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Abstract
Solar photovoltaic (PV) energy, with its clean, local, and renewable features, is an 
effective complement to traditional energy sources today. However, the photovoltaic 
power system is highly weather-dependent and therefore has unstable and intermit-
tent characteristics. Despite the negative impact of these features on solar sources, 
the increase in worldwide installed PV capacity has made solar energy prediction an 
important research topic. This study compares three encoder-decoder (ED) networks 
for day-ahead solar PV energy prediction: Long Short-Term Memory ED (LSTM-
ED), Convolutional LSTM ED (Conv-LSTM-ED), and Convolutional Neural Net-
work and LSTM ED (CNN-LSTM-ED). The models are tested using 1741-day-long 
datasets from 26 PV panels in Istanbul, Turkey, considering both power and energy 
output of the panels and meteorological features. The results show that the Conv-
LSTM-ED with 50 iterations is the most successful model, achieving an average 
prediction score of up to 0.88 over R-square (R2). Evaluation of the iteration counts’ 
effect reveals that the Conv-LSTM-ED with 50 iterations also yields the lowest Root 
Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values, confirming 
its success. In addition, the fitness and effectiveness of the models are evaluated, 
with the Conv-LSTM-ED achieving the lowest Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC) values for each iteration. The findings of 
this work can help researchers build the best data-driven methods for forecasting PV 
solar energy based on PV features and meteorological features.
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1  Introduction

One of the most significant effects of human activity is global warming. This 
occurs when greenhouse gases, such as CO2, CH4, N2O, and water vapor, are pro-
duced in greater quantities in the atmosphere due to the excessive use of fossil 
fuels as an energy source [2]. To prevent global warming, transitioning from fos-
sil fuels to renewable energy sources—such as hydro, geothermal, solar, wind, 
wood, plant residues, biomass, tidal, and wave—is important [35]. One of the 
most promising renewable energy sources for producing enormous amounts of 
energy is solar energy. However, solar energy is impacted by its limited avail-
ability during daytime and its seasonal nature, making it unstable and unpredict-
able. As a result, predicting their output is challenging and requires sophisticated 
methodologies. In the literature, the four categories of methodologies employed 
for this purpose include physical methods, statistical models, artificial intelli-
gence techniques, and their hybrid and ensemble approaches [3, 27].

Physical methods use atmospheric physical and mechanical data such as 
wind speed, temperature, rainfall, humidity, and day duration and are based on 
numerical weather prediction (NWP) to simulate atmospheric dynamics (Lor-
enz, Scheidsteger, Hurka, Heinemann, & Kurz, 30; Urquhart et  al., [47]. Sta-
tistical approaches are used to regress unknown constants and to determine the 
mathematical relationship between inputs and outputs (Ye, Yang, Han, & Chen, 
51). They are widely used in the literature, but their performance did not meet 
expectations because they are unsuitable for modeling nonlinear relationships 
(De Giorgi, Congedo, & Malvoni, 10; Sheng, Xiao, Cheng, Ni, & Wang, 43; 
Yadav, Kannan, Meraj, & Masaoud, 49). The capacity of artificial intelligence 
algorithms to model nonlinear relationships, such as machine learning and more 
recently deep learning, has caught the attention of researchers. A wide range of 
machine learning algorithms are employed (AlShafeey & Csaki, 2021; Belmahdi, 
Louzazni, & El Bouardi, 2022; De Leone, Pietrini, & Giovannelli, 11; Frederik-
sen & Cai, [16] Malvoni, De Giorgi, & Congedo, 33; Markovics & Mayer, [34] 
Yagli, Yang, & Srinivasan, 50; Zhao et al., [56]. The future of deep learning in 
solar energy prediction is promising due to its capacity for generalization. Feed 
Forward Neural Network (FFN) (Rodriguez, Azcarate, Vadillo, & Galarza, 2022; 
Rodriguez, Galarza, Vasquez, & Guerrero, 2022), Long Short-Term Memory 
(LSTM)/ Recurrent Neural Network (RNN) [14]; Hafiz, Awal, de Queiroz, & 
Husain, 20; Hossain & Mahmood, [21, 29] X. Luo, Zhang, & Zhu, 32; Park, Lee, 
Kang, Choi, & Lee, 38; Wang et al., [48], Convolutional Neural Network (CNN) 
(C. Zhang, Li, Jiang, Luo, & Xu, 54), Gated Recurrent Unit (GRU) (Qu, Xu, Sun, 
& Liu, 40), ED (Chang, Bai, & Hsu, 8). Data decomposition, feature extraction, 
or hybridization of algorithms are used to compose hybrid and ensemble algo-
rithms (Ishaq, Kwon, et al., 2022; Khan, Walker, & Zeiler, 23; Lai, Zhong, Pan, 
Ng, & Lai, [25] P. Li, Zhou, Lu, & Yang, 26; Lin et al., [28] Ospina, Newaz, & 
Faruque, 37; Tang, Yang, Zhang, & Zhang, 46; J. Zhang, Tan, & Wei, 55).

In this study, we present a thorough performance comparison among LSTM-ED 
architectures—namely, LSTM-ED, Conv-LSTM-ED, and CNN-LSTM-ED—to 
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predict daily solar PV energy output. Due to the challenges of handling instabil-
ity and unpredictability in continuous historical data with only LSTM, we pre-
fer to use several ED-based LSTM architectures. To our knowledge, there are no 
previous studies that compare solar energy prediction using these specific net-
work architectures. The evaluation is done against a 1741-day-long 1-day interval 
historical dataset. This comprehensive dataset allows us to fully characterize the 
effectiveness of these methods and to compare them fairly. The panel data are 
provided by 26 different panels connected to an inverter on the roof of the Hidayet 
Türkoğlu Sports Complex in Istanbul, Turkey. In addition to the panel data, mete-
orological data are also used for the prediction step. Three error metrics are used 
to evaluate the performance of the models: Root Mean Square Error (RMSE), 
Mean Absolute Error (MAE), and R-square (R2)) are used to evaluate the per-
formances of the models. The experimental findings reveal that Conv-LSTM-ED 
has an overall good efficiency in the accuracy of the predictions. Additionally, 
measurements using the Akaike Information Criterion (AIC) and Bayesian Infor-
mation Criterion (BIC) indicate that Conv-LSTM-ED is superior to the other two 
models in terms of both fitness and complexity.

The remainder of this paper is organized as follows. The materials and methods 
used in this study are introduced in Sect. 2, starting with the studies and data col-
lections and moving on to the LSTM-ED architectures that are used. Beginning 
with the pre- processing of the data, error metrics utilized for evaluation, and hyper-
parameter settings of the models, Sect. 3 represents the case study. Results and dis-
cussion are found in Sect. 4, commencing with an evaluation of model performance 
and effectiveness using error metrics, hyper-parameter settings, and figures. Sec-
tion 5 provides a summary of the findings and suggested further research.

2 � Materials and methods

2.1 � Studied area and data collection

In order to develop reliable and successful deep learning applications, high-quality, 
long-term historical data is essential. However, acquiring such data can be challeng-
ing because data providers may not record it or may be unwilling to share it. The 
solar PV panel and meteorological data used in this study are entirely real, having 
been obtained directly from their providers. The panel data were collected from 26 
different panels connected to an inverter on the roof of the Hidayet Türkoğlu Sports 
Complex in Istanbul, Turkey, at one-day intervals. Data were collected separately 
from each panel, and experiments were conducted individually for each one. The 
information obtained from the panels includes the power (P) output of each panel 
and the energy (E) produced by it. The technical information about the panels is 
detailed specifically in Table 1.

Solar PV panels exhibit varying generation characteristics depending on the 
time of year. As a result, meteorological data significantly influence production 
characteristics and are also used as input features in this study. Due to the annual 
periodicity in weather patterns, at least one year of data is necessary for training 
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algorithms effectively. Consequently, all datasets used in this study encompass 
panel and meteorological data spanning from February 24, 2017, to November 
30, 2021. Each panel is represented by 1741 data points, amounting to a total of 
45,266 data points across all panels. The meteorological data were obtained from 
the Güngören/Davutpaşa Marmara Automatic Meteorology Observation Station, 
which is operated by the 1st Regional Directorate of the Republic of Turkey Min-
istry of Environment, Urbanization and Climate Change, Turkish State Meteoro-
logical Service, and is located near the Hidayet Türkoğlu Sports Complex. The 
meteorological variables used in this study are listed in Table 2.

In this study, we predicted the value of energy (E in kWh) for the next day 
(t + 1) using daily input features including power (P in kWe), maximum appar-
ent power (MaxAP), minimum apparent power (MinAP), mean apparent power 
(MeanAP), maximum relative humidity (MaxRH), minimum relative humidity 
(MinRH), mean relative humidity (MeanRH), maximum temperature (MaxT), 
minimum temperature (MinT), mean temperature (MeanT), maximum wind 
direction (MaxWD), mean wind direction (MeanWD), maximum wind speed 

Table 1   Technical Panel 
Information

Panel Parameters Information

Location Turkey
Inverter Size/Type 25/8 kW Solaredge SE8K
Maximum Efficiency of Inverter 98%
Number of PV Panel 26
PV Panel Type 260 W Solarturk
Panel Current at Maximum Power IMPP 8.53 A
Efficiency 15.92%

Table 2   Meteorological 
Features

Abbreviation Feature Name Unit

MaxAP Maximum actual pressure hPa
MinAP Minimum actual pressure hPa
MeanAP Mean actual pressure hPa
MaxRH Maximum relative humidity %
MinRH Maximum relative humidity %
MeanRH Mean relative humidity %
MaxT Maximum temperature C◦
MinT Minimum temperature C◦
MeanT Mean temperature C◦
MaxWD Maximum wind direction ◦
MeanWD Mean wind direction ◦
MaxWS Maximum wind speed m/s
MeanWS Mean wind speed m/s
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(MaxWS), mean wind speed (MeanWS), and the energy (E in kWh) produced on 
the current day (t).

2.2 � Methodology

This study proposes LSTM-ED, Conv-LSTM-ED, and CNN-LSTM-ED models to 
measure and compare the reliability and accuracy of one-step-ahead PV forecasting. 
The methods used in this study are summarized as follows.

2.2.1 � LSTM

Recurrent Neural Networks (RNNs) are a specialized version of traditional FFNs 
with cyclic connections to hidden neurons that can handle sequential data pro-
cessing. Unlike traditional FFNs, which are unable to accept sequential inputs and 
require all of their inputs (and outputs) to be independent of one another, RNN mod-
els realize a sequence-to-sequence mapping between input and output. As a result, 
the output is derived based on previous computations. For lengthy sequences, RNNs 
can utilize past sequential information. In practice, however, the duration of the 
sequential information they can remember is limited to only a few steps back due to 
RNN memory constraints. Figure 1 illustrates the unrolled RNN, and Fig. 2 depicts 
the RNN architecture.

xt and ht represents the input of the cell and recurrent information of the cell at 
time t, respectively. tanh is a hyperbolic tangent activation function.

LSTM models effectively extend the memory of RNNs, enabling them to learn 
and maintain dependencies over long input sequences. This extended memory can 
retain information for prolonged periods, with capabilities to read, write, and delete 

Fig. 1   Unrolled RNN cell

Fig. 2   RNN architecture
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data from its memory cells. The memory unit within an LSTM is known as a ‘gated 
cell,’ where ‘gate’ refers to the mechanism that determines whether to preserve or 
discard information in the memory. An LSTM model identifies critical features from 
the input and retains them for extended durations. During the training phase, the sig-
nificance of the information is controlled by the weight values assigned to it, dictat-
ing whether it should be kept or removed. Consequently, an LSTM model learns to 
discern which information is crucial to keep and which to discard.

An LSTM network generally consists of three gates: the forget gate, the input 
gate, and the output gate. The forget gate decides whether to retain or discard exist-
ing information in the cell state. This decision is made using a sigmoid function that 
processes information from the previous output and the current input to produce the 
forget gate’s output. Mathematically, this can be expressed as follows:

where � is a sigmoid activation function ranging from value 0 to 1. ft is the forget 
gate and Wf  is the weight of the forget gate. While ht−1 represents the recurrent infor-
mation of the cell at time t − 1 , xt represents the input of the cell at time t. And bf  is 
the bias of the forget gate.

The input gate determines whether the new information should be added to the 
cell. To do this, a sigmoid layer decides which values will be updated. Subsequently, 
a tanh layer generates a vector of candidates for the state. The outputs of the sigmoid 
and tanh layers are written as follows:

where it is the input gate, Wi is the weight of the input gate and bi is the bias of the 
input gate. 

∼

Ct represents the candidate vectors and tanh is a hyperbolic tangent acti-
vation function ranging from value − 1 to 1. While WC is the weight of the candidate 
state, bC is the bias of the cell state. By multiplying the output of these two layers the 
cell state ( Ct ) is updated as below:

The output gate determines which parts of the current cell state will contribute to 
the final output. To achieve this, the sigmoid function takes the previous state and 
the current input into account. The new cell state is then obtained by multiplying the 
tanh function’s output with the sigmoid layer’s output. This new state is passed on to 
the next state. The mathematical equations for the output gate are as follows:
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where ot is the output gate, Wt is the weight of the output gate and bo is the bias 
of the output gate. In the equations above while ‘∙’ represents the connection of two 
vectors, element-wise multiplication is represented by ‘*’. Inner structure of the 
LSTM unit according to all equations mentioned above is given in Fig. 3.

The LSTM architecture is given with Fig. 4.

2.2.2 � Conv‑LSTM

Conv-LSTM is a variation of LSTM that was initially presented by Shi et al. [44] 
to address spatio-temporal prediction challenges in precipitation forecasting. In a 
Conv-LSTM network, the input features are 3D spatio-temporal tensors, with the 
first two dimensions representing the spatial dimension. Unlike the classic LSTM 
model, the Conv-LSTM cell’s input-to-state and state-to-state transitions use con-
volutional operations that produce 3D tensors instead of matrix multiplication. The 
following equations can be used to construct this model, where convolution is indi-
cated by the ‘*’ symbol and the Hadamard product is shown by the ‘◦’ symbol:

Fig. 3   Inner structure of LSTM unit

Fig. 4   LSTM architecture
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where X1,… ,Xt are the inputs, C1,… ,Ct are the output of cells and H1,… ,Ht 
are the hidden states. it , ft and ot are input, forget and output gates, respectively. The 
inner structure of the Conv-LSTM unit, as described by Eqs. (10–14), is depicted in 
Fig. 5.

2.2.3 � CNN‑LSTM

CNN is frequently used in feature engineering—because it has the ability to focus 
on the most important features of the data—and in time series forecasting as well. 
Many time-series tasks that feed-forward networks with fixed-size time windows 
cannot handle can be addressed using LSTM. CNN-LSTM, on the other hand, com-
bines the advantages of both CNN and LSTM networks. In this sense, it can be con-
sidered a hybrid network that allows for various combinations of CNN and LSTM 
architectures. The main architecture of this network typically includes a one-dimen-
sional convolutional layer, a pooling layer, an LSTM hidden layer, and a fully con-
nected layer. The architecture of the CNN-LSTM is illustrated in Fig. 6.

2.2.4 � Encoder‑decoder models

In many sequence-to-sequence applications, where the goal is to construct a model 
that predicts future outputs from a given set of historical or past data, the encoder-
decoder paradigm is widely used in computer science and related fields (Ekinci, 

Fig. 5   The inner structure of Conv-LSTM
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Omurca, & Özbay, 2021; Gürses-Tran, Körner, & Monti, 2022; Qiu, Tang, Liu, 
Teng, & Yao, 39; B. Zhang et  al., [53] Zhu, Li, Mao, Li, & Yan, 57). However, 
LSTM architectures are not always effective for sequence-to-sequence prediction 
due to difficulties arising from fixed input and output shapes (Zdravkovic, Ciric, & 
Ignjatovic, 2022). To address this issue, Cho et al. [9] proposed using RNNs with 
an encoder-decoder model. In this model, one RNN network serves as the encoder, 
extracting timing characteristics from historical data, while another RNN network 
acts as the decoder, predicting the time series. The encoder compresses the data 
from the variable-length input sequence into a vector derived from the sequence of 
RNN hidden states. The final hidden state of the encoder provides a fixed-dimen-
sional representation of the input sequence. The decoder uses one RNN network to 
generate the variable-length output sequence [15]; Gangopadhyay, Tan, Huang, & 
Sarkar, 17; Gupta, Malhotra, Narwariya, Vig, & Shroff, 18). The encoder-decoder 
model is a generic approach for learning a conditional distribution of variable-length 
sequences based on the assumption of another variable-length sequence, where the 
input and output may not be the same length [31].

Sutskever et al. [45] proposed replacing the RNNs in the ED model with LSTMs 
for natural language processing (NLP) tasks. The first LSTM layer reads the input 
language sentences and obtains their vector representation of the highest dimension. 
The second LSTM layer then generates sentences in the output language from this 
vector. This model is referred to as LSTM-ED.

Unlike the traditional LSTM model, LSTM-ED reads the entire input sequence 
into a fixed-length vector (Nguyen, Kalra, & Kim, 36). This internal representa-
tion is both the initial hidden state of the decoder and the final hidden state of the 
encoder. Its built-in “memory” allows it to remember long input sequences, which 
is why the model is also known as sequence embedding and has been shown to per-
form well with very long input sequences.

In the Conv-LSTM-ED model, Conv-LSTM is used for encoding, and LSTM 
is used for decoding. The incorporation of Conv-LSTM as the encoder enhances 
the model’s feature extraction capabilities. This aligns with our hypothesis 
that enhancing the model to extract data features will improve the prediction 

Fig. 6   Architecture of CNN-LSTM
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accuracy. The Conv-LSTM model reads a sequential input and passes it directly 
to a decoder LSTM through convolutional operations.

Another variation of the LSTM-ED model incorporates a CNN in the encoder 
layer. While CNNs alone cannot directly process sequential data, they are used 
to read the data and extract key features. An LSTM then decodes these features 
and forecasts a sequential series. This model is called CNN-LSTM-ED because 
it uses a CNN as the encoder and an LSTM as the decoder.

3 � Case Study

3.1 � Data preparation

Missing data is a problem that must be addressed in the context of data science 
applications. The presence of missing data not only results in a loss of infor-
mation but also hinders the ability of models to extract hidden patterns from 
datasets (T. Liu, Jin, Zhong, & Xue, 2022). Consequently, rows with missing 
data are either removed or the gaps are filled using various methods. However, 
deleting rows with missing data is not an advisable approach, especially for time 
series data. Instead, missing data should be filled using time interpolation. Inter-
polating missing values is a crucial step in data preprocessing in data science. In 
the dataset we are examining, missing values are present only in the P and E fea-
tures. It has been observed that there are a total of 4,350 missing values across 
26 panels in the dataset. These missing values have been filled using the padding 
method. Padding interpolation involves filling in missing values with the last 
available value above the missing entry [5].

The experimental power and energy data used in this study range from 0 
to 157.1 and from 0 to 3463, respectively. Model accuracy can be adversely 
affected by imbalances in data ranges. To address this issue, min-max normal-
ization is employed, which maps the range to [0, 1]. Min-max normalization 
facilitates accurate predictions by preserving the relationships between data 
instances. The formula for min-max normalization is as follows:

where xi denotes the ith data point, xmin denotes the data point with the lowest 
value, and xmax denotes the data point with the highest value. The normalized 
version of xi , denoted by vi , lies between [0, 1].

Training and test sets must be properly defined for accurate evaluation of 
models. However, there is no fixed rule for splitting a dataset into training and 
test sets. In this case, the dataset is divided into a 75% training set and a 25% 
test set. The training set contains 1307 observations, while the test set comprises 
434 observations.

(15)vi =
xi − xmin

xmax − xmin
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3.2 � Error metrics

We employ RMSE, MAE, R2, and loss value as error metrics in our experiments to 
evaluate the performance of the experimental algorithms. Additionally, we use the 
AIC and BIC criteria to assess the architectures.

RMSE, which estimates the standard deviation of the residuals, is the square root 
of the average squared difference between the observed and predicted values. A 
higher RMSE indicates a worse fit, with greater dispersion around the mean, while a 
lower RMSE signifies a better fit, with smaller discrepancies between the observed 
and predicted values. Therefore, a lower RMSE value is preferable. The formula for 
calculating RMSE is as follows:

where yi is the expected value, ŷi is the predicted value of ith observation. n is the 
total number of observations in the test set.

MAE represents the average absolute difference between the observed and pre-
dicted values. A lower MAE indicates that the prediction error of the model is 
smaller, which corresponds to more accurate predictions. The formula for calculat-
ing MAE is as follows:

R2, for instance, is the square of the correlation coefficient between the observed 
and predicted values, and it assesses how well the model explains the variance in 
the data [12]. A high R2 value indicates a strong correlation between the observed 
and predicted values, whereas a low R2 value suggests a weak correlation. R2 values 
range from [0, 1]. If R2 is greater than 0.8, the model is considered to be reliable; if 
it is lower, the model is considered to be less reliable [24]. R2 is calculated using the 
following formula:

where 
−
y is the mean of expected values of variable y.

When working with different models, it is very important to perform calculations 
related to statistical model fitting, as model selection is based on these results. The 
most popular techniques for choosing between models are the Akaike Information 
Criterion (AIC) and the Bayesian Information Criterion (BIC). While R-squared 
(R²) is used solely to evaluate how well the model fits the data, AIC and BIC also 
take into account model complexity [7, 13].

The AIC, which assesses the fit of the model, is calculated using the following 
formula:
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The effectiveness of the model for data prediction is assessed using the Bayesian 
Information Criterion (BIC), which is calculated as follows:

In Eqs. 19 and 20, ‘L’ represents the number of observations in the dataset, and 
‘F’ denotes the number of features. A model is considered optimal when both the 
AIC and BIC values are at their lowest. The fundamental distinction between these 
two criteria is that the BIC tends to prefer simpler models, while the AIC may favor 
more complex models [1].

3.3 � Hyper‑parameters of ED‑based LSTM architectures

In the Jupyter IDE, we construct our environment using the Python programming 
language along with the sklearn and Keras libraries.

In this study, we have suggested comparing ED based LSTM architectures to 
determine which model and which hyper-parameters are better for forecasting 
energy (E).

In the LSTM-ED architecture, the number of neurons in the input layer is set to 
15, corresponding to the number of features in the datasets. There is no general rule 
for determining the optimal number of hidden neurons; however, our LSTM layers 
have 128 hidden neurons. The LSTM encoder receives input sequences, and a repeat 
vector is used to feed the compressed vector from the LSTM encoder to the LSTM 
decoder, which also has 128 hidden neurons. The output states of the LSTM encoder 
serve as inputs to the LSTM decoder. Finally, two time-distributed layers transform 
the output of the LSTM decoder into the predicted output. A dense layer applies 
within the time-distributed layer, acting as a wrapper layer (Wolf & Yang, 2020). 
The first dense layer has 100 units with the Rectified Linear Unit (ReLU) activation 
function, followed by a second dense layer with a single unit. An activation func-
tion is essential for assessing the deep learning model’s performance. To conclude, a 
dropout layer set at 0.2 acts as a regularizer to reduce overfitting, and a flatten layer 
is included.

In the Conv-LSTM-ED model, a two-dimensional Conv-LSTM is used as an 
encoder to handle one-dimensional, univariate time series, while an LSTM is used 
as a decoder, similar to the previous architecture. The ConvLSTM2d, which sup-
ports two-dimensional Conv-LSTM models, is now capable of handling one-dimen-
sional univariate time-series data. A two-dimensional convolutional layer extracts 
128 feature mappings from the input sequence. These feature maps are then ampli-
fied. Following the convolutional layer, a flatten layer creates a vector of 128 values 
by flattening the output feature map values. A repeat vector feeds the compressed 
vector from the flatten layer to the LSTM decoder with 128 hidden neurons. ReLU 

(19)AIC = L × log

(

1

n

n
∑

i=1

yi − ŷi

)

+ 2 × F

(20)BIC = L × log

(

1
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is used as an activation function in both the encoder and decoder. Finally, two time-
distributed layers transform the output of the LSTM decoder into the predicted out-
put. The first dense layer with 100 units uses ReLU as the activation function, fol-
lowed by a second dense layer with a single unit. A dropout layer of 0.2 is added at 
the end.

We have also developed a CNN-LSTM-ED model for a single variable that uses 
two convolutional layers as the encoder and LSTM as the decoder. The sequence 
from the previous day serves as the model’s input. With a kernel size of one times-
tamp, the first convolutional layer extracts 128 feature mappings from the input 
sequence. The second layer performs the same function on the feature maps created 
by the first layer and amplifies the features. This second convolutional layer is fol-
lowed by a max-pooling layer, which reduces the feature maps by half while retain-
ing the maximum values of the features. Next, a long vector comprising 128 values 
is created by flattening the output feature map values from the max-pooling layer. 
A repeat vector feeds the compressed vector from the flatten layer to the LSTM 
decoder with 125 hidden neurons. ReLU is used as the activation function in both 
the encoder and decoder. Finally, two time-distributed layers transform the output 
of the LSTM decoder into the predicted output. The first dense layer with 100 units 
uses ReLU as the activation function, followed by a second dense layer with a single 
unit. A dropout layer of 0.2 is included at the end.

Optimizing the loss function is crucial for developing deep learning models and 
fine-tuning parameters. The optimization of the loss function has gained significant 
importance, especially in recent times. Throughout the training phase of all models, 
we employ the Adam optimizer, which uses a stochastic gradient descent algorithm 
to compute first and second-order moments. Adam is known for its quick conver-
gence, which is the primary reason for its use in this study. All models are trained 
with a batch size of 72, over 50 and 100 epochs, respectively.

The proposed architectures are illustrated in Fig. 7.

4 � Results and discussions

Five evaluation metrics were used to assess the performance of the ED-based 
LSTM, Conv-LSTM, and CNN-LSTM models. To confirm the models’ reliability, 
the study evaluated their performance across 26 panels.

4.1 � Evaluation of model performances

It is important to note that the training algorithms and structural compositions of the 
ED-based LSTM, Conv-LSTM, and CNN-LSTM models differ from one another. 
Consequently, this study investigated the performance and stability of each model. 
Using the training datasets, all three models underwent 50 and 100 iterations of 
training. Subsequently, their performances were evaluated using the test datasets. 
The model that produced the highest average R2 value over a single time step in the 
test rounds was selected as the best model for each experiment. The top-performing 
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ED-based LSTM models were then compared. Finally, the findings from the LSTM-
ED models are presented.

The results for each iteration of the LSTM-ED models during the test phases 
are displayed in Tables 3 and 4. With low RMSE and MAE values, and exception-
ally high R2 values in the test phases, it appears that for 50 iterations, all models 
could be adequately trained for nearly all panels on average. However, a problem 
with all models was observed concerning panel 1 (p1) in terms of R2. Consequently, 
the success of time series prediction is as dependent on the data quality as it is on 
the algorithms used. When the error metrics are averaged over 100 iterations, it is 

Fig. 7   (a) LSTM-ED (b) Conv-LSTM-ED (c) CNN-LSTM-ED
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observed that the models fail more frequently at 100 iterations than at 50 iterations 
across all metrics. Overall, the performance results indicate that the Conv-LSTM-
ED model surpasses the LSTM-ED and CNN-LSTM-ED models in the test phases 
by achieving higher R2 values and lower RMSE and MAE values. The CNN-LSTM-
ED model exhibits much larger error ranges across all three metrics than the other 
two models for all iterations. These findings suggest that the Conv-LSTM-ED model 
excels in terms of model stability, reliability, and accuracy.

The scatter diagrams for the LSTM-ED, Conv-LSTM-ED, and CNN-LSTM-ED 
models for p1 (the worst) and p10 (the best) predictions after 50 and 100 iterations 
are shown in Figs. 8 and 9, respectively.

When examining the spread of the scatter plots, it is observed that the spread for 
p10 is smaller than that for p1, and the spread obtained after 50 iterations is also 

Table 3   Performances of the LSTM-ED models for 50 iterations for test dataset

LSTM-ED Conv-LSTM-ED CNN-LSTM-ED

Panel RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

p1 32.69 24.53 0.65 31.69 23.83 0.71 32.8 25.06 0.64
p2 20.66 15.95 0.88 20.01 15.24 0.88 20.62 15.87 0.83
p3 21.45 16.39 0.87 21.07 16.2 0.88 21.73 16.97 0.83
p4 21.73 16.42 0.87 21.41 16.04 0.88 21.86 16.75 0.83
p5 21.88 16.9 0.86 21.41 16.38 0.88 22.98 17.61 0.82
p6 22.04 17.2 0.86 21.76 16.74 0.87 23.26 18.17 0.81
p7 15.79 12.19 0.89 15.62 11.73 0.91 17.36 12.94 0.85
p8 16.28 12.67 0.89 16.2 12.26 0.9 17.51 13.09 0.85
p9 16.93 12.82 0.89 16.28 12.67 0.89 17.68 13.41 0.84
p10 14.39 10.74 0.94 14.17 10.81 0.96 14.74 10.97 0.89
p11 17.22 13.05 0.88 16.92 13.09 0.89 17.97 13.69 0.84
p12 17.31 13.23 0.88 17.18 13.35 0.88 18.16 14.12 0.84
p13 17.74 13.34 0.88 17.54 12.59 0.88 18.79 14.41 0.84
p14 18.28 14.1 0.88 17.81 13.72 0.88 18.83 14.87 0.84
p15 14.66 11.26 0.94 14.39 10.72 0.95 15.4 11.96 0.89
p16 14.84 11.44 0.93 14.83 11.01 0.93 15.42 11.96 0.89
p17 14.96 11.5 0.92 14.92 11.45 0.93 15.51 12 0.88
p18 15.37 11.83 0.92 15.29 11.91 0.92 15.56 12.05 0.86
p19 15.68 11.95 0.9 15.4 11.87 0.92 15.94 12.4 0.86
p20 22.04 17.26 0.86 21.81 16.75 0.87 24.35 18.18 0.81
p21 23.03 17.49 0.86 23.23 17.74 0.87 25.24 18.68 0.81
p22 24.15 17.47 0.85 23.99 17.46 0.86 25.62 19.62 0.8
p23 25.28 17.96 0.85 24.44 18.82 0.86 25.68 19.74 0.77
p24 25.89 19.73 0.85 25.11 17.58 0.86 26.8 19.8 0.76
p25 26.98 20.96 0.85 26.34 20.64 0.86 27.63 21.24 0.76
p26 27.69 21.21 0.84 27.4 20.33 0.86 28.29 21.67 0.74
Average 20.19 15.37 0.87 19.85 15.04 0.88 20.99 16.05 0.82
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smaller than the spread obtained after 100 iterations. From this, we can infer that the 
differences between the expected and predicted values for p10 and after 50 iterations 
are smaller, respectively.

To assess the generalization capacity of each model on the test dataset, we exam-
ined the loss plot for panel p10 shown in Fig. 10. The relatively low test loss for 
each model suggests that their generalization capacity is satisfactory, indicating that 
the models perform successfully.

4.2 � Evaluation of model efficiencies

When selecting a model, the one that minimizes the information criterion is typi-
cally chosen. In the literature, two common information criteria are the Akaike 

Table 4   Performances of the LSTM-ED models for 100 iterations for test dataset

LSTM-ED Conv-LSTM-ED CNN-LSTM-ED

Panel RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

p1 33.43 25.31 0.55 32.94 24.92 0.71 36.28 27.38 0.44
p2 17.57 13.72 0.85 17.15 13.45 0.88 18.19 14.3 0.75
p3 18.04 14.11 0.85 17.27 13.17 0.87 19.46 15.59 0.75
p4 18.12 12.97 0.85 18.03 12.98 0.86 20.09 15.45 0.75
p5 18.76 14.75 0.84 18.46 14.38 0.86 20.41 14.72 0.75
p6 21.43 16.221 0.84 20.46 15.8 0.86 22.29 16.96 0.74
p7 21.83 16.94 0.84 21.21 16.13 0.85 22.85 17.96 0.74
p8 21.88 16.54 0.84 21.6 16.35 0.85 23.15 18 0.73
p9 21.88 16.54 0.83 22.04 17.15 0.85 23.17 17.97 0.72
p10 14.71 10.93 0.93 14.55 10.93 0.94 15.42 11.66 0.87
p11 15.2 11.82 0.89 14.68 11.49 0.92 16.02 12.44 0.83
p12 15.21 11.87 0.89 14.75 11.43 0.9 16.25 12.57 0.82
p13 15.26 11.82 0.89 15.11 11.63 0.89 16.64 12.4 0.8
p14 15.65 12.2 0.88 15.23 11.71 0.89 17.31 13.45 0.8
p15 15.92 12.34 0.87 15.33 11.38 0.89 17.4 13.48 0.77
p16 16 12.02 0.86 15.8 12.33 0.88 17.91 13.57 0.77
p17 16.88 12.85 0.85 16.74 12.64 0.88 17.98 13.55 0.76
p18 17.27 13.65 0.85 17.07 13.13 0.88 18.18 14.18 0.76
p19 23.01 16.77 0.83 22.49 17.53 0.85 24 18.82 0.71
p20 23.13 17.96 0.81 23.23 17.67 0.84 24.16 18.22 0.71
p21 23.22 17.78 0.81 23.57 18.17 0.84 26.26 19.45 0.71
p22 23.89 18.51 0.8 24.6 17.64 0.83 26.71 18.86 0.7
p23 25.02 17.2 0.8 24.63 18.98 0.82 26.88 20.57 0.69
p24 25.57 19.89 0.79 25.27 17.41 0.81 27.24 21.25 0.68
p25 26.35 20.48 0.79 26.28 20.04 0.8 27.76 21.92 0.67
p26 28.57 21.55 0.76 27.6 20.44 0.8 28.16 21.27 0.65
Average 20.53 15.64 0.83 20.23 15.34 0.86 21.93 16.77 0.73
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Information Criterion (AIC) and the Bayesian Information Criterion (BIC). AIC 
tends to favor larger models due to its lighter penalty, which can lead to inconsist-
ency. In contrast, BIC includes a larger penalty term, which promotes consistency 
but can also be less effective.

Fig. 8   Scatter diagrams of the p1

Fig. 9   Scatter diagrams of the p10

Fig. 10   Loss values of the p10
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To determine the correct model order, the magnitudes of these information cri-
teria are compared across several models. Box plots are often utilized to assess 
model quality and to identify the model that best fits the data. Figure 11 presents 
the AIC and BIC box plots for each iteration count.

Fig. 11   (a) AIC for 50 iterations (b) AIC for 100 iterations (c) BIC for 50 iterations (d) BIC for 100 itera-
tions
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Upon examining Fig.  11, it is clear that the AIC and BIC values are in agree-
ment with the R2, RMSE, and MAE values. The lowest AIC and BIC values are 
achieved with the Conv-LSTM-ED model at 50 iterations. Furthermore, a compari-
son between the models and the number of epochs indicates that neither the specific 
model nor the number of epochs provides a distinct advantage for the current data-
set. Combining all the results, it becomes apparent that the Conv-LSTM-ED model 
demonstrates robust capabilities in forecasting solar photovoltaic energy.

5 � Conclusions

This study examines the performance of ED based LSTM models for predicting the 
solar energy output of PV panels. To demonstrate the viability and effectiveness of 
the compared models, several case studies are presented as examples. The findings 
reveal that the proposed models have successfully predicted the energy output of 
solar PV panels with precise accuracy and reasonable prediction intervals.

Initially, the ED-based LSTM models are tested on 26 PV panels connected to a 
single inverter to facilitate comparison. Subsequently, the relationship between the 
models’ performance and their complexity is evaluated. The experimental dataset 
was collected from an inverter connected to 26 distinct panels installed on the roof 
of the Hidayet Türkoğlu Sports Complex in Istanbul, Turkey. The study also consid-
ers meteorological factors that significantly influence the panels’ performance for 
energy prediction. The results show that the Conv-LSTM-ED model outperforms 
the LSTM-ED and CNN-LSTM-ED models, although all three networks exhibit 
similar accuracy and are highly effective for making one-day-ahead predictions.

This work compares application-ready deep learning models from a high-level 
programming library, with a focus on solar PV panel energy prediction. As such, 
it serves as a guide for researchers seeking to develop practical solutions. Future 
research may explore the impact of varying look-ahead times on model performance. 
Additionally, an investigation could be conducted to determine which subset of fea-
tures plays a more significant role in prediction accuracy through feature selection.
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