
Vol.:(0123456789)

Computing
https://doi.org/10.1007/s00607-024-01258-1

1 3

REGULAR PAPER

Solving the SAT problem with the string multiset rewriting
calculus

Péter Battyányi1 

Received: 17 April 2023 / Accepted: 7 January 2024
© The Author(s) 2024

Abstract
In this paper, we develop computing machinery within the framework of the String
Multiset Rewriting calculus (SMSR), as defined by Barbuti et al. [4], to solve the
SAT problem in linear time regarding the number of variables of a given conjunctive
normal form. This shows that SMSR can be considered a computational model capa-
ble of significantly reducing the time requirement of classical decision problems.

Keywords  String multiset rewriting · Biologically motivated computing · SAT-
problem

Mathematics Subject Classification  68Q07 · 68Q42 · 68Q85

1  Introduction

In the past few years, many computational models have been developed to model
biological processes at the systems level, which involves describing the elements
of complex systems and their mutual behaviour and interactions. Traditional
approaches rely on mathematical methods mainly based on setting up ordinary dif-
ferential equations in connection with the chemical reactions. However, these sys-
tems can encounter difficulties when it comes to finding feasible models or estab-
lishing executable simulations. Computer science offers various formalisms based
on high-level description of biological phenomena. For instance, the �-calculus of
Danos and Laneve [9] serves as an example of a formal language that models pro-
tein interaction. On the other hand, the biochemical stochastic �-calculus [18] allows
for both qualitative and quantitative investigations of composite systems. Addition-
ally, the brane calculi defined by Cardelli [7] or the membrane systems invented by
Gh. Păun [17] are excellent models for describing cell-level processes. The calculus

 *	 Péter Battyányi
	 battyanyi.peter@inf.unideb.hu

1	 Department of Computer Science, Faculty of Informatics, University of Debrecen, Debrecen,
Hungary

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-024-01258-1&domain=pdf
http://orcid.org/0000-0001-6703-9661

	 P. Battyányi

1 3

of looping sequences [5] falls into this category: these models allow the extensive
use of mathematical tools in describing biological processes. However, constructing
efficient simulators for these high level languages, such as the calculus of looping
sequences and the brane calculi, can be quite challenging.

To meet the requirement of finding a formalism that is both expressive enough
to describe biological processes and maintains language simplicity, some authors
choose to base their calculi on multisets as objects. Barbuti et al. [4, 5] devel-
oped formalisms centered around pattern matching as the main tool underlying
the evolvement of multisets. Others attempt to integrate rule-based modeling with
a chemical reaction-type formalism [20] or enhance the labeled transition system
with a regulating mechanism for rules [21]. The calculus developed in [4] was called
the String Multiset Rewriting calculus (SMSR). As part of a series of investigation
conducted by the author regarding biologically motivated calculi [3], especially, the
string multiset rewriting formalism, this paper also adopts this calculus. Interest-
ingly, independent of our current account, the investigation initiated in [22], aiming
to merge regulated rules with rewrite mechanisms based on pattern matching, also
leverages the formalism introduced by Barbuti et al. The SMSR calculus arouse as a
simplified version of the calculus of looping sequences [5]. Due to its simplicity and
the powerful pattern matching mechanism, SMSR can serve as the foundation for a
declarative description of biological processes and thus provide an elegant solution
for establishing the background formalism for a mathematically precise treatment.
Hopefully, its overall construction may prove to be simple enough to facilitate the
development of efficient future simulators. Specifically, we work with multisets of
string elements that constitute the underlying objects of the calculus. The central
tool for manipulating multisets is the maximal matching operator, which allows for
the replacement of complete submultisets where the strings share the same prefix.
The idea is that, by capturing the tree-like structure of terms, a string can represent
a path from the root to one of the leaves, where at the leaves the elements constitut-
ing the terms can be found. If we simultaneously replace all the strings with a com-
mon prefix with a multiset of strings starting with the same prefix, then the tree-like
structure is preserved. This mechanism corresponds to rewriting processes in term
rewriting systems. In addition to the simplicity of the elements of the calculus, as we
have mentioned before, another compelling reason for the SMSR calculus to be con-
sidered a promising candidate for potential future implementations in higher-level
languages is the inclusion of pattern matching within the maximal matching opera-
tor. In their paper, Barbuti et al [4] showed how the calculus of looping sequences
formalism can be corresponded to string multiset rewriting. Additionally, Barbuti
et al. pointed out in [5] that their method can serve as a template for translating other
formalisms, like P systems or brane calculi, into the framework of string multiset
rewriting. Therefore, even though the SMSR calculus is based on a simple structure
with just one rewrite operator, it still has the capability to express the interactions
between elements that more complex formalisms are capable of.

There have been numerous results based on parallel and distributed computa-
tional models, in which the SAT problem has been shown to be solvable in fewer
than an exponential number of steps relative to the input size, considering only the
computational steps allowed by the underlying model [6, 11–13, 16, 23]. Most of

1 3

Solving the SAT problem with the string multiset rewriting…

them rely on a quite complex formalism constructed in a biologically inspired com-
putational model. This paper demonstrates that even a simple formalism like the
string multiset rewriting calculus can achieve a level of parallelization sufficient for
effectively solving a hard problem like SAT. It does so by establishing the exist-
ence of a multiset such that, for any conjunctive normal form (CNF) C with n vari-
ables and m conjuncts, the constructed multiset comprises 3n + 1 submultisets, each
consisting of at most m strings. Additionally, we can provide n + 1 rewrite rules
such that, by applying these rules to the initial multiset, we can determine in n + 1
rewriting steps whether C is satisfiable. The construction is uniform: the rules estab-
lished depend only on the values of n and m. Furthermore, the multiset assigned to
the CNF can be constructed in polynomial time with respect to n and m. However,
the size of the rules is exponential in n, which implies that an exponential space is
needed for an implementation. In addition, the supposition that each rule applica-
tion takes constant time is crucial for maintaining the efficiency. Taking all of this
into consideration, SMSR is a truly parallel computational model. With the afore-
mentioned assumptions, it is capable of significantly reducing computational time,
provided we accept the exponential time hypothesis, which posits that SAT cannot
be solved in subexponential time. Naturally, this computational model of string
rewriting involves operations that are hypothetical considering our current compu-
tational capabilities and are very costly on sequential computational architectures.
The majority of the work is accomplished by the highly parallel rules of the multiset
rewriting calculus, which operate using pattern matching and the evaluation of pat-
terns to obtain concrete multisets as values.

2 � String multiset rewriting

In this section, we will provide a brief introduction to the calculus of String MultiSet
Rewriting (SMSR), following the presentation in [4]. Initially, we provide some of
the relevant definitions concerning multisets.

2.1 � Multisets

In this subsection, we briefly recall the main definitions regarding multisets over a
finite nonempty set. Let ℕ denote the set of natural numbers and ℕ+ denote the set of
positive integers, respectively, and let U be a finite nonempty set. A multiset M over
U is a pair M = (U, f) , where the mapping f ∶ U → ℕ gives the multiplicity of each
element a ∈ U . If f (a) = 0 for each a ∈ U , then M is the empty multiset. The num-
ber of elements in a multiset M, that is, the elements a ∈ U with positive multiplic-
ity is denoted by |M| and we refer to this number as the cardinality of M. In our case,
the cardinality of a string multiset M will be the number of strings in M.

Next, we define some elementary operations on multisets. Let
M1 = (U, f1),M2 = (U, f2) . Then (M1 ⊓M2) = (O, f) where f (a) = min{f1(a), f2(a)} ;
(M1 ⊔M2) = (O, f �) , where f �(a) = max{f1(a), f2(a)} ; (M1 ⊕M2) = (O, f ��) , where
f ��(a) = f1(a) + f2(a) ; (M1 ⊖M2) = (O, f ���) where f ���(a) = max{f1(a) − f2(a), 0} ;

	 P. Battyányi

1 3

and M1 ⊑ M2 , if f1(a) ≤ f2(a) for all a ∈ O . For our purposes, we will modify the
subtraction operator in the following way: when M1 ⊑ M2 , then the result of the sub-
traction should be a designated element Λ ∈ U , instead of 0. We will denote the
modified subtraction operator as ⊖Λ . For example, let U = {a, b, c,Λ} be the under-
lying set and suppose M1 = a3bc2 and M2 = a3b2c . Then M1 ⊖Λ M2 = c . On the
other hand, if M�

1
= a3bc2 and M�

2
= a3b2c2 , then M�

1
⊖Λ M�

2
= Λ.

2.2 � Fundamental notions

In their paper [4], Barbuti et al. introduced the notion of the String MultiSet Rewrit-
ing calculus (SMSR). Initially, we establish the syntax, followed by the develop-
ment of a theory based on multiset rewriting, subject to certain structural congru-
ence relations. Naturally, the multisets can evolve according to the rewriting rules
specified in the next subsection, modulo these congruence relations. The resulting
computational model is commutative and associative with respect to the multiset
union operator. In the definition below, we assume there is an underlying alphabet E ,
which can be either finite or infinite.

Definition 1  Multisets M and strings S over an alphabet E are defined by the follow-
ing grammar:

where � represents the empty string, e stands for a generic element of the alphabet
E , ⋅ denotes string concatenation, and | is the multiset union. The set comprising all
multisets is denoted by M , while the set of all strings is denoted by S . An arbitrary
element of S is represented by lowercase Greek letters such as � , � , and so on. We
may omit the operation ⋅ between the elements of a string if there is no potential for
confusion.

The multiset operation | functions as the standard multiset constructor. We
assume that | is both commutative and associative, allowing us to omit parentheses
when no confusion arises. The following structural congruence relation encapsulates
the associativity of ⋅ and |, the commutativity of |, and the neutral role of � as both an
element and a string.

Definition 2  Let �, �1, �2, �3 be strings and M,M1,M2,M3 be multisets. The structural
congruence relation ≡ is the least congruence relation on multisets with the follow-
ing properties:

Keeping all of this in mind, we can now introduce the concept of patterns,
which will be the key notion in the definition of the rewriting rules. We will

M = S |
| (M | M)

S = � |
| e |

| S ⋅ S

�1 ⋅ (�2 ⋅ �3) ≡ (�1 ⋅ �2) ⋅ �3 � ⋅ � ≡ �

M1 | M2 ≡ M2 | M1 M1 | (M2 | M3) ≡ (M1 | M2) | M3 M | � ≡ M

1 3

Solving the SAT problem with the string multiset rewriting…

assume an infinite supply of variables denoted as V = VE ∪ V
S
∪ V

M
 , where

VE = x, y, z,… represents the infinite set of element variables, V
S
= x̃, ỹ, z̃,…

stands for the infinite set of string variables, and V
M
= X, Y , Z,… signifies the

infinite set of multiset variables. Multiset patterns are defined as follows.

Definition 3  We define multiset patterns MP and string patterns SP over an alphabet
E by the grammar below:

Patterns are the general instructions for evaluating multiset terms. A rewrite
rule consists of a pair of patterns, where the first pattern matches the term to be
modified and the second one determines the result of the rule application.

Given an evaluation � ∶ VE ∪ V
S
→ S together with a function � ∶ V

M
→ ℕ , we

can lend meaning to the multiset patterns as follows. The pattern expansion func-
tion ⟨_⟩�

�
 assigns a multiset over E to the multiset pattern. Multiset patterns of the

form {|SP|}X correspond to a union of a sequence of patterns, all having the same
SP prefix followed by the evaluation of different string variables.

In the following definition, we provide the interpretation of multiset patterns in
relation to a function � ∶ V

M
→ ℕ and an evaluation � ∶ VE ∪ V

S
→ S . Intuitively,

the function � ensures that all the string and element variables appearing in a pat-
tern are instantiated, while the function � determines the number of strings in the
multiset obtained as the result of evaluating a pattern of the form {|S|}X.

Definition 4  Assume a function � ∶ V
M
→ ℕ and an evalua-

tion � ∶ VE ∪ V
S
→ S are given. The pattern expansion function

⟨_⟩−
_
∶ MP × (V

M
→ ℕ) × (VE ∪ V

S
→ S) → M is recursively defined as follows:

(1)	 ⟨SP⟩�
�

= �(SP)

(2)	 ⟨{�SP�}�
X
⟩� = �(SP) ⋅ � (̃x1) � … � �(SP) ⋅ � (̃x�(X)) where x̃ ∈ V

S

(3)	 ⟨MP1 � MP2⟩
�
�

= ⟨MP1⟩
�
�
� ⟨MP2⟩

�
�
.

In the previous definition, if a multiset variable X is given, then � ∶ V
M
→ ℕ

selects new string variables x̃1,… , x̃�(X) for the expansion. To be more precise,
� ∶ V

M
→ (V

S
)n holds for some n determined by � . Moreover, we assume that,

if X and Y are distinct multiset variables, then �(X) and �(Y) use different string
variables, that is, if �(X) = n and �(Y) = m , then the variable sets {x̃1,… , x̃n} and
{ỹ1,… , ỹm} appearing in the expansion of �(X) and �(Y) are disjoint. While we
employ the informal notation introduced in the definition, we bear in mind the
stipulations just agreed upon. We will now illustrate the previous definition by an
example.

Example 5  Let E = {a, b, c} be the element set. Then MP1 = x ⋅ y ∣ a ⋅ x and
MP2 = {|a|}X ∣ x̃ are examples for multiset patterns. If we set �(x) = �(y) = c ,

MP = SP |
| MP | MP |

| {|SP|}X

SP = � |
| e |

| SP ⋅ SP |
| x̃ |

| x

	 P. Battyányi

1 3

� (̃x) = a ⋅ b , �(X) = 2 and � (̃x1) = a and � (̃x2) = a ⋅ a , then we are able to determine
the values of the patterns MP1 and MP2 with respect to the values of the functions �
and � . Namely, ⟨MP1⟩

�
�
= c ⋅ c ∣ a ⋅ c and ⟨MP2⟩

�
�
= a ⋅ a ∣ a ⋅ a ⋅ a ∣ a ⋅ b.

2.3 � Rewrite rules

In the following subsection, we will define the rewrite rules. To ensure that this
paper is self-contained, we provide a precise definition of rewriting. Intuitively,
the result of applying a rewrite rule involves substituting a multiset M with
another multiset M′ . This process is governed by a rule (MP1,MP2) ∈ ℜ , where
MP1 and MP2 are multiset patterns such that ⟨MP1⟩

�
�
= M and ⟨MP2⟩

�
�
= M� hold,

with some � and � . To enhance understanding, we introduce several technical def-
initions that are based on the paper [4].

Definition 6 

1.	 Let Var(MP) denote the set of variables appearing in a multiset pattern with
the provision that Var({|SP|}X) = Var(SP) ∪ {x̃i ∣ i ∈ ℕ} . For example,
Var(a ⋅ x̃ ∣ y ∣ {|�|}Y) = {x̃, y} ∪ {ỹi ∣ i ∈ ℕ}.

2.	 Let Symbols(M) denote the set of elements of E that appear in the multiset pattern
or multiset M. For instance, Symbols(a ⋅ x|a ⋅ b|{|d|}X) = {a, b, d} . We assume that
Symbols extends to a set of multiset patterns or multisets and we define the set of
fresh names for a multiset M as E ⧵ Symbols(M).

3.	 A rewrite rule is a pair (MP,MP�) of patterns such that MP is non-empty. An
instantiation is a function � ∶ VE ∪ V

S
→ M.

4.	 A multiset pattern MP is ground if and only if Var(MP) = � . A rule
R = (MP,MP�) is ground if and only if both MP and MP′ are ground. We write
Var(R) = Var(MP) ∪ Var(MP�) and Symbols(R) = Symbols(MP) ∪ Symbols(MP�).

5.	 Le t R = (MP,MP�) . Then FV(R) = {v ∣ v ∈ Var(MP�)⧵Var(MP)} and
BV(R) = Var(R)⧵FV(R).

Before delving into the semantics of the rewrite step, we aim to clarify the
related concepts in a more intuitive manner.

Definition 7  The multisets M and M′ can be matched by applying the rule
(MP1,MP2) if ⟨MP1⟩

�
�
= M and ⟨MP2⟩

�
�
= M� , where � ∶ V

M
→ ℕ is an auxiliary

function and � is an instantiation. Let us assume M ⊑ N , that is, N is a containing
multiset, and M matches M′ . When this is the case, we obtain the result of applying
the rewrite rule by replacing the submultiset M of N by M′ . Furthermore, we make
sure that no string in N that does not belong to M begins with a prefix shared by all
the strings in M.

Now, we are ready to define the semantics of the rewrite rules.

1 3

Solving the SAT problem with the string multiset rewriting…

Definition 8  Let R = (MP1,MP2) ∈ ℜ . An application of R can be described as fol-
lows. Assume M,M′ are multisets such that ⟨MP1⟩

�
�
= M and ⟨MP2⟩

�
�
= M� for some

� and � .

1.	 Assume Symbols(�(BV(R)) ∪ Symbols(R)) ∩ Symbols(�(FV(R))) = � . Then we
write

2.	 If M
(�,�)
����������������→ M� and (∀S ∈ 𝜉)(∄S� ∈ S)(S ⋅ S� ⊑ M��) and Symbols(M��) ∩ � = � , then

The first item expresses that each substituted occurrence of a maximal matching
operator counts in the reduction step. We lead a book-keeping containing the occur-
rences of the maximal matching operator together with the names occurring as occu-
pied names in the multiset patterns of the rule applied. The second item ensures that,
when a string with prefix SP� appears in M, then all strings with the same prefix is
treated in the current rewrite step.

Let us illustrate with an example how the rewrite process takes place.

Example 9  Let M = b | b ⋅ c | b ⋅ d . Let R1 = {|b|}X ↪ a and R2 = b ⋅ x̃ | {|b|}X ↪ a
be two rules. Then

1.	 Then M ↪ M�� = a is a correct derivation by applying R1 with �2(X) = 3 and
�2(̃x1) = � , �2(̃x2) = c and �2(̃x3) = d.

2.	 Likewise, b | b ⋅ c | b ⋅ d ↪R2
b | a with �1(̃x) = � , �1(X) = 2 and �1(̃x1) = c ,

�1(̃x2) = d is a correct application of R2 to M.
3.	 However,

 would be an incorrect derivation, since it violates the stipulation that ⟨{�b�}X⟩��
should be the maximal subterm of M the strings of which start with the common
prefix b.

3 � Solving the SAT‑problem

In this section, we present a decision procedure for the SAT problem that is linear in
the number of the variables of the given conjunctive normal form (CNF), taking into
account the computational steps performed in the SMSR-calculus. Firstly, we provide a
short account of the SAT problem. A formula of the form

M
({SP𝜎∣⟨{�SP�}X⟩

𝜎
𝜌
⊑M},Symbols(𝜎(FV(R)))

��→ M�. (1)

M�� ∣ M
(�,�)
����������������→ M�� ∣ M�. (2)

b | b ⋅ c | b ⋅ d ↪R1
a | b ⋅ d

C = D1 ∧ D2 ∧⋯ ∧ D
m

(1 ≤ m),

	 P. Battyányi

1 3

is considered a conjunctive normal form if D
i
= A

i1 ∨ A
i2 ∨⋯ ∨ A

iki
 , where Aij is

either a propositional variable or its negation (1 ≤ i ≤ m, 1 ≤ j ≤ ki) and ki ∈ ℕ . We
denote variables with lower case letters x1, x2,… . The SAT problem involves find-
ing at least one assignment, a function assigning truth values to the variables, which
satisfies the underlying conjunctive normal form. Since there is a finite number of
variables in each CNF, the SAT problem is in general decidable. The challenge lies
in finding a method capable of deciding the satisfiability problem for any CNF for-
mula in less than exponential time, at least in principle. Below, we present one based
on the SMSR calculus.

Theorem 10  The SAT problem can be decided in the SMSR calculus in time that is
linear in the number of variables.

Proof  Let C = D1 ∧ D2 ∧⋯ ∧ D
m
 be a conjunctive normal form. Assume there are

n distinct variables {x1,… , xn} appearing in C. We will construct a multiset and the
corresponding rewrite rules such that, by starting from this multiset and applying the
rules, we can decide in n + 1 rule applications whether C is satisfiable. To facilitate
comprehension, we will provide a running example throughout the proof.

We will begin by considering the general case. Let C = D1 ∧ D2 ∧⋯ ∧ D
m
 as

defined above. We establish the multiset MC corresponding to C. Our main idea is to
devise a multiset pattern for capturing the interpretations that satisfy C, preserving
only those in the end that do not make C true. We keep track of the appearances of xj
( ¬xj , resp.) in the conjuncts D1,… ,Dm with the help of the strings starting with pre-
fix �j ( ¬�j , resp.) in MC . The rules will allow us to develop the multiset MC through
n rule applications. The multiset emerging after the jth rule application leaves us
with a guidance on how to choose the values of the variables x1,… , xj for an inter-
pretation satisfying all of the conjuncts, if any exist. Taking all of this into consider-
ation, we begin by defining the language and the rewrite rules. The underlying set
for the string multisets is E = V ∪ T ∪ A , where V = {#x1,… , #xn} for the variables
in C, and T = {t1,… , tm} for each of the disjunctions D1 … ,Dm and, in addition, a
finite number of auxiliary elements
A = {�, �} ∪ {�i

j
∣ 1 ≤ i ≤ n, 1 ≤ j ≤ 2i} ∪ {�i,¬�i ∣ 1 ≤ i ≤ m} should be present

for the evaluation of the variables in C. Additionally, let {ui
j
, vi

j
∣ 1 ≤ j ≤ m, 1 ≤ i ≤ n}

be element variables. If � ∈ E , then we denote the multiset � ⋅ �1 ∣ … ∣ � ⋅ �p by
� ⋅ (�1 ∣ … ∣ �p) . In what follows, we will omit the outermost parentheses of the mul-
tisets if no confusion arises. Moreover, let us write Ψi = ui

1
∣ … ∣ ui

m
 and

¬Ψi = vi
1
∣ … ∣ vi

m
 , where 1 ≤ i ≤ n and 1 ≤ j ≤ m . Let us define the following multi-

sets. Let 1 ≤ i ≤ n be arbitrary, and let us denote by Φi the multiset Φi = �i
1
∣ … ∣ �i

m

such that �i
j
 is tj if xi ∈ Dj for some 1 ≤ j ≤ m and undefined otherwise. Similarly,

we write ¬Φi = ¬�i
1
∣ … ∣ ¬�i

m
 , where ¬�i

j
 are supposed to be the following ele-

ments of E : let ¬�i
j
 be tj if ¬xi ∈ Dj and undefined otherwise (1 ≤ j ≤ m) . Below, let

Υ = t1 ∣ … ∣ tm , and, for the sake of simplicity, we write xi instead of #xi (1 ≤ i ≤ n) .
We now define the initial multiset assigned to C as
MC = � ∣ x1 ∣ … ∣ xn ∣ �1 ⋅Φ1 ∣ … ∣ �n ⋅Φn ∣ ¬�1 ⋅ ¬Φ1 ∣ … ∣ ¬�n ⋅ ¬Φn.

1 3

Solving the SAT problem with the string multiset rewriting…

Let us consider the following example. Suppose we have
F = (x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2) . Then F contains two variables and con-
sists of three elementary disjunctions. In this case, n = 2 and m = 3 . Let D1 , D2
and D3 stand for the disjunctions in the given order. The multisets Ψ and ¬Ψ are
exclusively determined by the values of n and m: we have Ψi = ui

1
∣ ui

2
∣ ui

3
 and

¬Ψi = vi
1
∣ vi

2
∣ vi

3
 for i ∈ {1, 2} . Let us now establish the values of Φi and ¬Φi , where

i ∈ {1, 2} . Since x1 appears in D1 and D2 , we have Φ1 = t1 ∣ t2 . Furthermore, ¬x1
appears only in D3 , hence ¬Φ1 = t3 . Similarly, Φ2 = t1 and ¬Φ2 = t2 ∣ t3 . We obtain
MF = � ∣ x1 ∣ x2 ∣ �1 ⋅ (t1 ∣ t2) ∣ �2 ⋅ t1 ∣ ¬�1 ⋅ t3 ∣ ¬�2 ⋅ (t2 ∣ t3) for the multiset corre-
sponding to F.

Continuing the discussion of the general case, we now define the rewriting rules.
Let the first rule be

Observe that Ψi unifies with Φi and ¬Ψi unifies with ¬Φi (1 ≤ i ≤ n) . Let 1 ≤ j ≤ m be
given. Then 𝛼1

1
⋅ 𝜙1

j
∈ 𝛼1

1
⋅ Υ⊖Λ 𝛼1

1
⋅Φ1 conveys a “negative” information. That is,

setting x1 to true is not enough to guarantee that Dj is satisfied in this case. Similarly,
𝛼1

2
⋅ ¬𝜙1

j
∈ 𝛼1

1
⋅ Υ⊖Λ 𝛼1

1
⋅ ¬Φ1 if and only if ¬x1 does not appear in Dj , hence, setting

x1 to false will not make Dj true. In general, we define the i + 1-st rule as follows.

where the right hand side of the rule is obtained from the left hand side in the fol-
lowing way. Let {|�i

j
|}Xi

j
 be a member of the left hand side. We then add the following

multiset patterns to the right hand side of the rule. We form the multiset patterns
{|�i+1

2j−1
|}Xi

j
 and {|�i+1

2j
|}Xi

j
 , respectively. Afterward, we conduct subtraction using the

multisets �i+1
2j−1

⋅Ψi+1 and �i+1
2j

⋅ ¬Ψi+1 . This process entails that, when we instantiate
the variables of the multiset patterns through the actual sequence of rule applica-
tions, a multiset pattern of the form {|�i

j
|}Xi

j
 transforms into a multiset of strings

beginning with �i
j
 . more precisely, it becomes �i

j
⋅ (�1 ∣ … ∣ �l) for some

Θi
j
= �1 ∣ … ∣ �l.

𝛼 ∣ x1 ∣ 𝛽1 ⋅Ψ1 ∣ … ∣ 𝛽n ⋅Ψn ∣ ¬𝛽1 ⋅ ¬Ψ1 ∣ … ∣ ¬𝛽n ⋅ ¬Ψn →

𝛼1

1
⋅ Υ⊖Λ 𝛼1

1
⋅Ψ1 ∣ 𝛼

1

2
⋅ Υ⊖Λ 𝛼1

2
⋅ ¬Ψ1 ∣

𝛽1 ⋅Ψ1 ∣ … ∣ 𝛽n ⋅Ψn ∣ ¬𝛽1 ⋅ ¬Ψ1 ∣ … ∣ ¬𝛽n ⋅ ¬Ψn.

{|𝛼i
1
|}Xi

1

∣ {|𝛼i
2
|}Xi

2

∣ … ∣ {|𝛼i

2i
|}Xi

2i
∣ xi+1

∣ 𝛽1 ⋅Ψ1 ∣ … ∣ 𝛽n ⋅Ψn ∣ ¬𝛽1 ⋅ ¬Ψ1 ∣ … ∣ ¬𝛽n ⋅ ¬Ψn →

{|𝛼i+1
1

|}Xi
1

⊖Λ 𝛼i+1
1

⋅Ψi+1 ∣

{|𝛼i+1
2

|}Xi
1

⊖Λ 𝛼i+1
2

⋅ ¬Ψi+1 ∣

…

{|𝛼i+1
2i+1−1

|}Xi

2i
⊖Λ 𝛼i+1

2i+1−1
⋅Ψi+1 ∣

{|𝛼i+1
2i+1

|}Xi

2i
⊖Λ 𝛼i+1

2i+1
⋅ ¬Ψi+1 ∣

𝛽1 ⋅Ψ1 ∣ … ∣ 𝛽n ⋅Ψn ∣ ¬𝛽1 ⋅ ¬Ψ1 ∣ … ∣ ¬𝛽n ⋅ ¬Ψn,

	 P. Battyányi

1 3

In the new multiset, we simply replace �i
j
 at the beginning of the string with �i+1

2j−1

and, in the next step, with �i+1
2j

 . Subsequently, we subtract the corresponding multi-
sets Φi+1 and ¬Φi+1 , respectively. In other words, �i

j
⋅ Θi

j
 is replaced by two multisets:

�i+1
2j−1

⋅ Θi+1
2j−1

 and �i+1
2j

⋅ Θi
2j

.
Intuitively, when 1 ≤ j ≤ 2i , the multiset Θi

j
 obtained by rule application j repre-

sents an interpretation for the variables x1,… , xi ranging from when all the variables
are true to when all of them are false. Let these interpretations be denoted as
I1,… , I2i for a fixed 1 ≤ i ≤ n . Then Θi

j
 comprises the tp ’s such that Ij does not sat-

isfy Dp , where 1 ≤ j ≤ 2i and 1 ≤ p ≤ m . We perform all these rewrite steps for vari-
ables x1,… , xn , resulting in a total of n rewrite steps.

Regarding our running example, we can establish the following rules for the
calculus

where Υ = t1 ∣ t2 and Δ = �1 ⋅Ψ1 ∣ �2 ⋅Ψ2 ∣ ¬�1 ⋅ ¬Ψ1 ∣ ¬�2 ⋅ ¬Ψ2 . The set of rules
is determined solely by the number of variables and the number of conjuncts in F
and can be constructed independently of the other properties of F.

We now need to verify whether, after performing n rewrite steps, at least one of
the multisets �n

j
⋅ Θn

j
 (1 ≤ j ≤ 2n) is actually empty, denoted as Λ in our case. To this

end, we define the following reduction rule:

The rule above unifies with the result if and only if at least one of the strings is Λ .
The variables x̃2,… , x̃2n and ỹ1,… , ỹn, ỹn+1,… , ỹ2n stand for the rest of the strings.
These are of the form �n

j
⋅ Θn

j
 (1 ≤ j ≤ 2n) , or �k ⋅Φk , or ¬�k ⋅ ¬Φk (1 ≤ k ≤ n) , or Λ ,

respectively. Hence, if Λ occurs among the multisets representing the interpretations
for the variables x1,… , xn , then the entire computation evaluates to t. This determi-
nation can be made with a single rule application due to the commutativity of the
multiset constructor.

In the context of our example, this implies that we need to supplement the set of
rules with the following rule

This results in the following reduction sequence

𝛼 ∣ x1 ∣ Δ →𝛼1

1
⋅ Υ⊖Λ 𝛼1

1
⋅Ψ1 ∣

𝛼1

2
⋅ Υ⊖Λ 𝛼1

2
⋅ ¬Ψ1 ∣ Δ,

{|𝛼1

1
|}X ∣ {|𝛼1

2
|}Y ∣ x2 ∣ Δ →{|𝛼2

1
|}X ⊖Λ 𝛼2

1
⋅Ψ2 ∣

{|𝛼2

2
|}X ⊖Λ 𝛼2

2
⋅ ¬Ψ2 ∣

{|𝛼2

3
|}Y ⊖Λ 𝛼2

3
⋅Ψ2 ∣

{|𝛼2

4
|}Y ⊖Λ 𝛼2

4
⋅ ¬Ψ2 ∣ Δ,

Λ ∣ x̃2 ∣ … ∣ x̃2n ∣ ỹ1 ∣ … ∣ ỹn ∣ ỹn+1 ∣ … ∣ ỹ2n → t

Λ ∣ x̃2 ∣ x̃3 ∣ x̃4 ∣ ỹ1 ∣ ỹ2 ∣ ỹ3 ∣ ỹ4 → t.

1 3

Solving the SAT problem with the string multiset rewriting…

where Ξ = �1 ⋅ (t1 ∣ t2) ∣ �2 ⋅ t1 ∣ ¬�1 ⋅ t3 ∣ ¬�2 ⋅ (t2 ∣ t3) , showing that F is satisfiable. 	
� ◻

Remark 11  Assume a CNF C = D1 ∧ D2 ∧…Dm with n variables and m conjuncts
is given. The above proof presents a string multiset rewriting calculus with n + 1
rewriting rules and also a multiset of strings MC . By applying the rules successively
to MC , we are able to decide in n + 1 rewriting steps whether C is satisfiable. In total,
n + 1 rule applications are needed to achieve that goal. The multiset MC can be con-
structed in time polynomial with respect to n and m.

We have to make several observations at this point. First of all, we observe that
our solution is universal in the sense that, although MC is specific to C, the rewrit-
ing steps are the same for every CNF with n variables and m conjuncts and there
are n + 1 of them. Each rule is applied exactly once for the emerging multiset in the
decision process. The result, however, will be connected with C since the rewrit-
ing steps involve substitutions for the variables in the multiset patterns. Notably, the
multisets Φi and ¬Φi encode the appearance of variable xi in the conjuncts for C
(1 ≤ i ≤ n) , hence, different initial CNFs can lead to different outcomes.

Secondly, if we determine the length of the rules by the sum of the cardinalities
of their left hand side and right hand side, there are rules of length proportional to
2n , where n is the number of variables in C. For this reason, the assumption that
an application of a rule takes place in constant time is crucial for ensuring the effi-
ciency of the model.

Once constructed, the rules will be universally applicable for all CNFs with n
variables and m conjuncts. This is illustrated in the following example.

In the theorem above, we examined the satisfiability of the conjunctive normal form
F, with n = 2 variables and m = 3 conjuncts. We asserted that, when n and m have the
same values, the constructed rules are universal for every CNF of that form.

To conclude this section, we provide an example to illustrate this universality of the
model.

Example 12  In this example, we examine the satisfiability of the CNF
G = (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ ¬x2 . In this case, n = 2 and m = 3 allowing us to estab-
lish the following rules already determined in the proof of the theorem

� ∣ x1 ∣ x2 ∣ Ξ →

�1

1
⋅ t3 ∣ �

1

2
⋅ (t1 ∣ t2) ∣ x2 ∣ Ξ →

�2

1
⋅ t3 ∣ Λ ∣ �2

3
⋅ t2 ∣ �

2

4
⋅ t1 ∣ Ξ →

t,

	 P. Battyányi

1 3

where Υ = t1 ∣ t2 and Δ = �1 ⋅Ψ1 ∣ �2 ⋅Ψ2 ∣ ¬�1 ⋅ ¬Ψ1 ∣ ¬�2 ⋅ ¬Ψ2 . Regard-
ing the multiset, we have Φ1 = t1,¬Φ1 = t2,Φ2 = t1 ∣ t2,¬Φ2 = t3 . By which,
MG = � ∣ x1 ∣ x2 ∣ �1 ⋅ t1 ∣ �2 ⋅ (t1 ∣ t2) ∣ ¬�1 ⋅ t2 ∣ ¬�2 ⋅ t3 follows. We obtain the
reduction sequence as below.

where Ξ = �1 ⋅ t1 ∣ �2 ⋅ (t1 ∣ t2) ∣ ¬�1 ⋅ t2 ∣ ¬�2 ⋅ t3 . The last multiset cannot be
reduced any further, as none of the strings equals Λ . Hence, we can deduce that G is
not satisfiable.

4 � Conclusion

In this paper, we selected the String Multiset Rewriting calculus, developed by Bar-
buti et al [4], as our computational model. This calculus operates on multisets of
strings, utilizing a rewrite mechanism based on pattern matching. We aimed to dem-
onstrate that the model could, at least in principle, serve as a computational tool for
solving hard problems. We achieved this by showing that, for any conjunctive normal
form C = D1 ∨… ∨ Dm of n variables, there exists a multiset comprised of 3n + 1
strings, each string being of length at most m, and there are n + 1 rewrite rules such
that the subsequent application of the rewrite rules determines the satisfiability of C
in n + 1 steps. Importantly, this method is universal: the rewrite rules apply uniformly
to any conjunctive normal form of n variables and m conjuncts. Only the starting
multiset may vary, indicating the difference. This demonstrates that the String Multi-
set Rewriting calculus could potentially serve as a parallel computational model, sig-
nificantly reducing computational time once an efficient implementation is provided.

Funding  Open access funding provided by University of Debrecen. The work is supported by the EFOP-
3.6.3-VEKOP-16-2017-00002 project.

𝛼 ∣ x1 ∣ Δ →𝛼1

1
⋅ Υ⊖Λ 𝛼1

1
⋅Ψ1 ∣

𝛼1

2
⋅ Υ⊖Λ 𝛼1

2
⋅ ¬Ψ1 ∣ Δ,

{|𝛼1

1
|}X ∣ {|𝛼1

2
|}Y ∣ x2 ∣ Δ →{|𝛼2

1
|}X ⊖Λ 𝛼2

1
⋅Ψ2 ∣

{|𝛼2

2
|}X ⊖Λ 𝛼2

2
⋅ ¬Ψ2 ∣

{|𝛼2

3
|}Y ⊖Λ 𝛼2

3
⋅Ψ2 ∣

{|𝛼2

4
|}Y ⊖Λ 𝛼2

4
⋅ ¬Ψ2 ∣ Δ,

Λ ∣ �x2 ∣ �x3 ∣ �x4 ∣ �y1 ∣ �y2 ∣ �y3 ∣ �y4 →t,

� ∣ x1 ∣ x2 ∣ Ξ →

�1

1
⋅ (t2 ∣ t3) ∣ �

1

2
⋅ (t1 ∣ t3) ∣ x2 ∣ Ξ →

�2

1
⋅ t3 ∣ �

2

2
⋅ t2 ∣ �

2

3
⋅ t3 ∣ �

2

4
⋅ t1 ∣ Ξ,

1 3

Solving the SAT problem with the string multiset rewriting…

Declarations 

Conflict of interest  The author declares no conflict of interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Alhazov A, Cojocaru S, Gheorghe M, Rogozhin Y, Rozenberg G, Salomaa A (eds.) (2014) Mem-
brane Computing. CMC 2013. Lecture Notes in Computer Science, vol. 8340, Springer, Berlin, Hei-
delberg. https://​doi.​org/​10.​1007/​978-3-​642-​54239-8_​14

	 2.	 Ausiello G, Karhumäki J, Mauri G, Ong L (eds.) (2008) Fifth IFIP international conference on
theoretical computer science-TCS 2008. IFIP International federation for information processing,
Springer, vol. 273, Boston, MA. https://​doi.​org/​10.​1007/​978-0-​387-​09680-3_​18

	 3.	 Bagossy A, Battyányi P, An encoding of the �-calculus in the String MultiSet Rewriting calculus,
Acta Informatica (to appear)

	 4.	 Barbuti R, Caravagna G, Maggiolo-Schettini A, Milazzo P (2008) An intermediate language for the
simulation of biological systems. Electron Notes Theoret Comput Sci 194:19–34

	 5.	 Barbuti R, Maggiolo-Schettini A, Milazzo P, Troina A (2006) A calculus of looping sequences for
modelling microbiological systems. Fund Inform 72:21–35

	 6.	 Braich RS, Chelyapov N, Johnson C, Rothemund PWK, Adleman L (2002) Solution of a 20-Vari-
able 3-SAT problem on a DNA computer. Science 296:499–502. https://​doi.​org/​10.​1126/​scien​ce.​
10695​28

	 7.	 Cardelli L, Brane Calculi. Interactions of biological membranes. In [10] 257–280
	 8.	 Cardelli L (2008) From processes to ODEs by Chemistry. In [2] 261–281
	 9.	 Danos V, Laneve C (2004) Formal molecular biology. Theoret Comput Sci 325:69–110
	10.	 Danos V, Schachter V (eds.) (2005) 1CMSB’04: Proceedings of the 20 international conference on

computational methods in systems biology. Lecture Notes in Computer Science, vol. 3082, Springer,
Berlin

	11.	 Gazdag Zs Solving SAT by P Systems with active membranes in linear time in the number of vari-
ables. In [1] 189–205

	12.	 Gutiérrez-Naranjo MA, Pérez-Jiménez MJ, Romero-Campero FJ (2007) A uniform solution to SAT
using membrane creation. Theoret Comput Sci 371:54–61

	13.	 Lipton RJ (1995) Using DNA to solve NP-complete problems. Science 268:542–545
	14.	 Martinelli F, Bistarelli S, Cervesato I, Lenzini G, Marangoni R, Representing biological systems

through multiset rewriting. In [15], 415–426
	15.	 Moreno Diaz R, Pichler F (eds.) (2004) Computer aided systems theory (EUROCAST ’03). Lecture

Notes in Computer Science, vol. 2809, Springer
	16.	 Păun Gh (1999) P systems with active membranes: attacking NP complete problems. J Automata

Lang Comb 6(1):75–90
	17.	 Păun Gh (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143
	18.	 Priami C (1995) Stochastic �-Calculus. Comput J 38(7):578–589
	19.	 Thachuk C, Liu Y (eds.) (2019) DNA computing and molecular programming. DNA 2019.

Lecture Notes in Computer Science, vol. 11648, Springer, Cham. https://​doi.​org/​10.​1007/​
978-3-​030-​26807-7_1

	20.	 Troják M, Šafránek D, Brim L, Šnalagovič J, Červený J (2020) Executable biochemical space for
specification and analysis of biochemical systems. Electron Notes Theoret Comput Sci 350:91–116

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-642-54239-8_14
https://doi.org/10.1007/978-0-387-09680-3_18
https://doi.org/10.1126/science.1069528
https://doi.org/10.1126/science.1069528
https://doi.org/10.1007/978-3-030-26807-7_1
https://doi.org/10.1007/978-3-030-26807-7_1

	 P. Battyányi

1 3

	21.	 Troják M, Pastva S, Šafránek D, Brim L, Regulated multiset rewriting systems, arXiv:​2111.​13036
	22.	 Troják M, Šafránek D, Pastva S, Brim L (2023) Rule-based modelling of biological systems using

regulated rewriting. Biosystems 225:104843. https://​doi.​org/​10.​1016/j.​biosy​stems.​2023.​104843
	23.	 Winfree E. Chemical reaction networks and stochastic local search. In [19] 1–20

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/2111.13036
https://doi.org/10.1016/j.biosystems.2023.104843

	Solving the SAT problem with the string multiset rewriting calculus
	Abstract
	1 Introduction
	2 String multiset rewriting
	2.1 Multisets
	2.2 Fundamental notions
	2.3 Rewrite rules

	3 Solving the SAT-problem
	4 Conclusion
	References

