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Abstract
Network motifs are recurrent, small-scale patterns of interactions observed fre-
quently in a system. They shed light on the interplay between the topology and the 
dynamics of complex networks across various domains. In this work, we focus on 
the problem of counting occurrences of small sub-hypergraph patterns in very large 
hypergraphs, where higher-order interactions connect arbitrary numbers of system 
units. We show how directly exploiting higher-order structures speeds up the count-
ing process compared to traditional data mining techniques for exact motif discov-
ery. Moreover, with hyperedge sampling, performance is further improved at the 
cost of small errors in the estimation of motif frequency. We evaluate our method 
on several real-world datasets describing face-to-face interactions, co-authorship 
and human communication. We show that our approximated algorithm allows us to 
extract higher-order motifs faster and on a larger scale, beyond the computational 
limits of an exact approach.
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1 Introduction

Network motifs are recurring patterns of interactions among a small set of nodes 
that appear in an observed network at a significant frequency. Motif analysis has 
established itself as an important tool for investigating networks at their microscale, 
highlighting the interdependence between the topology and dynamics of real-world 
networked systems [1, 2]. In fact, interacting systems with close functionalities tend 
to display similar over- and under-represented patterns of interactions [3].

Network motifs have found a vast set of applications in a number of different 
domains, such as biology  [4–6], neuroscience  [7], medicine  [8], social network 
analysis [9], finance [10] and ecology [11, 12].

Given their multiple real-world applications, it is not surprising that the notion 
of network motifs has been extended to a variety of richer and more flexible net-
work models, including weighted [13], temporal [14, 15] and multilayer [16, 17] 
networks. Recently, growing interest has been devoted to modelling real-world 
systems with group interactions  [18, 19], from co-authorship  [20] to face-to-
face  [21] interactions, by exploiting more complex mathematical tools such as 
hypergraphs  [22], where hyperedges encode relationship among an arbitrary 
number of units. In hypergraphs, it is possible to identify higher-order motifs, 
i.e., connected sets of nodes interacting not only through pairwise edges but also 
through hyperedges encoding association among three or more nodes. In particu-
lar, higher-order motifs can be defined in terms of the overlapping patterns of 
hyperedges of a fixed size [23], or, more traditionally, by investigating all possi-
ble patterns of connected sub-hypergraphs for a given number of nodes [24].

Independently on the underlying network model, all the algorithms for motif 
analysis involve the following steps: (i) counting the occurrences of each motif 
in an observed network, (ii) counting the occurrences of each motif in suitable 
randomizations of the observed network and (iii) evaluating the over- and under-
expression of each motif. The problem of counting the frequency of each motif in 
a target large network is inherently computationally challenging since it is equiv-
alent to the problem of subgraph isomorphism, a well-known NP-complete prob-
lem. Moreover, for the statistical evaluation of motif frequencies, the counting 
step is repeated on each sample of the randomized graph model. Thus, exact algo-
rithms for motif analysis tend to scale very poorly with graph and pattern sizes. A 
common algorithm design pattern to speed up the computation, albeit sacrificing 
the quality of the solutions, is relying on approximated algorithms. In particular, 
sampling methods are a popular choice for the task of motif discovery.

The increasing availability of large-scale real-world datasets with group inter-
actions calls for the development of more efficient and usable algorithms for 
higher-order motif discovery. In this work, we build on our preliminary results 
regarding counting all the possible patterns of higher-order interactions involving 
a given number of nodes [24], and propose:
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• an efficient exact algorithm for performing higher-order motif analysis with 
motifs involving 3 and 4 nodes, including efficiently solving the hypergraph 
isomorphism problem for small instances and constructing vertex-induced 
sub-hypergraphs;

• an approximated method based on hyperedge sampling that overcomes the scala-
bility issues of the exact algorithm at the expense of only a very limited decrease 
of accuracy;

• the application of the approximated method to the study of higher-order motifs of 
order 5 (which are generally intractable for exact algorithms) in several networks 
of interest.

This paper is organized as follows. In Sect. 2 we survey related work. In Sect. 3 we 
introduce basic definitions and formalize the problem of interest. In Sect. 4 we out-
line our proposals for solving exactly the problem of higher-order motif discovery 
in hypergraphs. In Sect. 5 we propose a sampling algorithm for the same problem. 
In Sect. 6 we evaluate our proposals. In Sect. 7 we conclude the paper.

2  Related work

Network motifs have been extensively investigated:

• in the field of network science, for their relevance in the study of the local struc-
ture and the interplay between the topology and the dynamics of complex net-
works;

• in the field of data mining, due to the complexity of the problem of enumerating 
connected subgraphs up to a certain size from large graphs.

In this section, we propose a brief survey of the relevant prior work in both areas 
and highlight our contributions to both fields.

2.1  Network science

Network motifs describe complex networks by their preferential patterns of interac-
tions at the microscale. They can be interpreted as fundamental circuits that have 
a role in the functionality of a system [1, 2], and are therefore able to discriminate 
networks that represent systems from different domains or with different functionali-
ties [3]. The notion of network motifs has been extended to a variety of generalized 
network models, to encode and quantify a pattern of interactions with a richer set of 
features. Onnela et  al. generalize network motifs to weighted networks, character-
izing subgraphs in terms of their intensity and coherence [13]. In temporal networks, 
the topological and temporal microscale is described in terms of patterns of interac-
tions inside restricted time windows [14, 15]. Battiston et al. extend motif analysis to 
multilayer networks by considering over-expressed subgraphs spanning across sev-
eral layers  [16]. More recently, motif analysis has been extended also to consider 
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patterns of higher-order interactions, i.e., interactions involving an arbitrary num-
ber of nodes. In particular, Lee et  al. characterize real-world hypergraphs at their 
microscale in terms of patterns of connected hyperedges of fixed size [23]. However, 
they do not follow the traditional approach to network motifs first proposed by Milo 
et al. [1].

2.2  Data mining

Being the task of motif discovery of practical utility but computationally expensive 
(equivalent to the subgraph isomorphism problem, which is known to be NP-com-
plete), a vast amount of literature has been developed around this problem. In par-
ticular, the development of faster algorithms for motif analysis has been historically 
motivated mainly by the ever-growing size of biological datasets to be analyzed. The 
algorithms for motif discovery can be clustered in two big groups: exact counting 
and sampling methods. Each type of algorithm comes with advantages and draw-
backs: exact algorithms allow extracting the correct number of occurrences of each 
motif; however, they are usually slow and memory-intensive. Sampling methods 
are generally faster, but they need to be designed to avoid biases and only offer an 
approximation of the count of each motif. Historically, the interest of the community 
has moved from developing exact counting algorithms to developing approximated 
algorithms and heuristics able to tackle larger networks and extract larger motifs in 
an acceptable time, in spite of losing accuracy. The very first motif discovery algo-
rithm was the exhaustive enumeration method proposed by Milo et al. [1]. The enu-
meration of all the possible patterns of subgraphs of a given number of nodes is 
computationally expensive, and only really small subgraphs of size 3 and 4 could 
be analyzed. After that, a plethora of improvements have been proposed. Among 
those, we highlight the ESU and RAND-ESU algorithms [25]. ESU is an efficient 
algorithm that enumerates the set of all induced subgraphs of a given size from a 
large graph exploiting a tree-like data structure. RAND-ESU is an unbiased sam-
pling method built on top of ESU that samples the branches of the tree to visit. For 
a more in-depth overview of these algorithms, the interested reader can refer to [26].

While the amount of research for classic network motifs is huge, the data mining 
literature for generalized network motifs is far from being as complete, with some 
exceptions for temporal networks [27, 28]. In particular, the computational aspects 
associated with motif discovery in hypergraphs are largely overlooked. In their sem-
inal paper [29], Horváth et al. propose an incremental polynomial time algorithm for 
the related problem of mining frequent sub-hypergraphs in hypergraph databases. 
In their setting, the frequency of a sub-hypergraph corresponds to the number of 
hypergraphs in the database containing a query sub-hypergraph. In the case of min-
ing motifs, in which only one input hypergraph is considered, this algorithm can 
only find if a certain pattern of sub-hypergraph is present or not in the input hyper-
graph. Therefore, the algorithm proposed by Horváth et al. is not suited for mining 
motifs in a hypergraph, since we want to compute the exact number of occurrences 
of each possible pattern of sub-hypergraph in a given input hypergraph. Preti et al. 
tackle the problem of mining frequent patterns in simplicial complexes [30]. Albeit 
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both hypergraphs and simplicial complexes can represent higher-order interactions, 
the two mathematical objects present an important difference: simplicial complexes 
respect the downward closure property (i.e., in the case of hypergraphs, if a hyper-
edge e exists in a hypergraph H then also all the proper subsets of e exists in H ). Lee 
et al. propose a set of algorithms, including an exact, a parallel and an approximated 
algorithm for mining motifs in hypergraphs [23, 31]. However, they focus only on 
the problem of extracting patterns of overlaps between hyperedges of fixed size.

2.3  Contributions

In our previous work  [24], we adopt a traditional approach and extend to hyper-
graphs the original network motif definition proposed by Milo et al. [1], investigat-
ing all possible patterns of pairwise and group interactions among a given number of 
nodes. In [24], we extract fingerprints of real-world hypergraphs at their microscale 
and identify key motifs associated with families of hypergraphs belonging to dif-
ferent domains. Here, we build on our first work and further develop our algorithm 
for the efficient computation of frequencies of small patterns of sub-hypergraphs. 
While our proposal can outperform the baseline in every dataset, exact methods 
suffer from high computational costs and do not scale to large hypergraphs nor to 
patterns beyond four nodes. Hence, this paper introduces an approximated method 
for higher-order motif extraction based on hyperedge sampling as well. We show 
that our sampling method dramatically speeds up computations at the cost of only 
minimal errors in the estimation of motif frequency and allows us to analyse larger 
higher-order motifs beyond the computational limits of the exact approach.

3  Preliminaries and problem statement

Here we recall some basic definitions and give a formal description of the problem 
of our interest.

Definition 1 (Hypergraph) A hypergraph is a pair H = (V ,E) where V is the set of 
the vertices and E is the set of the hyperedges. A hyperedge e is a subset of V linking 
the vertices contained in it.

In Fig. 1 (left) we show an example of a hypergraph. We recall that a hypergraph 
in which every hyperedge links two vertices corresponds to the standard definition 
of a graph.

Definition 2 (Vertex-induced sub-hypergraph) The sub-hypergraph H[V �] induced 
by the subset V ′ ⊆ V  is the pair (V �

,E�) , where E� = {e ∈ E ∶ e ⊆ V �}.

Now we can define more formally the notions related to the isomorphism prob-
lem, which is the fundamental theoretical tool underlying network motif discovery.
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Definition 3 Two hypergraphs H = (V ,E) and H� = (V �
,E�) are isomor-

phic if they are identical modulo relabeling of the vertices. More formally, if 
there exists a bijection f ∶ V → V � such that e = {u

1

, ..., un} ∈ E if and only if 
e� = {f (u

1

), ..., f (un)} ∈ E�.

Definition 4 Given a hypergraph H = (V ,E) and a smaller query hypergraph 
Q = (V �

,E�) , the occurrences of Q in H are all the sub-hypergraphs of H isomorphic 
to Q . We often refer to the number of occurrences of Q in H as the frequency of Q in 
H.

Finally, we can give a formal description of the problem of our interest.

Definition 5 Higher-order motifs are patterns of small connected sub-hypergraphs 
that occur in an observed hypergraph H at a frequency that is significantly higher 
with respect to a null model. We refer to the number of nodes involved in the pattern 
as the order of a higher-order motif.

As previously mentioned, to perform a higher-order motif analysis of a system, 
one needs to (i) count the frequency of each query higher-order motif in a hyper-
graph, (ii) compare the frequency of each query higher-order motif with that 
observed in a null model, and (iii) evaluate the over- or under-expression of query 
each higher-order motif. In this work we are mostly interested in the first step, i.e., 
motif discovery, therefore we will use higher-order motifs to refer to all the pos-
sible patterns of sub-hypergraphs involving a certain number of nodes. In  Fig.  1 
(right) we enumerate all the higher-order motifs of order 3.

Problem (Mining higher-order motifs). Given a hypergraph H and an integer 
k > 2 , compute the frequency of every higher-order motif of order k.

4  Mining higher‑order motifs

The enumeration of all the patterns of connected sub-hypergraphs of a given size 
is obviously the most expensive sub-task in motif analysis. The weight of this 
step is even more impactful considering that it must be repeated in randomized 

Fig. 1  On the left, an example 
of a small higher-order network 
represented by a hypergraph. 
On the right, we show all the 
possible patterns of higher-order 
interactions involving three con-
nected nodes
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networks as well. To solve this problem exactly, in this section, we propose a 
baseline algorithm based on projecting the hypergraph onto a graph and employ-
ing state-of-the-art motif analysis algorithms on it. Additionally, we present a 
more efficient method that directly leverages higher-order structures to construct 
sub-hypergraphs of a specified size.

4.1  Baseline algorithm

While traditional algorithms are not able to identify patterns of polyadic inter-
actions, they can be used as a routine for more sophisticated algorithms. In our 
baseline, we consider the projected graph of a hypergraph.

Definition 6 (Projection of a hypergraph) The projection of a hypergraph H = (V ,E) 
is a graph G = (V ,E�) , defined on the same vertices of H and such that an edge 
between two vertices a, b ∈ V  exists if and only if a and b participate together in 
at least a hyperedge e ∈ E . In other words, every hyperedge e ∈ E is replaced in G 
with a clique.

By running a classic algorithm (e.g., ESU [25]), we can efficiently enumerate 
connected subgraphs of size k in the projected graph. However, these subgraphs 
are only candidate higher-order motifs for two potential reasons: (i) they do not 
include higher-order interactions; (ii) even if a subgraph s of size k is connected 
in the projected graph, the sub-hypergraph induced by the vertices in s and the 
hyperedges E may be not connected. We highlight these pitfalls in Fig. 2.

In order to account for these issues, we construct the sub-hypergraph induced 
by the k nodes of the candidate motif (see Sect. 4.3) and check if this sub-hyper-
graph is connected. If it is, then one can simply update the frequency hash map, 
otherwise, the output is discarded. A more formal explanation of this method 
is reported in Algorithm  1. All in all, the baseline inherits the complexity of 
ESU [25]), plus the preprocessing cost of computing the clique projection of the 
hypergraph. 

Fig. 2  a Example of a hypergraph H in which the baseline fails. b We highlight in red a connected sub-
graph s of size k = 3 , one of the many possible outputs of a standard motif discovery algorithm applied 
on the projection of the previous hypergraph. c The sub-hypergraph induced by the vertices of s and the 
hyperedges of H is not connected
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4.2  Efficient algorithms

The most expensive step in the previous algorithm is obviously the ESU subroutine. 
Moreover, the performance is widely impacted by the fact that hypergraph projections 
can be very dense and that lots of subgraphs are discarded for not satisfying the require-
ment of the induced sub-hypergraphs of being connected. To solve these problems, we 
work directly on hypergraphs, designing an efficient algorithm that exploits contain-
ment properties of higher-order structures in real-world systems. We optimize sepa-
rately the two cases of 3- and 4-node motifs.

3-node motifs As shown in Fig. 1, two of the motifs involving three nodes are com-
posed only by pairwise relations, while the others involve one hyperedge of order 3. 

Algorithm 1   Baseline: Counting higher-order motifs

Algorithm 2   Efficient algorithm: Counting higher-order motifs of order 3
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To discover the latter, it is enough to iterate over all the hyperedges of order 3 and 
then recover the nested pairwise links to build the motif (“fill in” the hyperedges, 
see Sect. 4.3); the sub-hypergraph is trivially connected since its nodes are part of the 
same hyperedge. Then, we can ignore all the higher-order interactions and focus only 
on the pairwise links, since we are interested in counting the frequency of the first two 
motifs of Fig. 1. In this case, we can rely on ESU. This time, however, it will need 
to handle a lot fewer edges. Every time ESU returns an output, the triplet of nodes 
could have been counted already in the previous step (i.e., overlap between a pairwise 
motif and a hyperlink of order 3): in this case, the triplet is discarded. The first step has 
a complexity linear in the number of the hyperedges of size 3, while the second step 
inherits the complexity of the ESU algorithm. A formal description of the algorithm for 
higher-order motifs of order 3 is reported in Algorithm 2. 

Algorithm 3   Efficient algorithm: Counting higher-order motifs of order 4
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4-node motifs The algorithm for motifs of order 4 is similar, albeit there are some 
more details to take into account. One can still iterate on all the hyperedges of order 
4, count the motifs by considering also the rich nested structures (one can observe 
that this time also hyperedges of order 3 can be nested), and discard all the 4-hyper-
edges. However, as a second step, one needs also to iterate over all the 3-hyper-
edges and consider all the possible neighbours; in fact, 3-hyperedges define only 
a sub-hypergraph with 3 nodes, while we are requesting 4 nodes. Neighbours can 
be listed by considering all the edges that add only 1 new node since 3 nodes are 
already fixed. The last step is to consider only pairwise interactions, and we rely 
again on ESU. Here, again, the first step has a complexity linear in the number of 
hyperedges of size 4, the second step has a complexity quadratic in the total number 
of hyperedges (linear in the number of hyperedges of size 3 and then linear for each 
hyperedge to explore its neighbourhood), and the final step inherits the complexity 
of the ESU algorithm. A formal description of the algorithm for higher-order motifs 
of order 4 is reported in Algorithm 3. 

4.3  Algorithm details

Counting higher-order motifs can be interpreted as the enumeration of all the 
possible connected sub-hypergraphs of size k, assigning each of them to an iso-
morphism class. An efficient way to assign an isomorphism class to a connected 
sub-hypergraph of size k (for small values of k) is relying on a hash map. One 
can generate and hash every possible pattern of higher-order interactions involv-
ing k nodes, with all the possible relabelings. Relabelings are important because 
the same sub-hypergraphs can be stored with different labels on the vertices. For 
example, we have 6 different patterns of higher-order interactions with 3 nodes, 
each with 3! possible relabeling; eventually, the hash map will contain 6 ⋅ 3! = 36 
entries. One can use the hash map as a counter since each observed sub-hyper-
graph is a key. After having enumerated all the sub-hypergraphs, the final count 
of each motif is simply the sum of all the entries of the hash map that belong 
to the same isomorphism class. We show a summary of this process in  Fig.  3. 
Considering the sizes of the sub-hypergraphs involved, we can assume that this 
process incurs a constant time cost.

Another important routine in our algorithms is the construction of vertex-
induced sub-hypergraphs. Given a set of vertices V ′ , we are interested in querying 
the set of all the hyperedges to extract those who have all their endpoints in V ′ . 
This is what we referred to as “filling in” a set of vertices in the previous sections. 
For our specific case, this problem is efficiently solvable relying again on hash 
maps as follows. We can hash every hyperedge of a hypergraph: this ensures that 
we are able to check the existence of a hyperedge in constant time. Since we are 
only interested in solving this problem for a query set of vertices of size 3 or 4, 
we can easily generate all the possible 23 or 24 subsets of vertices (we can also 
ignore the empty set and the singletons) and check in constant time if each subset 
is an existing hyperedge. We show a summary of this process in  Fig.  3. All in 
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all, given that we are interested in very small sets of vertices, we can construct 
vertex-induced sub-hypergraphs in constant time.

5  Sampling methods for counting higher‑order motifs

Scalability is a persistent issue for exact motif discovery algorithms. Motif analysis has 
a number of real-world applications that require handling vast datasets. However, exact 
algorithms for motif discovery quickly become intractable for realistic inputs and motif 
sizes. To address this complexity, we propose an approximated method based on hyper-
edge sampling.

Algorithm 4 samples with replacement S times a hyperedge e and enumerates all 
the connected sub-hypergraphs with a given number of nodes and containing e. The 
number of samples S controls the quality of the approximated results. However, directly 
sampling hyperedges from the hypergraphs leads to unreliable results. The distribution 
of hyperedge sizes is non-uniform, causing the algorithm to often sample hyperedges 
of size 2 while seldom sampling those of size 4. This skews the estimation of specific 
sub-hypergraph patterns. To mitigate this, we employ stratified sampling, segmenting 
the sampling process to guarantee a balanced consideration of hyperedges across differ-
ent sizes. Let Sk be the number of samples assigned to hyperedges of size k, such that 
S =

∑

k Sk . We estimate appropriate values for Sk for every k empirically, exhaustively 
searching among different combinations of values and selecting those that maximize a 
defined quality function (see Section A).

Fig. 3  a On the left, we show how to efficiently solve the problem of hypergraph isomorphism for small 
hypergraphs. We generate and hash every possible pattern of higher-order interactions involving k nodes 
with all the corresponding relabelings. Every observed sub-hypergraph will be equivalent to one and 
only one of the entries of the hash map. The final count of each motif is the sum of all the entries of the 
hash map that belong to the same isomorphism class. b On the right, we show how to construct vertex-
induced sub-hypergraphs efficiently. As a preprocessing step, we hash every hyperedge in a hypergraph, 
allowing us to check for their existence in constant time. For a query set of 3 or 4 vertices, we generate 
all the possible 23 or 24 subsets of the query set and check in constant time if each subset is an existing 
hyperedge. Every time a subset is found to exist, we add it to the sub-hypergraph induced by the query 
set
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The sampling algorithm proceeds in a way similar to the exact method (therefore 
we avoid explicitly repeating some details in the pseudocode). If we target the discov-
ery of motifs of size k, then for all the sampled hyperedges of size k we have all the 
necessary vertices to build a target sub-hypergraph. No exploration of the neighbour-
hood is further required to add new nodes to the pattern. The complexity of this step 
is linear in the number of samples Sk . Then, for all the sampled hyperedges of size less 
than k, some exploration of possibly different levels of the neighbourhoods is required. 
The complexity of each of these steps is linear in the number of samples Sk multiplied, 
for each level of exploration, by a factor linear in the number of hyperedges. Moreo-
ver, for each pattern, the previously mentioned process of “filling in” the hyperedges is 
repeated to build vertex-induced sub-hypergraphs and count the right instances of the 
motifs. Again, these routines take constant time.

In order to estimate the exact count for each motif, the algorithm multiplies the 
observed count by a correction factor given by the probability of sampling a certain 
motif, as reported in the pseudocode. To simplify the computation of the correction 
factor, the algorithm discards all sub-hypergraphs encountered during the explora-
tion of the neighbourhood of a hyperedge e that contains at least one hyperedge with 

Algorithm 4   Sampling algorithm: Counting higher-order motifs of order 4
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a higher cardinality than e. In other words, a pattern of sub-hypergraph is only consid-
ered when the hyperedge of maximal cardinality is sampled. Given this approach, it is 
straightforward to prove that the estimator is unbiased. 

6  Experimental evaluation

To assess the improvement in the performance of the algorithms for higher-order 
motif discovery when (i) exploiting higher-order structures instead of applying 
classic methods on the hypergraph projection and (ii) approximating motif fre-
quency, we collected a variety of hypergraph datasets representing real-world 
systems with group interactions. Besides the evaluation of the performance, we 
also study the accuracy of the sampling algorithm and exploit sampling methods 
to study higher-order motifs of order 5. All the experiments have been carried 
out on a machine with an 8-core (2.2GHz) Intel Xeon CPU and 94GB of RAM, 
running Ubuntu 20.04.4 LTS. The algorithms presented in this paper are imple-
mented in Python3. The code is publicly available  [32]. Moreover, all the algo-
rithms presented in this work are included in the Python library Hypergraphx for 
higher-order network analysis [33].

6.1  Datasets

We collected a variety of real-world datasets from different domains, describing 
face-to-face interactions, co-authorship relations and e-mail communications. Co-
authorship data (dblp, history and geology) [34] is naturally encoded as a set 
of nodes (the authors) involved in higher-order interactions (the scientific papers). 
Also E-mail data (EU) [34] is naturally encoded as a set of higher-order interactions 
since e-mails can have multiple recipients at the same time. However, higher-order 
interactions need to be inferred from pairwise relations in data about face-to-face 
interactions (primary school and high school) [34]. In this case, cliques 
of size k are promoted to group interactions of order k, if the corresponding dyadic 
encounters happened at the same time. The summary statistics of the datasets are 
reported in Table 1. The datasets, as well as the preprocessing scripts, are publicly 
available [32].

Table 1  Summary statistics of the datasets considered for our experiments. Each higher-order network is 
described by the domain, the number of nodes, and the total number of hyperedges of size 2, 3, 4 and 5

Dataset Domain N E
2

E
3

E
4

E
5

hs proximity 327 5498 2091 222 7
ps proximity 242 7748 4600 347 9
EU e-mail 998 12,753 4938 2294 1359
dblp co-auth 1,924,991 693,363 667,291 419,434 205,970
history co-auth 1,014,734 160,885 47,423 19,120 8775
geology co-auth 1,256,385 275,736 227,950 159,509 99,140
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6.2  Performance evaluation

In Table  2 we compare our exact algorithm for higher-order motif discovery 
against the baseline algorithm in terms of their execution running time. We show 
that exploiting directly higher-order structures speeds up the computations. The 
efficient algorithm outperforms the baseline in every dataset. Moreover, it is 
worth mentioning that the analysis with motifs of order 4 of dblp with the base-
line algorithm was not feasible in a reasonable amount of time. The larger gains 
are observed in co-authorship data. Co-authorship systems are proven to display a 
nested structure of hyperedges made up of a small number of hyperedges of large 
average size  [24]. In fact, these kinds of systems are the ideal scenario for our 
algorithm. We can notice that the gains are not as noticeable in social datasets, 
which tend to be governed by dense patterns of lower-order interactions [24].

In Table  3 we show the execution running time in seconds of the sampling 
algorithm on the different datasets with multiple values of S, i.e., the parameter 
that controls the number of samples. The different size scales of the co-authorship 
and social datasets require different sample sizes to achieve results of comparable 
quality. Since the analysis of the motifs of order 3 was already easily doable, we 
consider only the task of motif discovery of order 4. We show that hyperedge 
sampling dramatically improves performance. As expected, the parameter S heav-
ily affects the running time. As always, there is a trade-off between the accuracy 
of the results (higher values of S lead to more accurate estimates) and the execu-
tion running time.

6.3  Accuracy of sampling method

Besides evaluating the running time of the sampling method, it is also important 
to assess the output quality of the estimates compared to exact higher-order motif 
profiles. We compute motif profiles [24] comparing the observed frequencies of the 
motifs with those on a null model  [35] to assess their statistical significance (we 
sample N = 10 times from the configuration model).

We evaluate the quality of the estimated motif profiles in terms of:

Table 2  Comparison of the 
running time (s) of the exact 
algorithms with motifs of order 
3 and 4

Dataset Base-3 Eff-3 Base-4 Eff-4

hs 7 5 362 230
ps 25 18 1920 1339
EU 44 29 5286 2757
dblp 1185 134 > 24h 2885
history 42 19 4591 526
geology 207 36 32810 475
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• the Pearson’s correlation coefficient � between the estimated and the exact 
higher-order motif profiles. The coefficient assigns values close to 1 to profiles in 
strong agreement and values close to −1 to profiles in strong disagreement.

• the Maximum Absolute Error (MaxAE) in estimating higher-order motif profiles.
• the Mean Absolute Error (MAE) in estimating higher-order motif profiles.

In Table 3, we show that we obtain good results even with a small number of sam-
ples with respect to the total size of the hypergraphs. The measures of output quality 
improve with increases in S. A good trade-off between the output quality, S and the 
execution running time will be critical for real-world applications. The measures of 
output quality are averaged across 10 repetitions for every value of S.

A second evaluation metric is the correlation matrix of the motif significance 
profiles  [1, 24] of the different real-world hypergraphs. In  Fig.  4, the correlation 
matrix shows the emergence of two “superfamilies” of real-world hypergraphs, in 
a way similar to  [24]. Clustering tends to separate social and co-authorship data. 

Table 3  Hyperedge sampling 
dramatically improves the 
performance with respect 
to the exact algorithm. The 
execution running time of the 
approximated algorithm heavily 
depends on the choice of the 
sample size S. The correlation 
coefficient � between the 
estimated and the exact motif 
profiles, the maximum absolute 
error MaxAE and the mean 
average error MAE improve 
with increases in the number of 
samples S. Due to their different 
size scale, co-authorship and 
social datasets require different 
sample sizes to achieve 
comparable results. We obtain 
reasonable results even with a 
very limited number of samples

Dataset Exact 
exec. time 
(s)

S Approx. 
exec. time 
(s)

� MaxAE MAE

hs 230 100 3 .914 .151 .015
250 8 .953 .122 .011
500 16 .978 .096 .007
1K 29 .987 .065 .006

ps 1339 100 11 .918 .151 .017
250 30 .950 .135 .012
500 63 .977 .093 .008
1K 118 .986 .071 .006

EU 2757 100 15 .804 .203 .028
250 34 .887 .159 .020
500 73 .923 .134 .016
1K 144 .963 .098 .010

dblp 2885 1K 32 .495 .088 .055
2.5K 41 .555 .088 .047
5K 56 .610 .089 .038
10K 85 .696 .087 .027

history 526 1K 5 .679 .176 .033
2.5K 7 .804 .169 .022
5K 11 .867 .170 .016
10K 22 .913 .124 .012

geology 475 1K 12 .590 .107 .047
2.5K 15 .661 .107 .039
5K 19 .719 .106 .032
10K 30 .784 .103 .024
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This further proves that sampling methods are still able to capture and highlight pat-
terns of higher-order interactions that are probably linked to the functionalities of 
the networks.

6.4  Applications: Mining larger higher‑order motifs

Approximated methods not only speed up motif analysis for large datasets but also 
allow for the study of larger patterns of interactions. Exact counting algorithms are 
suited only for the extraction of motifs of order 3 and 4. Here we employ our pro-
posed sampling algorithm and characterize two real-world hypergraphs, namely 
history and high school, in terms of their higher-order motifs of order 5. 
To evaluate the statistical significance of the results, we compare the results with 
those on a configuration model. We use the same statistical evaluation methods pro-
posed in [24], i.e., we consider the relative abundance of each motif with respect to 

Fig. 4  The correlation matrix 
of the significance profiles 
built with sampling methods 
( S = 1000 for co-authorship 
data and S = 100 for social data) 
highlights the emergence of two 
clusters that separate social and 
co-authorship data

Fig. 5  Over-expressed patterns of higher-order interactions highlight structural principles of the different 
domains
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a configuration model [35]. In Fig. 5 we show the most over-expressed higher-order 
motifs of order 5 in both the real-world hypergraphs. We can notice how also at this 
scale we still observe characteristic patterns of co-authorship data (low number of 
interactions of large average size) and face-to-face data (high number of interactions 
of small average size). This is in line with the results on the nested structure of real-
world hyperedges proposed in [24].

7  Conclusion

In this paper, we have proposed a first algorithmic framework for the problem of higher-
order motif discovery in hypergraphs as defined in [24]. We have developed an efficient 
exact algorithm for the analysis of the higher-order motif of order 3 and 4. Such an 
exact algorithm exploits hyperedges and their nested structure to efficiently enumerate 
sub-hypergraphs of a given size. We have proved that considering directly the hyper-
graph structure of data outperforms traditional computational frameworks for network 
motifs that work on projected data. We have developed an approximated method based 
on hyperedge sampling to overcome scalability issues of exact algorithms. We have 
proved that such an approximated algorithm allows for a huge gain in the running time 
at only a little expense on the accuracy of the results. Moreover, our sampling algo-
rithm allows for the analysis of larger motifs, which were not computationally feasible 
with exact methods. We believe that faster algorithms for higher-order motif analysis, 
such as our proposed sampling algorithm, can pave the way for exciting applications. In 
this direction, important aspects for future work are the development of sampling algo-
rithms with strong approximation guarantees and the investigation of more efficient 
sampling strategies for the different categories of patterns of higher-order interactions.

Appendix A: Parameters search

Our approximated algorithm requires different parameters. The parameter S controls 
the number of samples of hyperedges to be performed to estimate the count of the pat-
terns of sub-hypergraphs. Without a careful design, directly sampling hyperedges from 
the hypergraphs leads to unreliable results. In fact, the distribution of the size of the 
hyperedges in a real-world hypergraph is not uniform, leading the algorithm to often 
sample hyperedges of size 2, and rarely, for example, hyperedges of size 4. This would 
result in poor estimations of higher-order motifs involving a group interaction of size 
3 or 4. To address this issue, we stratify our sampling process, allocating specific sam-
ple budgets to hyperedges of different sizes. This ensures a balanced representation of 
hyperedges across all sizes. Let Sk be the number of samples assigned to hyperedges 
of size k. We fix the sum of Sk for every k to be equal to S. We estimate empirically 
good values for the parameters Sk , exhaustively searching among different combina-
tions of values and selecting those that maximize a defined quality function (Pearson’s 
correlation � between the exact higher-order motif profile and the estimated one). We 
perform the analyses on two datasets, one for each macro-domain: high school 
and history. We consider motifs of order 4, therefore we need to estimate S

2

 , S
3

 and 
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S
4

 , namely, respectively the number of samples from the hyperedges of order 2, 3 and 
4. Given that S

2

+ S
3

+ S
4

= S , one can fix S
2

 , parametrize S
3

 and S
4

 to be multiple of 
S
2

 , and perform exhaustive search. We show the results in Fig. 6. Averaging the results 
of the two matrices, we get that our quality measure is maximized when S

3

= 3S
2

 and 
S
4

= 2S
2

 . We use these parameters in our experiments.
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of samples of hyperedges of size 2 and search the values for which the correlation between the exact 
motif profile and the estimated one is maximized. The x-axis parametrizes the number of samples of 
hyperedges of size 4. The y-axis parametrizes the number of samples of hyperedges of size 3. Light 
squares exhibit lower levels of correlation, while dark squares show higher levels. On the left, we show 
the matrix for the high school dataset. On the right, is the matrix for the history dataset. We get the best 
parameters by averaging the two matrices

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


493

1 3

Exact and sampling methods for mining higher‑order motifs…

References

 1. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple 
building blocks of complex networks. Science 298(5594):824–827

 2. Schwarze AC, Porter MA (2021) Motifs for processes on networks. SIAM J Appl Dyn Syst 
20(4):2516–2557

 3. Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U (2004) 
Superfamilies of evolved and designed networks. Science 303(5663):1538–1542

 4. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450
 5. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation 

network of Escherichia coli. Nat Genet 31(1):64
 6. Dobrin R, Beg QK, Barabási A-L, Oltvai ZN (2004) Aggregation of topological motifs in the 

Escherichia coli transcriptional regulatory network. BMC Bioinformatics 5(1):1–8
 7. Sporns O, Kötter R (2004) Motifs in brain networks. PLoS Biol 2(11):369
 8. Chen L, Qu X, Cao M, Zhou Y, Li W, Liang B, Li W, He W, Feng C, Jia X et al (2013) Identifica-

tion of breast cancer patients based on human signaling network motifs. Sci Rep 3(1):1–7
 9. Hong-lin, X., Han-bing, Y., Cui-fang, G., Ping, Z.: Social network analysis based on network motifs. 

J Appl Math (2014)
 10. Saracco F, Di Clemente R, Gabrielli A, Squartini T (2016) Detecting early signs of the 2007–2008 

crisis in the world trade. Sci Rep 6(1):1–11
 11. Bascompte J, Stouffer DB (2009) The assembly and disassembly of ecological networks. Philos 

Trans R Soc B: Biol Sci 364(1524):1781–1787
 12. Simmons BI, Cirtwill AR, Baker NJ, Wauchope HS, Dicks LV, Stouffer DB, Sutherland WJ (2019) 

Motifs in bipartite ecological networks: uncovering indirect interactions. Oikos 128(2):154–170
 13. Onnela J-P, Saramäki J, Kertész J, Kaski K (2005) Intensity and coherence of motifs in weighted 

complex networks. Phys Rev E 71:065103
 14. Kovanen L, Karsai M, Kaski K, Kertész J, Saramäki J (2011) Temporal motifs in time-dependent 

networks. J Stat Mech: Theory Exp 2011(11):11005
 15. Paranjape A, Benson AR, Leskovec J (2017) Motifs in temporal networks. In: Proceedings of the 

tenth ACM international conference on web search and data mining, pp 601–610 (2017). ACM
 16. Battiston F, Nicosia V, Chavez M, Latora V (2017) Multilayer motif analysis of brain networks. 

Chaos Interdiscip J Nonlinear Sci 27(4):047404
 17. Kivelä M, Porter MA (2018) Isomorphisms in multilayer networks. IEEE Trans Netw Sci Eng 

5(3):198–211
 18. Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young J-G, Petri G (2020) Net-

works beyond pairwise interactions: structure and dynamics. Phys Rep 874:1–92
 19. Battiston F, Amico E, Barrat A, Bianconi G, Ferraz de Arruda G, Franceschiello B, Iacopini I, 

Kéfi S, Latora V, Moreno Y, Murray MM, Peixoto TP, Vaccarino F, Petri G (2021) The physics of 
higher-order interactions in complex systems. Nat Phys 17(10):1093–1098

 20. Patania A, Petri G, Vaccarino F (2017) The shape of collaborations. EPJ Data Sci 6(1):18
 21. Cencetti G, Battiston F, Lepri B, Karsai M (2021) Temporal properties of higher-order interactions 

in social networks. Sci Rep 11:7028
 22. Berge, C.: Graphs and hypergraphs (1973)
 23. Lee G, Ko J, Shin K (2020) Hypergraph motifs: concepts, algorithms, and discoveries. Proc VLDB 

Endow 13(12):2256–2269
 24. Lotito QF, Musciotto F, Montresor A, Battiston F (2022) Higher-order motif analysis in hyper-

graphs. Commun Phys 5(1):79
 25. Wernicke S (2006) Efficient detection of network motifs. IEEE/ACM Trans Comput Biol Bioinf 

3(4):347–359
 26. Patra S, Mohapatra A (2020) Review of tools and algorithms for network motif discovery in biologi-

cal networks. IET Syst Biol 14(4):171–189
 27. Liu, P., Benson, A.R., Charikar, M.: Sampling methods for counting temporal motifs. In: Proceed-

ings of the twelfth ACM international conference on web search and data mining. WSDM ’19, pp 
294–302. Association for Computing Machinery, New York, NY, USA (2019)

 28. Jazayeri A, Yang CC (2020) Motif discovery algorithms in static and temporal networks: a survey. J 
Complex Netw 8(4):cnaa031



494 Q. F. Lotito et al.

1 3

 29. Horváth T, Bringmann B, De Raedt L (2007) Frequent hypergraph mining. In: Muggleton S, Otero 
R, Tamaddoni-Nezhad A (eds) Inductive logic programming. Springer, Berlin, pp 244–259

 30. Preti G, De Francisci Morales G, Bonchi F (2022) Fresco: mining frequent patterns in simplicial 
complexes. In: Proceedings of the ACM web conference 2022. WWW ’22, pp. 1444–1454. Associa-
tion for Computing Machinery, New York, NY, USA (2022)

 31. Lee, G., Shin, K.: Thyme+: temporal hypergraph motifs and fast algorithms for exact counting. In: 
2021 IEEE international conference on data mining (ICDM), pp 310–319 (2021). IEEE

 32. Lotito, Q.F.: Higher-order motif discovery sampling algorithm (2022). https://github.com/FraLotito/
sampling-motifs

 33. Lotito QF, Contisciani M, De Bacco C, Di Gaetano L, Gallo L, Montresor A, Musciotto F, Ruggeri 
N, Battiston F (2023) Hypergraphx: a library for higher-order network analysis. J Complex Netw 
11(3):019

 34. Benson AR, Abebe R, Schaub MT, Jadbabaie A, Kleinberg J (2018) Simplicial closure and higher-
order link prediction. Proc Natl Acad Sci USA 115(48):11221–11230

 35. Chodrow, P.S.: Configuration models of random hypergraphs. J Complex Netw 8(3) (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.


	Exact and sampling methods for mining higher-order motifs in large hypergraphs
	Abstract
	1 Introduction
	2 Related work
	2.1 Network science
	2.2 Data mining
	2.3 Contributions

	3 Preliminaries and problem statement
	4 Mining higher-order motifs
	4.1 Baseline algorithm
	4.2 Efficient algorithms
	4.3 Algorithm details

	5 Sampling methods for counting higher-order motifs
	6 Experimental evaluation
	6.1 Datasets
	6.2 Performance evaluation
	6.3 Accuracy of sampling method
	6.4 Applications: Mining larger higher-order motifs

	7 Conclusion
	Appendix A: Parameters search
	Acknowledgements 
	References




