.​2021.​30965​33

	18.	 Liu M, Pan L, Liu S (2022) RLTiering: a cost-driven auto-tiering system for two-tier cloud storage 
using deep reinforcement learning. IEEE Trans Parallel Distrib Syst 34(2):73–90. https://​doi.​org/​10.​
1109/​TPDS.​2022.​32248​65

	19.	 Macedo R, Ja Paulo, Pereira J, Bessani A (2020) A survey and classification of software-defined storage 
systems. ACM Comput Surv. https://​doi.​org/​10.​1145/​33858​96

	20.	 Mansouri Y, Toosi AN, Buyya R (2017) Cost optimization for dynamic replication and migration of 
data in cloud data centers. IEEE Trans Cloud Comput 7(3):705–718. https://​doi.​org/​10.​1109/​TCC.​
2017.​26597​28

	21.	 Mansouri Y, Toosi AN, Buyya R (2017) Data storage management in cloud environments: taxonomy, 
survey, and future directions. ACM Comput Surv. https://​doi.​org/​10.​1145/​31366​23

	22.	 Mansouri Y, Erradi A (2018) Cost optimization algorithms for hot and cool tiers cloud storage services. 
In: Proceedings of the 11th international conference on cloud computing (CLOUD 2018). IEEE, pp 
622–629. https://​doi.​org/​10.​1109/​CLOUD.​2018.​00086

https://doi.org/10.1109/ICMLA.2012.71
https://doi.org/10.1109/ICMLA.2012.71
https://www.wardsauto.com/technology/storage-almost-full-driverless-cars-create-data-crunch
https://www.wardsauto.com/technology/storage-almost-full-driverless-cars-create-data-crunch
https://doi.org/10.1109/CCGRID.2019.00074
https://doi.org/10.1561/2200000024
https://doi.org/10.1016/j.cam.2023.115132
https://doi.org/10.1016/j.jss.2019.110457
https://cloud.google.com/storage/docs/autoclass
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/Proceedings_Chrono_2017.html
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/Proceedings_Chrono_2017.html
https://doi.org/10.1109/CLOUD.2018.00069
https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.67
https://doi.org/10.1007/978-3-031-46235-1_13
https://doi.org/10.1007/978-3-031-51643-6_23
https://doi.org/10.3390/s23020564
https://doi.org/10.3390/s23020564
https://doi.org/10.1016/j.plabm.2020.e00168
https://doi.org/10.1109/ICDCS.2016.36
https://doi.org/10.1109/TNSM.2021.3096533
https://doi.org/10.1109/TNSM.2021.3096533
https://doi.org/10.1109/TPDS.2022.3224865
https://doi.org/10.1109/TPDS.2022.3224865
https://doi.org/10.1145/3385896
https://doi.org/10.1109/TCC.2017.2659728
https://doi.org/10.1109/TCC.2017.2659728
https://doi.org/10.1145/3136623
https://doi.org/10.1109/CLOUD.2018.00086


1 3

Cloud storage tier optimization through storage object…

	23.	 McLeod J, Gormly B (2018) Records storage in the cloud: are we modelling the cost? Arch Manuscr 
46(2):174–192. https://​doi.​org/​10.​1080/​01576​895.​2017.​14091​25

	24.	 Muralidhar S, Lloyd W, Roy S, Hill C, Lin E, Liu W, Pan S, Shankar S, Sivakumar V, Tang L et al 
(2014) f4: Facebook’s warm BLOB storage system. In: Proceedings of the 11th USENIX symposium 
on operating systems design and implementation. USENIX Association, pp 383–398

	25.	 Myerson RB (1997) Game theory: analysis of conflict. Harvard University Press
	26.	 Naldi M, Mastroeni L (2013) Cloud storage pricing: a comparison of current practices. In: Proceed-

ings of the international workshop on hot topics in cloud services (HotTopiCS 2013). ACM, pp 27–34. 
https://​doi.​org/​10.​1145/​24623​07.​24623​15

	27.	 Nikolov N, Dessalk YD, Khan AQ, Soylu A, Matskin M, Payberah AH, Roman D (2021) Conceptu-
alization and scalable execution of big data workflows using domain-specific languages and software 
containers. Internet Things 16:100440. https://​doi.​org/​10.​1016/j.​iot.​2021.​100440

	28.	 Nikolov N, Solberg A, Prodan R, Soylu A, Matskin M, Roman D (2023) Container-based data pipelines 
on the computing continuum for remote patient monitoring. Computer 56(10):40–48. https://​doi.​org/​10.​
1109/​MC.​2023.​32854​14

	29.	 Nuseibeh H (2011) Adoption of cloud computing in organizations. In: Proceedings of the Americas 
conference on information systems (AMCIS 2011). AISeL

	30.	 Oh K, Chandra A, Weissman J (2016) Wiera: towards flexible multi-tiered geo-distributed cloud stor-
age instances. In: Proceedings of the 25th ACM international symposium on high-performance parallel 
and distributed computing (HPDC 2016). ACM, pp 165–176. https://​doi.​org/​10.​1145/​29072​94.​29073​
22

	31.	 Qiu X, Li H, Wu C, Li Z, Lau FC (2014) Cost-minimizing dynamic migration of content distribu-
tion services into hybrid clouds. IEEE Trans Parallel Distrib Syst 26(12):3330–3345. https://​doi.​org/​10.​
1109/​INFCOM.​2012.​61956​55

	32.	 Robinson K (2021) Why companies are flocking to the cloud more than ever. https://​www.​busin​essin​
sider.​com/​cloud-​techn​ology-​trend-​softw​are-​enter​prise-​2021-2. Accessed 5 Dec 2023

	33.	 Roman D, Prodan R, Nikolov N, Soylu A, Matskin M, Marrella A, Kimovski D, Elvesæter B, Simonet-
Boulogne A, Ledakis G, Song H, Leotta F, Kharlamov E (2022) Big data pipelines on the computing 
continuum: tapping the dark data. Computer 55(11):74–84. https://​doi.​org/​10.​1109/​MC.​2022.​31541​48

	34.	 Rydning DRJGJ, Reinsel J, Gantz J (2018) The digitization of the world from edge to core. Technical 
report, International Data Corporation, Framingham

	35.	 Thompson WR (1933) On the likelihood that one unknown probability exceeds another in view of the 
evidence of two samples. Biometrika 25(3–4):285–294

	36.	 Tier definitions and volume placement optimization (2022). https://​www.​ibm.​com/​docs/​en/​stora​ge-​
insig​hts?​topic=​SSQRB8/​com.​ibm.​spect​rum.​si.​doc/​tpch_​saas_r_​volume_​optim​izati​on_​proce​ss.​htm 
Accessed 5 Dec 2023

	37.	 Tung AKH (2009) Rule-based classification. Springer, Boston, pp 2459–2462
	38.	 Wang P, Zhao C, Liu W, Chen Z, Zhang Z (2020) Optimizing data placement for cost effective and high 

available multi-cloud storage. Comput Inf 39(1–2):51–82. https://​doi.​org/​10.​31577/​cai_​2020_1-​2_​51
	39.	 What is a storage device hierarchy? (2021) https://​www.​ibm.​com/​docs/​en/​zos/2.​2.0?​topic=​dfsms​hsm-​

what-​is-​stora​ge-​device-​hiera​rchy Accessed 5 Dec 2023
	40.	 Xia W, Jiang H, Feng D, Douglis F, Shilane P, Hua Y, Fu M, Zhang Y, Zhou Y (2016) A comprehen-

sive study of the past, present, and future of data deduplication. Proc IEEE 104(9):1681–1710. https://​
doi.​org/​10.​1109/​JPROC.​2016.​25712​98

	41.	 Yang C, Xu Y, Nebert D (2013) Redefining the possibility of digital Earth and geosciences with spatial 
cloud computing. Int J Digit Earth 6(4):297–312. https://​doi.​org/​10.​1080/​17538​947.​2013.​769783

	42.	 Zhang Y, Ghosh A, Aggarwal V, Lan T (2018) Tiered cloud storage via two-stage, latency-aware bid-
ding. IEEE Trans Netw Serv Manag 16(1):176–191. https://​doi.​org/​10.​1109/​TNSM.​2018.​28754​75

	43.	 Zhou B, Nikolov N, Zheng Z, Luo X, Savkovic O, Roman D, Soylu A, Kharlamov E (2023) Scaling 
data science solutions with semantics and machine learning: Bosch case. In: Proceedings of the 22nd 
international semantic web conference (ISWC 2023). LNCS. Springer, vol 14266, pp 380–399. https://​
doi.​org/​10.​1007/​978-3-​031-​47243-5_​21

	44.	 Zhou B, Svetashova Y, Pychynski T, Baimuratov I, Soylu A, Kharlamov E (2020) SemFE: facilitat-
ing ML pipeline development with semantics. In: Proceedings of the 29th ACM international confer-
ence on information & knowledge management (CIKM 2020). ACM, pp 3489–3492. https://​doi.​org/​10.​
1145/​33405​31.​34174​36

https://doi.org/10.1080/01576895.2017.1409125
https://doi.org/10.1145/2462307.2462315
https://doi.org/10.1016/j.iot.2021.100440
https://doi.org/10.1109/MC.2023.3285414
https://doi.org/10.1109/MC.2023.3285414
https://doi.org/10.1145/2907294.2907322
https://doi.org/10.1145/2907294.2907322
https://doi.org/10.1109/INFCOM.2012.6195655
https://doi.org/10.1109/INFCOM.2012.6195655
https://www.businessinsider.com/cloud-technology-trend-software-enterprise-2021-2
https://www.businessinsider.com/cloud-technology-trend-software-enterprise-2021-2
https://doi.org/10.1109/MC.2022.3154148
https://www.ibm.com/docs/en/storage-insights?topic=SSQRB8/com.ibm.spectrum.si.doc/tpch_saas_r_volume_optimization_process.htm
https://www.ibm.com/docs/en/storage-insights?topic=SSQRB8/com.ibm.spectrum.si.doc/tpch_saas_r_volume_optimization_process.htm
https://doi.org/10.31577/cai_2020_1-2_51
https://www.ibm.com/docs/en/zos/2.2.0?topic=dfsmshsm-what-is-storage-device-hierarchy
https://www.ibm.com/docs/en/zos/2.2.0?topic=dfsmshsm-what-is-storage-device-hierarchy
https://doi.org/10.1109/JPROC.2016.2571298
https://doi.org/10.1109/JPROC.2016.2571298
https://doi.org/10.1080/17538947.2013.769783
https://doi.org/10.1109/TNSM.2018.2875475
https://doi.org/10.1007/978-3-031-47243-5_21
https://doi.org/10.1007/978-3-031-47243-5_21
https://doi.org/10.1145/3340531.3417436
https://doi.org/10.1145/3340531.3417436


	 A. Q. Khan et al.

1 3

Authors and Affiliations

Akif Quddus Khan1 · Mihhail Matskin2 · Radu Prodan3 · Christoph Bussler4 · 
Dumitru Roman5,6 · Ahmet Soylu6

 *	 Akif Quddus Khan 
	 akif.q.khan@ntnu.no

	 Mihhail Matskin 
	 misha@kth.se

	 Radu Prodan 
	 radu.prodan@aau.at

	 Christoph Bussler 
	 chbussler@aol.com

	 Dumitru Roman 
	 dumitru.roman@sintef.no

	 Ahmet Soylu 
	 ahmet.soylu@oslomet.no

1	 Norwegian University of Science and Technology, 2815 Gjøvik, Norway
2	 KTH Royal Institute of Technology, Stockholm, Sweden
3	 University of Klagenfurt, Klagenfurt, Austria
4	 Robert Bosch LLC, Sunnyvale, CA, USA
5	 SINTEF AS, Oslo, Norway
6	 OsloMet – Oslo Metropolitan University, Oslo, Norway

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Cloud storage tier optimization through storage object classification
	Abstract
	1 Introduction
	2 Cloud storage cost
	2.1 Storage cost
	2.2 Network usage cost
	2.3 Transaction cost
	2.4 Data retrieval
	2.5 Migration cost
	2.6 Total cost

	3 Cloud storage tier optimization
	3.1 Rule-based classification approach
	3.1.1 Priority score threshold

	3.2 Game theory-based approach

	4 Evaluation
	4.1 Experiment 1: static access pattern
	4.1.1 Dataset preparation
	4.1.2 Cost comparison
	4.1.3 Weights
	4.1.4 Results

	4.2 Experiment 2: dynamic access pattern
	4.2.1 Results


	5 Computational cost
	6 Discussion
	7 Related work
	8 Conclusions and future work
	Acknowledgements 
	References


