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Abstract
In this paper, we develop computing machinery within the framework of the String 
Multiset Rewriting calculus (SMSR), as defined by Barbuti et al. [4], to solve the 
SAT problem in linear time regarding the number of variables of a given conjunctive 
normal form. This shows that SMSR can be considered a computational model capa-
ble of significantly reducing the time requirement of classical decision problems.

Keywords  String multiset rewriting · Biologically motivated computing · SAT-
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1  Introduction

In the past few years, many computational models have been developed to model 
biological processes at the systems level, which involves describing the elements 
of complex systems and their mutual behaviour and interactions. Traditional 
approaches rely on mathematical methods mainly based on setting up ordinary dif-
ferential equations in connection with the chemical reactions. However, these sys-
tems can encounter difficulties when it comes to finding feasible models or estab-
lishing executable simulations. Computer science offers various formalisms based 
on high-level description of biological phenomena. For instance, the �-calculus of 
Danos and Laneve [9] serves as an example of a formal language that models pro-
tein interaction. On the other hand, the biochemical stochastic �-calculus [18] allows 
for both qualitative and quantitative investigations of composite systems. Addition-
ally, the brane calculi defined by Cardelli [7] or the membrane systems invented by 
Gh. Păun [17] are excellent models for describing cell-level processes. The calculus 
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of looping sequences [5] falls into this category: these models allow the extensive 
use of mathematical tools in describing biological processes. However, constructing 
efficient simulators for these high level languages, such as the calculus of looping 
sequences and the brane calculi, can be quite challenging.

To meet the requirement of finding a formalism that is both expressive enough 
to describe biological processes and maintains language simplicity, some authors 
choose to base their calculi on multisets as objects. Barbuti et  al. [4, 5] devel-
oped formalisms centered around pattern matching as the main tool underlying 
the evolvement of multisets. Others attempt to integrate rule-based modeling with 
a chemical reaction-type formalism [20] or enhance the labeled transition system 
with a regulating mechanism for rules [21]. The calculus developed in [4] was called 
the String Multiset Rewriting calculus (SMSR). As part of a series of investigation 
conducted by the author regarding biologically motivated calculi [3], especially, the 
string multiset rewriting formalism, this paper also adopts this calculus. Interest-
ingly, independent of our current account, the investigation initiated in [22], aiming 
to merge regulated rules with rewrite mechanisms based on pattern matching, also 
leverages the formalism introduced by Barbuti et al. The SMSR calculus arouse as a 
simplified version of the calculus of looping sequences [5]. Due to its simplicity and 
the powerful pattern matching mechanism, SMSR can serve as the foundation for a 
declarative description of biological processes and thus provide an elegant solution 
for establishing the background formalism for a mathematically precise treatment. 
Hopefully, its overall construction may prove to be simple enough to facilitate the 
development of efficient future simulators. Specifically, we work with multisets of 
string elements that constitute the underlying objects of the calculus. The central 
tool for manipulating multisets is the maximal matching operator, which allows for 
the replacement of complete submultisets where the strings share the same prefix. 
The idea is that, by capturing the tree-like structure of terms, a string can represent 
a path from the root to one of the leaves, where at the leaves the elements constitut-
ing the terms can be found. If we simultaneously replace all the strings with a com-
mon prefix with a multiset of strings starting with the same prefix, then the tree-like 
structure is preserved. This mechanism corresponds to rewriting processes in term 
rewriting systems. In addition to the simplicity of the elements of the calculus, as we 
have mentioned before, another compelling reason for the SMSR calculus to be con-
sidered a promising candidate for potential future implementations in higher-level 
languages is the inclusion of pattern matching within the maximal matching opera-
tor. In their paper, Barbuti et al [4] showed how the calculus of looping sequences 
formalism can be corresponded to string multiset rewriting. Additionally, Barbuti 
et al. pointed out in [5] that their method can serve as a template for translating other 
formalisms, like P systems or brane calculi, into the framework of string multiset 
rewriting. Therefore, even though the SMSR calculus is based on a simple structure 
with just one rewrite operator, it still has the capability to express the interactions 
between elements that more complex formalisms are capable of.

There have been numerous results based on parallel and distributed computa-
tional models, in which the SAT problem has been shown to be solvable in fewer 
than an exponential number of steps relative to the input size, considering only the 
computational steps allowed by the underlying model [6, 11–13, 16, 23]. Most of 
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them rely on a quite complex formalism constructed in a biologically inspired com-
putational model. This paper demonstrates that even a simple formalism like the 
string multiset rewriting calculus can achieve a level of parallelization sufficient for 
effectively solving a hard problem like SAT. It does so by establishing the exist-
ence of a multiset such that, for any conjunctive normal form (CNF) C with n vari-
ables and m conjuncts, the constructed multiset comprises 3n + 1 submultisets, each 
consisting of at most m strings. Additionally, we can provide n + 1 rewrite rules 
such that, by applying these rules to the initial multiset, we can determine in n + 1 
rewriting steps whether C is satisfiable. The construction is uniform: the rules estab-
lished depend only on the values of n and m. Furthermore, the multiset assigned to 
the CNF can be constructed in polynomial time with respect to n and m. However, 
the size of the rules is exponential in n, which implies that an exponential space is 
needed for an implementation. In addition, the supposition that each rule applica-
tion takes constant time is crucial for maintaining the efficiency. Taking all of this 
into consideration, SMSR is a truly parallel computational model. With the afore-
mentioned assumptions, it is capable of significantly reducing computational time, 
provided we accept the exponential time hypothesis, which posits that SAT cannot 
be solved in subexponential time. Naturally, this computational model of string 
rewriting involves operations that are hypothetical considering our current compu-
tational capabilities and are very costly on sequential computational architectures. 
The majority of the work is accomplished by the highly parallel rules of the multiset 
rewriting calculus, which operate using pattern matching and the evaluation of pat-
terns to obtain concrete multisets as values.

2 � String multiset rewriting

In this section, we will provide a brief introduction to the calculus of String MultiSet 
Rewriting (SMSR), following the presentation in [4]. Initially, we provide some of 
the relevant definitions concerning multisets.

2.1 � Multisets

In this subsection, we briefly recall the main definitions regarding multisets over a 
finite nonempty set. Let ℕ denote the set of natural numbers and ℕ+ denote the set of 
positive integers, respectively, and let U be a finite nonempty set. A multiset M over 
U is a pair M = (U, f ) , where the mapping f ∶ U → ℕ gives the multiplicity of each 
element a ∈ U . If f (a) = 0 for each a ∈ U , then M is the empty multiset. The num-
ber of elements in a multiset M, that is, the elements a ∈ U with positive multiplic-
ity is denoted by |M| and we refer to this number as the cardinality of M. In our case, 
the cardinality of a string multiset M will be the number of strings in M.

Next, we define some elementary operations on multisets. Let 
M1 = (U, f1),M2 = (U, f2) . Then (M1 ⊓M2) = (O, f ) where f (a) = min{f1(a), f2(a)} ; 
(M1 ⊔M2) = (O, f �) , where f �(a) = max{f1(a), f2(a)} ; (M1 ⊕M2) = (O, f ��) , where 
f ��(a) = f1(a) + f2(a) ; (M1 ⊖M2) = (O, f ���) where f ���(a) = max{f1(a) − f2(a), 0} ; 
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and M1 ⊑ M2 , if f1(a) ≤ f2(a) for all a ∈ O . For our purposes, we will modify the 
subtraction operator in the following way: when M1 ⊑ M2 , then the result of the sub-
traction should be a designated element Λ ∈ U , instead of 0. We will denote the 
modified subtraction operator as ⊖Λ . For example, let U = {a, b, c,Λ} be the under-
lying set and suppose M1 = a3bc2 and M2 = a3b2c . Then M1 ⊖Λ M2 = c . On the 
other hand, if M�

1
= a3bc2 and M�

2
= a3b2c2 , then M�

1
⊖Λ M�

2
= Λ.

2.2 � Fundamental notions

In their paper [4], Barbuti et al. introduced the notion of the String MultiSet Rewrit-
ing calculus (SMSR). Initially, we establish the syntax, followed by the develop-
ment of a theory based on multiset rewriting, subject to certain structural congru-
ence relations. Naturally, the multisets can evolve according to the rewriting rules 
specified in the next subsection, modulo these congruence relations. The resulting 
computational model is commutative and associative with respect to the multiset 
union operator. In the definition below, we assume there is an underlying alphabet E , 
which can be either finite or infinite.

Definition 1  Multisets M and strings S over an alphabet E are defined by the follow-
ing grammar:

where � represents the empty string, e stands for a generic element of the alphabet 
E , ⋅ denotes string concatenation, and | is the multiset union. The set comprising all 
multisets is denoted by M , while the set of all strings is denoted by S . An arbitrary 
element of S is represented by lowercase Greek letters such as � , � , and so on. We 
may omit the operation ⋅ between the elements of a string if there is no potential for 
confusion.

The multiset operation | functions as the standard multiset constructor. We 
assume that | is both commutative and associative, allowing us to omit parentheses 
when no confusion arises. The following structural congruence relation encapsulates 
the associativity of ⋅ and |, the commutativity of |, and the neutral role of � as both an 
element and a string.

Definition 2  Let �, �1, �2, �3 be strings and M,M1,M2,M3 be multisets. The structural 
congruence relation ≡ is the least congruence relation on multisets with the follow-
ing properties:

Keeping all of this in mind, we can now introduce the concept of patterns, 
which will be the key notion in the definition of the rewriting rules. We will 

M = S |
| (M | M)

S = � |
| e |

| S ⋅ S

�1 ⋅ (�2 ⋅ �3) ≡ (�1 ⋅ �2) ⋅ �3 � ⋅ � ≡ �

M1 | M2 ≡ M2 | M1 M1 | (M2 | M3) ≡ (M1 | M2) | M3 M | � ≡ M
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assume an infinite supply of variables denoted as V = VE ∪ V
S
∪ V

M
 , where 

VE = x, y, z,… represents the infinite set of element variables, V
S
= x̃, ỹ, z̃,… 

stands for the infinite set of string variables, and V
M
= X, Y , Z,… signifies the 

infinite set of multiset variables. Multiset patterns are defined as follows.

Definition 3  We define multiset patterns MP and string patterns SP over an alphabet 
E by the grammar below:

Patterns are the general instructions for evaluating multiset terms. A rewrite 
rule consists of a pair of patterns, where the first pattern matches the term to be 
modified and the second one determines the result of the rule application.

Given an evaluation � ∶ VE ∪ V
S
→ S together with a function � ∶ V

M
→ ℕ , we 

can lend meaning to the multiset patterns as follows. The pattern expansion func-
tion ⟨_⟩�

�
 assigns a multiset over E to the multiset pattern. Multiset patterns of the 

form {|SP|}X correspond to a union of a sequence of patterns, all having the same 
SP prefix followed by the evaluation of different string variables.

In the following definition, we provide the interpretation of multiset patterns in 
relation to a function � ∶ V

M
→ ℕ and an evaluation � ∶ VE ∪ V

S
→ S . Intuitively, 

the function � ensures that all the string and element variables appearing in a pat-
tern are instantiated, while the function � determines the number of strings in the 
multiset obtained as the result of evaluating a pattern of the form {|S|}X.

Definition 4  Assume a function � ∶ V
M
→ ℕ and an evalua-

tion � ∶ VE ∪ V
S
→ S are given. The pattern expansion function 

⟨_⟩−
_
∶ MP × (V

M
→ ℕ) × (VE ∪ V

S
→ S) → M is recursively defined as follows: 

(1)	 ⟨SP⟩�
�

= �(SP)

(2)	 ⟨{�SP�}�
X
⟩� = �(SP) ⋅ � (̃x1) � … � �(SP) ⋅ � (̃x�(X)) where x̃ ∈ V

S

(3)	 ⟨MP1 � MP2⟩
�
�

= ⟨MP1⟩
�
�
� ⟨MP2⟩

�
�
.

In the previous definition, if a multiset variable X is given, then � ∶ V
M
→ ℕ 

selects new string variables x̃1,… , x̃�(X) for the expansion. To be more precise, 
� ∶ V

M
→ (V

S
)n holds for some n determined by � . Moreover, we assume that, 

if X and Y are distinct multiset variables, then �(X) and �(Y) use different string 
variables, that is, if �(X) = n and �(Y) = m , then the variable sets {x̃1,… , x̃n} and 
{ỹ1,… , ỹm} appearing in the expansion of �(X) and �(Y) are disjoint. While we 
employ the informal notation introduced in the definition, we bear in mind the 
stipulations just agreed upon. We will now illustrate the previous definition by an 
example.

Example 5  Let E = {a, b, c} be the element set. Then MP1 = x ⋅ y ∣ a ⋅ x and 
MP2 = {|a|}X ∣ x̃ are examples for multiset patterns. If we set �(x) = �(y) = c , 

MP = SP |
| MP | MP |

| {|SP|}X

SP = � |
| e |

| SP ⋅ SP |
| x̃ |

| x
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� (̃x) = a ⋅ b , �(X) = 2 and � (̃x1) = a and � (̃x2) = a ⋅ a , then we are able to determine 
the values of the patterns MP1 and MP2 with respect to the values of the functions � 
and � . Namely, ⟨MP1⟩

�
�
= c ⋅ c ∣ a ⋅ c and ⟨MP2⟩

�
�
= a ⋅ a ∣ a ⋅ a ⋅ a ∣ a ⋅ b.

2.3 � Rewrite rules

In the following subsection, we will define the rewrite rules. To ensure that this 
paper is self-contained, we provide a precise definition of rewriting. Intuitively, 
the result of applying a rewrite rule involves substituting a multiset M with 
another multiset M′ . This process is governed by a rule (MP1,MP2) ∈ ℜ , where 
MP1 and MP2 are multiset patterns such that ⟨MP1⟩

�
�
= M and ⟨MP2⟩

�
�
= M� hold, 

with some � and � . To enhance understanding, we introduce several technical def-
initions that are based on the paper [4].

Definition 6     

1.	 Let Var(MP) denote the set of variables appearing in a multiset pattern with 
the provision that Var({|SP|}X) = Var(SP) ∪ {x̃i ∣ i ∈ ℕ} . For example, 
Var(a ⋅ x̃ ∣ y ∣ {|�|}Y ) = {x̃, y} ∪ {ỹi ∣ i ∈ ℕ}.

2.	 Let Symbols(M) denote the set of elements of E that appear in the multiset pattern 
or multiset M. For instance, Symbols(a ⋅ x|a ⋅ b|{|d|}X) = {a, b, d} . We assume that 
Symbols extends to a set of multiset patterns or multisets and we define the set of 
fresh names for a multiset M as E ⧵ Symbols(M).

3.	 A rewrite rule is a pair (MP,MP�) of patterns such that MP is non-empty. An 
instantiation is a function � ∶ VE ∪ V

S
→ M.

4.	 A multiset pattern MP is ground if and only if Var(MP) = � . A rule 
R = (MP,MP�) is ground if and only if both MP and MP′ are ground. We write 
Var(R) = Var(MP) ∪ Var(MP�) and Symbols(R) = Symbols(MP) ∪ Symbols(MP�).

5.	 Le t  R = (MP,MP�) .  Then  FV(R) = {v ∣ v ∈ Var(MP�)⧵Var(MP)} and 
BV(R) = Var(R)⧵FV(R).

Before delving into the semantics of the rewrite step, we aim to clarify the 
related concepts in a more intuitive manner.

Definition 7  The multisets M and M′ can be matched by applying the rule 
(MP1,MP2) if ⟨MP1⟩

�
�
= M and ⟨MP2⟩

�
�
= M� , where � ∶ V

M
→ ℕ is an auxiliary 

function and � is an instantiation. Let us assume M ⊑ N , that is, N is a containing 
multiset, and M matches M′ . When this is the case, we obtain the result of applying 
the rewrite rule by replacing the submultiset M of N by M′ . Furthermore, we make 
sure that no string in N that does not belong to M begins with a prefix shared by all 
the strings in M.

Now, we are ready to define the semantics of the rewrite rules.
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Definition 8  Let R = (MP1,MP2) ∈ ℜ . An application of R can be described as fol-
lows. Assume M,M′ are multisets such that ⟨MP1⟩

�
�
= M and ⟨MP2⟩

�
�
= M� for some 

� and � . 

1.	 Assume Symbols(�(BV(R)) ∪ Symbols(R)) ∩ Symbols(�(FV(R))) = � . Then we 
write 

2.	 If M
(�,� )
����������������→ M� and (∀S ∈ 𝜉)(∄S� ∈ S)(S ⋅ S� ⊑ M��) and Symbols(M��) ∩ � = � , then 

The first item expresses that each substituted occurrence of a maximal matching 
operator counts in the reduction step. We lead a book-keeping containing the occur-
rences of the maximal matching operator together with the names occurring as occu-
pied names in the multiset patterns of the rule applied. The second item ensures that, 
when a string with prefix SP� appears in M, then all strings with the same prefix is 
treated in the current rewrite step.

Let us illustrate with an example how the rewrite process takes place.

Example 9  Let M = b | b ⋅ c | b ⋅ d . Let R1 = {|b|}X ↪ a and R2 = b ⋅ x̃ | {|b|}X ↪ a 
be two rules. Then 

1.	 Then M ↪ M�� = a is a correct derivation by applying R1 with �2(X) = 3 and 
�2(̃x1) = � , �2(̃x2) = c and �2(̃x3) = d.

2.	 Likewise, b | b ⋅ c | b ⋅ d ↪R2
b | a with �1(̃x) = � , �1(X) = 2 and �1(̃x1) = c , 

�1(̃x2) = d is a correct application of R2 to M.
3.	 However, 

 would be an incorrect derivation, since it violates the stipulation that ⟨{�b�}X⟩�� 
should be the maximal subterm of M the strings of which start with the common 
prefix b.

3 � Solving the SAT‑problem

In this section, we present a decision procedure for the SAT problem that is linear in 
the number of the variables of the given conjunctive normal form (CNF), taking into 
account the computational steps performed in the SMSR-calculus. Firstly, we provide a 
short account of the SAT problem. A formula of the form

M
({SP𝜎∣⟨{�SP�}X⟩

𝜎
𝜌
⊑M},Symbols(𝜎(FV(R)))

����������������������������������������������������������������������������������������������������������������������������������→ M�. (1)

M�� ∣ M
(�,� )
����������������→ M�� ∣ M�. (2)

b | b ⋅ c | b ⋅ d ↪R1
a | b ⋅ d

C = D1 ∧ D2 ∧⋯ ∧ D
m

(1 ≤ m),
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is considered a conjunctive normal form if D
i
= A

i1 ∨ A
i2 ∨⋯ ∨ A

iki
 , where Aij is 

either a propositional variable or its negation (1 ≤ i ≤ m, 1 ≤ j ≤ ki) and ki ∈ ℕ . We 
denote variables with lower case letters x1, x2,… . The SAT problem involves find-
ing at least one assignment, a function assigning truth values to the variables, which 
satisfies the underlying conjunctive normal form. Since there is a finite number of 
variables in each CNF, the SAT problem is in general decidable. The challenge lies 
in finding a method capable of deciding the satisfiability problem for any CNF for-
mula in less than exponential time, at least in principle. Below, we present one based 
on the SMSR calculus.

Theorem 10  The SAT problem can be decided in the SMSR calculus in time that is 
linear in the number of variables.

Proof  Let C = D1 ∧ D2 ∧⋯ ∧ D
m
 be a conjunctive normal form. Assume there are 

n distinct variables {x1,… , xn} appearing in C. We will construct a multiset and the 
corresponding rewrite rules such that, by starting from this multiset and applying the 
rules, we can decide in n + 1 rule applications whether C is satisfiable. To facilitate 
comprehension, we will provide a running example throughout the proof.

We will begin by considering the general case. Let C = D1 ∧ D2 ∧⋯ ∧ D
m
 as 

defined above. We establish the multiset MC corresponding to C. Our main idea is to 
devise a multiset pattern for capturing the interpretations that satisfy C, preserving 
only those in the end that do not make C true. We keep track of the appearances of xj 
( ¬xj , resp.) in the conjuncts D1,… ,Dm with the help of the strings starting with pre-
fix �j ( ¬�j , resp.) in MC . The rules will allow us to develop the multiset MC through 
n rule applications. The multiset emerging after the jth rule application leaves us 
with a guidance on how to choose the values of the variables x1,… , xj for an inter-
pretation satisfying all of the conjuncts, if any exist. Taking all of this into consider-
ation, we begin by defining the language and the rewrite rules. The underlying set 
for the string multisets is E = V ∪ T ∪ A , where V = {#x1,… , #xn} for the variables 
in C, and T = {t1,… , tm} for each of the disjunctions D1 … ,Dm and, in addition, a 
finite number of auxiliary elements 
A = {�, �} ∪ {�i

j
∣ 1 ≤ i ≤ n, 1 ≤ j ≤ 2i} ∪ {�i,¬�i ∣ 1 ≤ i ≤ m} should be present 

for the evaluation of the variables in C. Additionally, let {ui
j
, vi

j
∣ 1 ≤ j ≤ m, 1 ≤ i ≤ n} 

be element variables. If � ∈ E , then we denote the multiset � ⋅ �1 ∣ … ∣ � ⋅ �p by 
� ⋅ (�1 ∣ … ∣ �p) . In what follows, we will omit the outermost parentheses of the mul-
tisets if no confusion arises. Moreover, let us write Ψi = ui

1
∣ … ∣ ui

m
 and 

¬Ψi = vi
1
∣ … ∣ vi

m
 , where 1 ≤ i ≤ n and 1 ≤ j ≤ m . Let us define the following multi-

sets. Let 1 ≤ i ≤ n be arbitrary, and let us denote by Φi the multiset Φi = �i
1
∣ … ∣ �i

m
 

such that �i
j
 is tj if xi ∈ Dj for some 1 ≤ j ≤ m and undefined otherwise. Similarly, 

we write ¬Φi = ¬�i
1
∣ … ∣ ¬�i

m
 , where ¬�i

j
 are supposed to be the following ele-

ments of E : let ¬�i
j
 be tj if ¬xi ∈ Dj and undefined otherwise (1 ≤ j ≤ m) . Below, let 

Υ = t1 ∣ … ∣ tm , and, for the sake of simplicity, we write xi instead of #xi (1 ≤ i ≤ n) . 
We now define the initial multiset assigned to C as 
MC = � ∣ x1 ∣ … ∣ xn ∣ �1 ⋅Φ1 ∣ … ∣ �n ⋅Φn ∣ ¬�1 ⋅ ¬Φ1 ∣ … ∣ ¬�n ⋅ ¬Φn.
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Let us consider the following example. Suppose we have 
F = (x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2) . Then F contains two variables and con-
sists of three elementary disjunctions. In this case, n = 2 and m = 3 . Let D1 , D2 
and D3 stand for the disjunctions in the given order. The multisets Ψ and ¬Ψ are 
exclusively determined by the values of n and m: we have Ψi = ui

1
∣ ui

2
∣ ui

3
 and 

¬Ψi = vi
1
∣ vi

2
∣ vi

3
 for i ∈ {1, 2} . Let us now establish the values of Φi and ¬Φi , where 

i ∈ {1, 2} . Since x1 appears in D1 and D2 , we have Φ1 = t1 ∣ t2 . Furthermore, ¬x1 
appears only in D3 , hence ¬Φ1 = t3 . Similarly, Φ2 = t1 and ¬Φ2 = t2 ∣ t3 . We obtain 
MF = � ∣ x1 ∣ x2 ∣ �1 ⋅ (t1 ∣ t2) ∣ �2 ⋅ t1 ∣ ¬�1 ⋅ t3 ∣ ¬�2 ⋅ (t2 ∣ t3) for the multiset corre-
sponding to F.

Continuing the discussion of the general case, we now define the rewriting rules. 
Let the first rule be

Observe that Ψi unifies with Φi and ¬Ψi unifies with ¬Φi (1 ≤ i ≤ n) . Let 1 ≤ j ≤ m be 
given. Then 𝛼1

1
⋅ 𝜙1

j
∈ 𝛼1

1
⋅ Υ⊖Λ 𝛼1

1
⋅Φ1 conveys a “negative” information. That is, 

setting x1 to true is not enough to guarantee that Dj is satisfied in this case. Similarly, 
𝛼1

2
⋅ ¬𝜙1

j
∈ 𝛼1

1
⋅ Υ⊖Λ 𝛼1

1
⋅ ¬Φ1 if and only if ¬x1 does not appear in Dj , hence, setting 

x1 to false will not make Dj true. In general, we define the i + 1-st rule as follows.

where the right hand side of the rule is obtained from the left hand side in the fol-
lowing way. Let {|�i

j
|}Xi

j
 be a member of the left hand side. We then add the following 

multiset patterns to the right hand side of the rule. We form the multiset patterns 
{|�i+1

2j−1
|}Xi

j
 and {|�i+1

2j
|}Xi

j
 , respectively. Afterward, we conduct subtraction using the 

multisets �i+1
2j−1

⋅Ψi+1 and �i+1
2j

⋅ ¬Ψi+1 . This process entails that, when we instantiate 
the variables of the multiset patterns through the actual sequence of rule applica-
tions, a multiset pattern of the form {|�i

j
|}Xi

j
 transforms into a multiset of strings 

beginning with �i
j
 . more precisely, it becomes �i

j
⋅ (�1 ∣ … ∣ �l) for some 

Θi
j
= �1 ∣ … ∣ �l.

𝛼 ∣ x1 ∣ 𝛽1 ⋅Ψ1 ∣ … ∣ 𝛽n ⋅Ψn ∣ ¬𝛽1 ⋅ ¬Ψ1 ∣ … ∣ ¬𝛽n ⋅ ¬Ψn →

𝛼1

1
⋅ Υ⊖Λ 𝛼1

1
⋅Ψ1 ∣ 𝛼

1

2
⋅ Υ⊖Λ 𝛼1

2
⋅ ¬Ψ1 ∣

𝛽1 ⋅Ψ1 ∣ … ∣ 𝛽n ⋅Ψn ∣ ¬𝛽1 ⋅ ¬Ψ1 ∣ … ∣ ¬𝛽n ⋅ ¬Ψn.

{|𝛼i
1
|}Xi

1

∣ {|𝛼i
2
|}Xi

2

∣ … ∣ {|𝛼i

2i
|}Xi

2i
∣ xi+1

∣ 𝛽1 ⋅Ψ1 ∣ … ∣ 𝛽n ⋅Ψn ∣ ¬𝛽1 ⋅ ¬Ψ1 ∣ … ∣ ¬𝛽n ⋅ ¬Ψn →

{|𝛼i+1
1

|}Xi
1

⊖Λ 𝛼i+1
1

⋅Ψi+1 ∣

{|𝛼i+1
2

|}Xi
1

⊖Λ 𝛼i+1
2

⋅ ¬Ψi+1 ∣

…

{|𝛼i+1
2i+1−1

|}Xi

2i
⊖Λ 𝛼i+1

2i+1−1
⋅Ψi+1 ∣

{|𝛼i+1
2i+1

|}Xi

2i
⊖Λ 𝛼i+1

2i+1
⋅ ¬Ψi+1 ∣

𝛽1 ⋅Ψ1 ∣ … ∣ 𝛽n ⋅Ψn ∣ ¬𝛽1 ⋅ ¬Ψ1 ∣ … ∣ ¬𝛽n ⋅ ¬Ψn,
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In the new multiset, we simply replace �i
j
 at the beginning of the string with �i+1

2j−1
 

and, in the next step, with �i+1
2j

 . Subsequently, we subtract the corresponding multi-
sets Φi+1 and ¬Φi+1 , respectively. In other words, �i

j
⋅ Θi

j
 is replaced by two multisets: 

�i+1
2j−1

⋅ Θi+1
2j−1

 and �i+1
2j

⋅ Θi
2j

.
Intuitively, when 1 ≤ j ≤ 2i , the multiset Θi

j
 obtained by rule application j repre-

sents an interpretation for the variables x1,… , xi ranging from when all the variables 
are true to when all of them are false. Let these interpretations be denoted as 
I1,… , I2i for a fixed 1 ≤ i ≤ n . Then Θi

j
 comprises the tp ’s such that Ij does not sat-

isfy Dp , where 1 ≤ j ≤ 2i and 1 ≤ p ≤ m . We perform all these rewrite steps for vari-
ables x1,… , xn , resulting in a total of n rewrite steps.

Regarding our running example, we can establish the following rules for the 
calculus

where Υ = t1 ∣ t2 and Δ = �1 ⋅Ψ1 ∣ �2 ⋅Ψ2 ∣ ¬�1 ⋅ ¬Ψ1 ∣ ¬�2 ⋅ ¬Ψ2 . The set of rules 
is determined solely by the number of variables and the number of conjuncts in F 
and can be constructed independently of the other properties of F.

We now need to verify whether, after performing n rewrite steps, at least one of 
the multisets �n

j
⋅ Θn

j
 (1 ≤ j ≤ 2n) is actually empty, denoted as Λ in our case. To this 

end, we define the following reduction rule:

The rule above unifies with the result if and only if at least one of the strings is Λ . 
The variables x̃2,… , x̃2n and ỹ1,… , ỹn, ỹn+1,… , ỹ2n stand for the rest of the strings. 
These are of the form �n

j
⋅ Θn

j
 (1 ≤ j ≤ 2n) , or �k ⋅Φk , or ¬�k ⋅ ¬Φk (1 ≤ k ≤ n) , or Λ , 

respectively. Hence, if Λ occurs among the multisets representing the interpretations 
for the variables x1,… , xn , then the entire computation evaluates to t. This determi-
nation can be made with a single rule application due to the commutativity of the 
multiset constructor.

In the context of our example, this implies that we need to supplement the set of 
rules with the following rule

This results in the following reduction sequence

𝛼 ∣ x1 ∣ Δ →𝛼1

1
⋅ Υ⊖Λ 𝛼1

1
⋅Ψ1 ∣

𝛼1

2
⋅ Υ⊖Λ 𝛼1

2
⋅ ¬Ψ1 ∣ Δ,

{|𝛼1

1
|}X ∣ {|𝛼1

2
|}Y ∣ x2 ∣ Δ →{|𝛼2

1
|}X ⊖Λ 𝛼2

1
⋅Ψ2 ∣

{|𝛼2

2
|}X ⊖Λ 𝛼2

2
⋅ ¬Ψ2 ∣

{|𝛼2

3
|}Y ⊖Λ 𝛼2

3
⋅Ψ2 ∣

{|𝛼2

4
|}Y ⊖Λ 𝛼2

4
⋅ ¬Ψ2 ∣ Δ,

Λ ∣ x̃2 ∣ … ∣ x̃2n ∣ ỹ1 ∣ … ∣ ỹn ∣ ỹn+1 ∣ … ∣ ỹ2n → t

Λ ∣ x̃2 ∣ x̃3 ∣ x̃4 ∣ ỹ1 ∣ ỹ2 ∣ ỹ3 ∣ ỹ4 → t.
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where Ξ = �1 ⋅ (t1 ∣ t2) ∣ �2 ⋅ t1 ∣ ¬�1 ⋅ t3 ∣ ¬�2 ⋅ (t2 ∣ t3) , showing that F is satisfiable. 	
� ◻

Remark 11  Assume a CNF C = D1 ∧ D2 ∧…Dm with n variables and m conjuncts 
is given. The above proof presents a string multiset rewriting calculus with n + 1 
rewriting rules and also a multiset of strings MC . By applying the rules successively 
to MC , we are able to decide in n + 1 rewriting steps whether C is satisfiable. In total, 
n + 1 rule applications are needed to achieve that goal. The multiset MC can be con-
structed in time polynomial with respect to n and m.

We have to make several observations at this point. First of all, we observe that 
our solution is universal in the sense that, although MC is specific to C, the rewrit-
ing steps are the same for every CNF with n variables and m conjuncts and there 
are n + 1 of them. Each rule is applied exactly once for the emerging multiset in the 
decision process. The result, however, will be connected with C since the rewrit-
ing steps involve substitutions for the variables in the multiset patterns. Notably, the 
multisets Φi and ¬Φi encode the appearance of variable xi in the conjuncts for C 
(1 ≤ i ≤ n) , hence, different initial CNFs can lead to different outcomes.

Secondly, if we determine the length of the rules by the sum of the cardinalities 
of their left hand side and right hand side, there are rules of length proportional to 
2n , where n is the number of variables in C. For this reason, the assumption that 
an application of a rule takes place in constant time is crucial for ensuring the effi-
ciency of the model.

Once constructed, the rules will be universally applicable for all CNFs with n 
variables and m conjuncts. This is illustrated in the following example.

In the theorem above, we examined the satisfiability of the conjunctive normal form 
F, with n = 2 variables and m = 3 conjuncts. We asserted that, when n and m have the 
same values, the constructed rules are universal for every CNF of that form.

To conclude this section, we provide an example to illustrate this universality of the 
model.

Example 12  In this example, we examine the satisfiability of the CNF 
G = (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ ¬x2 . In this case, n = 2 and m = 3 allowing us to estab-
lish the following rules already determined in the proof of the theorem

� ∣ x1 ∣ x2 ∣ Ξ →

�1

1
⋅ t3 ∣ �

1

2
⋅ (t1 ∣ t2) ∣ x2 ∣ Ξ →

�2

1
⋅ t3 ∣ Λ ∣ �2

3
⋅ t2 ∣ �

2

4
⋅ t1 ∣ Ξ →

t,
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where Υ = t1 ∣ t2 and Δ = �1 ⋅Ψ1 ∣ �2 ⋅Ψ2 ∣ ¬�1 ⋅ ¬Ψ1 ∣ ¬�2 ⋅ ¬Ψ2 . Regard-
ing the multiset, we have Φ1 = t1,¬Φ1 = t2,Φ2 = t1 ∣ t2,¬Φ2 = t3 . By which, 
MG = � ∣ x1 ∣ x2 ∣ �1 ⋅ t1 ∣ �2 ⋅ (t1 ∣ t2) ∣ ¬�1 ⋅ t2 ∣ ¬�2 ⋅ t3 follows. We obtain the 
reduction sequence as below.

where Ξ = �1 ⋅ t1 ∣ �2 ⋅ (t1 ∣ t2) ∣ ¬�1 ⋅ t2 ∣ ¬�2 ⋅ t3 . The last multiset cannot be 
reduced any further, as none of the strings equals Λ . Hence, we can deduce that G is 
not satisfiable.

4 � Conclusion

In this paper, we selected the String Multiset Rewriting calculus, developed by Bar-
buti et  al [4], as our computational model. This calculus operates on multisets of 
strings, utilizing a rewrite mechanism based on pattern matching. We aimed to dem-
onstrate that the model could, at least in principle, serve as a computational tool for 
solving hard problems. We achieved this by showing that, for any conjunctive normal 
form C = D1 ∨… ∨ Dm of n variables, there exists a multiset comprised of 3n + 1 
strings, each string being of length at most m, and there are n + 1 rewrite rules such 
that the subsequent application of the rewrite rules determines the satisfiability of C 
in n + 1 steps. Importantly, this method is universal: the rewrite rules apply uniformly 
to any conjunctive normal form of n variables and m conjuncts. Only the starting 
multiset may vary, indicating the difference. This demonstrates that the String Multi-
set Rewriting calculus could potentially serve as a parallel computational model, sig-
nificantly reducing computational time once an efficient implementation is provided.

Funding  Open access funding provided by University of Debrecen. The work is supported by the EFOP-
3.6.3-VEKOP-16-2017-00002 project.

𝛼 ∣ x1 ∣ Δ →𝛼1

1
⋅ Υ⊖Λ 𝛼1

1
⋅Ψ1 ∣

𝛼1

2
⋅ Υ⊖Λ 𝛼1

2
⋅ ¬Ψ1 ∣ Δ,

{|𝛼1

1
|}X ∣ {|𝛼1

2
|}Y ∣ x2 ∣ Δ →{|𝛼2

1
|}X ⊖Λ 𝛼2

1
⋅Ψ2 ∣

{|𝛼2

2
|}X ⊖Λ 𝛼2

2
⋅ ¬Ψ2 ∣

{|𝛼2

3
|}Y ⊖Λ 𝛼2

3
⋅Ψ2 ∣

{|𝛼2

4
|}Y ⊖Λ 𝛼2

4
⋅ ¬Ψ2 ∣ Δ,

Λ ∣ �x2 ∣ �x3 ∣ �x4 ∣ �y1 ∣ �y2 ∣ �y3 ∣ �y4 →t,

� ∣ x1 ∣ x2 ∣ Ξ →

�1

1
⋅ (t2 ∣ t3) ∣ �

1

2
⋅ (t1 ∣ t3) ∣ x2 ∣ Ξ →

�2

1
⋅ t3 ∣ �

2

2
⋅ t2 ∣ �

2

3
⋅ t3 ∣ �

2

4
⋅ t1 ∣ Ξ,
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