
Vol.:(0123456789)

Computing (2023) 105:2773–2792
https://doi.org/10.1007/s00607-023-01204-7

1 3

REGULAR PAPER

Design, implementation and evaluation 
of a network‑oriented service with environmental 
adaptability based on core/periphery structure

Shiori Takagi1  · Shin’ichi Arakawa1 · Masayuki Murata1

Received: 5 August 2021 / Accepted: 22 July 2023 / Published online: 10 August 2023 
© The Author(s) 2023

Abstract
Many new network-oriented services have been developed in recent years, and they 
are expected to be virtualized in multi-access edge computing (MEC) environments, 
which are being standardized along with fifth generation (5 G). Because many new 
network-oriented services have been developed to meet various user requests, and 
service-oriented development, wherein service functions are divided and combined, 
is expected to facilitate the development of flexible services at low costs. A core/
periphery structure is an information processing system in biological systems con-
sisting of core units, that is densely connected and provide efficient process, and 
peripheral units that can accommodate a variety of inputs and outputs. In this paper, 
we introduce a core/periphery structure into the service design since the service 
based on this structure can adapt to various inputs and outputs with only modifying 
peripheral functions. We expect that development cost is reduced by designing ser-
vices based on core/periphery structure, because the entire service is not modified 
against environmental changes. Besides, we also consider the balance between the 
penalty and the reduction of development costs since dividing functions and plac-
ing them in different devices creates extra communication paths and degrades ser-
vice responsiveness. We designed and implemented two service scenarios for our 
shopping service with a remote robot based on a core/periphery structure. Using the 
implemented services, we show that the design using the core/periphery structure 
is effective in terms of implementation cost and overhead for information sharing 
among remote robots. Furthermore, we measured the penalty through experiments 
on actual devices and showed that it is tolerable.

Keywords Core/periphery structure · Multi-access edge computing (MEC) · 
Telexistence, Mixed reality (MR) · Network robot

Mathematics Subject Classification 68U35 · 68M11

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-023-01204-7&domain=pdf
http://orcid.org/0000-0002-3637-0113


2774 S. Takagi et al.

1 3

1 Introduction

In the recent years, many new network-oriented services have emerged, and infor-
mation networks have been changing rapidly. For example, telexistence [25] ser-
vices, which allow human users to experience being present in a remote place 
virtually as if it is their own body by operating a remote robot and using vir-
tual reality (VR) or mixed reality (MR) technologies are currently developed. 
They use real-world information from cameras and sensors sent to the cloud, or 
conduct high-load processing such as image recognition, voice, and sound rec-
ognition. Several different services that are yet to be envisioned are expected to 
emerge in the future. Such services will need to be virtualized in the multi-access 
edge computing (MEC) [4, 10, 29] environment, which is currently being stand-
ardized along with fifth generation (5 G) technologies.

The service design should be adaptable to user requirements and environmen-
tal changes for accommodating a large number of services at low cost. When 
design decisions that are expedient in the short term, the costs of maintaining and 
adapting this system in future increase, which is known as technical debt [12]. To 
reduce the costs, module-based design has been widely introduced. In module-
based design, modules connect each other via interfaces , and they are able to be 
decoupled [5] and reused for several products.

The disadvantage of module-based design is that the development becomes 
complex and difficult to maintain the products. Albers et. al. [2] pointed out that 
the interdependencies among modules used in different products increase because 
the change of the module affects other products. As a result, the module’s devel-
opment becomes complex, and it becomes difficult to maintain the module and 
products. Although Albers et al. [2] explains about vehicle development, a mod-
ule-based design of service also complicates the development. Modules are con-
nected on equal basis and have interdependencies. More importantly, modules, in 
our case service functions, are sometimes developed by several different develop-
ers. Thus, it is difficult for developers to observe the scope of effect when they 
modify their modules. This will lead to the difficulties of maintenance and modi-
fication of services and/or modules.

We investigated a core/periphery structure [6, 15] that allows service compo-
nents to effectively adapt to each user request and environmental variation. The 
core/periphery structure is a model for flexible and efficient information-process-
ing mechanisms in biological systems; the information processing units in the 
core/periphery structure are classified as core or peripheral units. The advantage 
of the core/periphery structure is that it helps reduce the costs for maintaining or 
changing services by distinguishing the service functions into core and periph-
ery functions. Unlike module-based design, a service design based on the core/
periphery structure can adapt to environmental changes while modifying only 
peripheral functions and reusing the core functions as shown in Fig. 1. 

The advantages of a core/periphery structure for accommodating information 
services, represented by chains of functions, were numerically investigated in 
our previous work  [30]. From this biological point of view, the core/periphery 



2775

1 3

Design, implementation and evaluation of a network‑oriented…

structure is expected to achieve an efficient and adaptive behavior against envi-
ronmental changes. Figure 1 indicates that service design based on a core/periph-
ery structure can support variations in inputs and outputs with fewer additional 
implementations. However, from the service-design perspective, dividing the 
functions and placing them in different devices creates extra communication 
paths and can degrade service responsiveness, which is cannot be ignored. There-
fore, when we apply the core/periphery structure to the service design, we con-
sider the balance between the penalty and the reduction of development costs.

In [27, 28], we implemented a shopping experience service using mixed reality 
(MR) and robots as a use case for realizing a service scenario based on  [30], and 
we implemented the service with an actual device, and demonstrated that the ser-
vice design using a core/periphery structure is effective for robot operation when the 
numbers of types of devices on the user side and remote side increase.

In this paper, we perform evaluation in the following two aspects more prag-
matically than previous works. The first aspect is the service scenario to use 
in our experiment. In our previous works  [30] and  [27, 28], we considered a 
service scenario that included only information processing; however, commonly 
used applications today not only process information obtained from devices, 
they also share information among such devices. Therefore, we focus on the 
information sharing in this paper. We consider a service scenario that includes 
information processing and information sharing among remote robots and users, 
and we evaluate our service design in terms of the complexity of the source code 
and the overhead for information sharing. We implement a service and measure 
the penalty through experiments on actual devices for investigating the amount 
of penalties on sharing information. The second aspect is the metric to repre-
sent the implementation cost. In our previous works [30] and [27, 28], we used 

Fig. 1  Effectiveness of service design using core/periphery structure. Consider adding Input 2 and Out-
put 2 to a service that has Input 1 and Output 1. Fewer additional functions are required to support vari-
ous inputs and outputs when core functions are provided



2776 S. Takagi et al.

1 3

the number of lines of source code for the user-side applications as the imple-
mentation cost. The number of lines can be used to evaluate the effort required 
to adapt the service to the environment; however, it cannot help evaluate the 
extent to which the logic of the application is simplified because the amount 
of source code only represents the implementation results of efforts. Therefore, 
we introduce the complexity of the program as a factor in the cost of adapting 
to environment because the complexity is especially important when multiple 
people develop the service, i.e., in a modern software development. We use the 
cyclomatic complexity [13], which represents the number of independent paths 
from the start to the end of the program as the metric for evaluating the imple-
mentation cost.

The remainder of this paper is organized as follows. Section 2 describes the 
related works. Section 3 describes the services targeted in this paper as well as 
the service scenarios. Section  4 describes our service design based on a core/
periphery structure and service implementation. Section 5 describes the evalu-
ation of our service design. Finally, Sect. 6 provides some concluding remarks 
and areas of future study.

2  Related work

We present network-oriented services and architectures as the related work.
Existing conventional MR services, such as ANA Avatar [3], are not designed 

for supporting various inputs and outputs because it is provided by a single ven-
dor; however, it is believed that a modular division of services is in place.

These functions are distributed across various devices when functions cre-
ated by multiple vendors are combined to form a service. Such a distribution 
is accelerated by a multi-access edge computing (MEC)  [10, 22]. The ETSI 
Industry Specification Group suggests video content delivery, video stream anal-
ysis, and augmented reality (AR) as key use cases for MEC, and it also sug-
gests guidelines for software developers. The virtual-reality peripheral network 
(VRPN) [11], which is used for developing VR services, is similar to the concept 
of core/periphery structure because it can absorb the differences between VR 
devices. VRPN can be used as a core function when creating services that sup-
port various inputs and outputs. In this paper, we use message queuing telemetry 
transport (MQTT) [16], which is a messaging protocol that can absorb the dif-
ferences between devices as a core function.

In recent years, the concept of dividing and combining service functions such 
as microservices  [26] and service-oriented architecture (SOA)  [20], have been 
proposed. In these architectures, each function is loosely connected and adapt-
able to changing demands; however, the development costs are higher for sup-
porting various inputs/outputs because the functions are finely divided. In this 
paper, these architectures are referred to as “No Core” because they are consid-
ered as service structures with only peripheral functions.



2777

1 3

Design, implementation and evaluation of a network‑oriented…

3  Service scenario

3.1  Basic service

Our basic service is a shopping experience that uses a robot in a remote location. 
The remote robot captures images of a store or streets lined with stores, and it pro-
vides a processed video to the user using an object detection function. The user 
operates the robot while watching the video and the information sent from a remote 
location.

3.2  Additional functions to improve the service

We consider adding the following service scenarios to improve this basic service by 
adapting it to a real environment:

– A service scenario that adjusts the movement of the robot based on where it is 
walking to avoid collisions in crowded or small areas, and

– a service that obtains information based on the attention level of the user.

Our services and functions are illustrated in Fig.  2. These services scenarios 
require the functions to conduct object detection, store and share information using 
the results of the object detection, and adjust the manner in which the robot moves. 
These functions are combined when realizing such services. 

3.3  Service design without a core/periphery structure

In designs without a core/periphery structure, the specifications of each ser-
vice function are specific to a particular environment, for example, the API for a 

Fig. 2  Our service with added functions



2778 S. Takagi et al.

1 3

particular robot. The robot is accessed directly from the user devices when imple-
menting a design without a core/periphery structure for robot operation; the pro-
gram is changed to adapt to the environment. In information sharing, each device 
stores information in a different format because the method of storing information is 
not unified, and it is therefore difficult to store information collected from a variety 
of robots and provide information to the users.

4  Service design and implementation

4.1  Design scenario

We evaluated the effectiveness of the service design using a core/periphery structure 
under the following three design scenarios.

No Core: All functions are peripheral and specific to each device.
Core on Robot: Common functions are implemented as core functions on the 
robots.
Core on Edge Server: Common functions are implemented as core functions on 
edge servers.

As we described in Sect. 2, we there call the structures such as microservices [26] 
and service-oriented architecture (SOA)  [20] “No Core” because they are consid-
ered as service structures with only peripheral functions.

A monolithic structure wherein all functions are tightly coupled is another can-
didate for the design scenarios. Thus we interpret the monolithic design as a design 
consisting only of core functions. Monolithic designs are more difficult to maintain 
and scale compared to designs with microservices because the monolithic services 
are larger and more complex than microservices [26]. This paper does not compare 
with the monolithic design because its development cost is greater than that of a 
structure consisting of only peripheral functions.

4.2  Service design based on core/periphery structure

We designed our service scenarios in Sect.  3.2 based on a core/periphery struc-
ture. In a service design without a core/periphery structure, all functions are imple-
mented as peripheral functions, and are implemented specifically for each service 
scenario or real environment; this makes it difficult to add more functions or change 
the combination of functions. In a service design with a core/periphery structure, 
we implemented common functions such as messaging from the user to the robot, 
object detection for the video, storage of the object detection results as core func-
tions, and connect other functions peripherally to the core functions. Therefore, 



2779

1 3

Design, implementation and evaluation of a network‑oriented…

when environmental changes occur, only peripheral functions require to be changed 
within a short period of time.

Figure  3 and 4 show the core/periphery structure based on our service design. 
The dots represent service functions, and the arrows represent service function con-
nections. The service functions are used in the order of connection from the input 
side (the camera and the user in Figs. 3 and 4, respectively) toward the output side 
(the user and the robots in Figs. 3 and 4, respectively). The green rectangles in Fig. 3 
represent the interfaces for video input and output. Figure 3 shows the core/periph-
ery structure of the service functions and their connections for processing the video 
captured by a camera, information storage and providing users with the processed 
video and the customized information. For video processing and information stor-
age, the object detection function is commonly used in our service scenario, and 
therefore, both it and the tightly connected information storing function are consid-
ered core components; the peripheral functions provide how the information is used, 
as described in 4.3.3 and 4.3.4. Figure 4 shows the core/periphery structure based on 
our service design for robot operation. For the robot operation, the function to send 
user commands to the robot is a common function. Thus it is considered as a core 
function; and the peripheral function adjusts the speed of the robot and processes the 
messages based on each API. 

Fig. 3  Core/periphery structure for video processing and information storage

Fig. 4  Core/periphery structure for robot operation



2780 S. Takagi et al.

1 3

4.3  Implementation

4.3.1  Object detection and information sharing (core function)

The video input from the cameras are transmitted to the robot-side edge server, 
which are then captured using OpenCV [18]; subsequently, object detection is then 
applied using a PyTorch implementation of YOLO v3 [21]. The processed video is 
transmitted with FFmpeg  [9] through the UDP to the HoloLens  [14] worn by the 
users and displayed. HoloLens is a standalone head-mounted computer developed 
by Microsoft that displays holograms and recognizes user gaze and gestures to pro-
vide an MR experience. From the results obtained by the object detection function, 
the type, coordinates, and shooting time of the products sold in the store is remote 
information that is stored as shared information among the robots.

4.3.2  Messaging (core function)

The controller information is transmitted through MQTT  [16], which is a publish 
/subscribe-type protocol developed for frequent message exchanges between IoT 
devices. The MQTT broker receives controller commands through the HoloLens 
and sends them to a program running on the Pepper robot [24].

The users use Xbox controllers that can connect to HoloLens. We develop an 
MQTT messaging system on a user-side edge server using Mosquitto [7], an open-
source message broker, and Node-RED [19], a programming tool for event-driven 
applications.

4.3.3  Speed adjustment (peripheral function)

The basic service provides a function to move at a constant speed. We add a func-
tion to adjust the speed of the robot to change in the way the robot moves according 
to the surrounding environment; we ensure that the robot does not bump into people 
or obstacles by using the information of the surroundings obtained via the object 
detection function. The results of object detection are returned from the edge server 
to the robot, which uses this information to adjust its movement speed (e.g., slow-
ing down in crowded areas). The core function is to perform object detection on the 
images sent from the robot and to return the results; the peripheral function involves 
reducing the speed when there are many people in the area. The peripheral function 
is used to process the results, and therefore, the robot can choose to avoid obstacles 
besides people, based on its location. The edge server stores a list of objects and 
their sizes, and the robot refers to only the information of the object to be avoided.

4.3.4  Displaying information to users (peripheral function)

The basic service displays information about an object using object detection with 
a learned model. We add a function to detect gaze and display information using a 



2781

1 3

Design, implementation and evaluation of a network‑oriented…

database of products to display detailed information about the surrounding objects 
based on the user’s attention. A database that integrates the product list of each store 
is prepared, and the region of interest (i.e., the object that the user is gazing at in the 
video) is cut out and enlarged. Further, a recommendation is made for a product of 
the same type, which the user is yet to see. The peripheral function customizes the 
information for each user by selecting the necessary information from the informa-
tion stored in the core function, or by deleting the object that the user has already 
gazed at.

5  Evaluation

We evaluated the effectiveness of the service design using a core/periphery structure 
in terms of the implementation cost and overhead for information sharing by using 
the three design scenarios described in 4.1.

5.1  Implementation cost

We evaluate the implementation cost for increasing the number of device types. In 
our service, where n types of remote robots and m types of devices are connected on 
the user side.

In [27, 28], we have measured the implementation cost of the core and periph-
ery functions based on the amount of source code. However, the amount of source 
code does not fully capture the effort required to adapt to the environment because 
it only represents the implementation results of the efforts. Thus, we introduce the 
complexity of the program as a factor in the cost of adapting to the environment; the 
complexity is especially important when multiple people develop the service, such 
as in modern software development.

We assume that all implementations under the No Core scenario are written 
in the program of the user-side device, according to the implementation of the 
program that directly connects the HoloLens MR headset with the Pepper robot. 
Therefore, the API program for each robot is modified when modifying the pro-
gram to control other robots. When users have m + 1 types of devices, the process 
for n types of robots for the m + 1 th device is provided. In addition, the process 
for the n + 1 th robot in each program of the m types of user devices is added when 
the number of robot types increases by 1. The more we add to the program, the 
more complex the program becomes, and, the longer it takes to read and write to 
add the source code. Thus, the implementation cost is considered to not only be 
based on the amount of new source code that has to be written, but also based on 
the complexity of the program that we have to read when we modify the program. 
Therefore, we define the cost of reading a program as the implementation cost, and 
we use the cyclomatic complexity [13] to evaluate the implementation cost. Cyclo-
matic complexity represents the number of independent paths from the start to the 
end of the program. The higher the number of branches, the higher is the value, and 
the harder it is to read. Figure 5 shows cyclomatic complexity of application source 



2782 S. Takagi et al.

1 3

code when the number of robots n is increased. The horizontal axis represents the 
number of robot types and the vertical axis represents the cyclical complexity. 

We show excerpts of the source code used to establish connections with robots. 
Source Code 1 shows a part of the source code of the HoloLens application under 
the No Core scenario. This example represents the case where n = 2 and m = 1 . All 
processes for all robots’ APIs are written within a single program to access each 
robot directly from the HoloLens application. The second and ninth lines repre-
sent branches based on the environment (in this case, the type of device), and they 
become more complex with an increase in n and m. 

Source Code 2 shows a part of the source code of the HoloLens application, and 
Source Code 3 shows a part of the source code of the Pepper application with a 
core/periphery structure. The messaging function with MQTT is provided as a core 

Fig. 5  Cyclomatic complex-
ity of application source code 
when the number of robots n is 
increased



2783

1 3

Design, implementation and evaluation of a network‑oriented…

function, and therefore, only the process for connecting to the MQTT broker from 
each device is required.

Under the No Core scenario, the entire source code for accessing the robots is 
written into the HoloLens program, and therefore, the more robots are used, the 
higher is the number of branches added into the program. Thus, the cyclomatic 
complexity for the entire service becomes O(m × n) . Under the Core on Robot/Edge 
Server scenarios, the value does not change and remains at 1 because the program 
has no branch. Therefore, the difference in the cyclomatic complexity between the 
No Core and Core on Robot/Edge Server design scenarios becomes more significant 
with an increase in the number of robot types.

5.2  Overhead for information sharing

We measure the number of messages sent for information sharing in the three design 
scenarios assuming that we keep the information stored by the information sharing 
function up-to-date and that robots R

1
 , R

2
,..., R

n
 share information with each other. 

Further, we show that the number of messages is the lowest when the system is 
implemented as a core function and deployed on an edge server.

Figure 6 shows the configuration of the experimental environment in our labo-
ratory. We constructed the MEC environment using OpenStack version 3.8.1 [17]. 
The user-side edge server is an OpenStack virtual machine (192.168.10.73), and 
the robot-side edge server is a physical machine (192.168.10.39). We built MQTT 
brokers on the edge servers with Mosquitto version 1.4.15, which is an MQTT 
version 3.1.1/3.1 broker [7]. Messages sent from the user to the robot, e.g., con-
troller operation or gaze operation, are sent through the MQTT broker on the user 
side. The MQTT server on the robot side is used to send information from the 
edge server to the robot and from the robot to the edge server. The robot Pep-
per (192.168.10.51) is connected to the MEC environment. Pepper has an embed-
ded camera with 320 × 240 resolution, however, it is too low to enjoy the video 



2784 S. Takagi et al.

1 3

streaming at the HoloLens. Therefore, in this experiment, we attached an external 
camera on the head of the Pepper, and this camera is connected to Aja HELO [1] 
via an SDI cable to perform the H.264 encoding for the video streaming. The 
video from the attached camera is input to the HELO at 60 fps, 1920 × 1280, and 
output at 30 fps, 1080 × 720. The video encoded by HELO is sent to the robot 
side edge server using UDP in the mpegts format. Once the processing is com-
pleted, the video is output to standard output as raw data, and then, it is encoded 
into mpegts using FFmpeg, and sent to the HoloLens worn by the user. 

The messages in our experiment are the results of object detection obtained 
from the captured video. Therefore, we measured the number of messages using 
the video of a certain length and calculated the average overhead per frame. Then, 
we divided the process, from the time the new information was acquired until it 
was reflected to the user, into the following three phases; subsequently, we meas-
ured the number of messages during each phase. 

1. The object detection function is executed and each robot obtains new object 
information. This information is a list of objects seen by the camera used in our 
application. This phase is not applied under the No core and Core on Robot sce-
narios because the robot performs the object recognition function directly. The 
edge server conducts the object detection function and sends the list to the robot 

Fig. 6  Experimental environment for measuring the messages to perform information sharing. The num-
bers correspond to each phase



2785

1 3

Design, implementation and evaluation of a network‑oriented…

via MQTT for integration with the information held by the robot under the Core 
on Edge Server scenario.

2. Information is sent from the robot to the information sharing function. The robot 
Pepper adds the coordinates and time information obtained by the robot to the 
object information. The robot sends information to all other robots under the No 
Core and Core on Robot scenarios. The robot sends information to the edge server 
via MQTT under the Core on Edge Server scenario.

3. Information is provided from the information sharing function to the user when 
the user gazes at a specific object. The robot sends information to the user under 
the No Core and Core on Robot scenarios; the edge server sends information to 
the user under the Core on Edge Server scenario.

The information-sharing function is implemented in a specific manner under the 
No Core scenario based on the type of robot applied. Each robot shares information 
through flooding when there is an update in the surrounding information held by the 
robot to ensure that the information stored in the information-sharing function on 
all robots is up to date. Because each robot, R

1
 , R

2
,..., R

n
 , sends information to n − 1 

robots other than itself, O(n2) messages are sent for information sharing. Informa-
tion-sharing functions are implemented as periphery functions, and the method of 
storing information for each robot is not unified; therefore, it is necessary to break 
down and transmit each type of information, such as the name and coordinates of 
the object. Therefore, O(k × n2) messages are sent, where k represents the number of 
information types.

Under the Core on Robot scenario, multiple types of information can be shared in 
a single flooding because the information-sharing function is unified as a core func-
tion. We assume that the information to be stored in the information sharing func-
tion of all robots needs to be up to date in the same way as that under the No Core 
scenario, and therefore, we assume that O(n2) messages are sent since each n robot 
sends information to the n − 1 robots other than itself.

Figure  7 shows the change in the number of messages for information shar-
ing when the number of robots n is increased. We measured the number of mes-
sages for n = 1 and calculated the number of messages for each frame, which is the 

Fig. 7  Number of messages for 
information sharing when the 
number of robots n is increased



2786 S. Takagi et al.

1 3

coefficient. For Phase 1, overhead occurs only in the Core on Edge Server scenario.. 
The method of storing and sharing information is unified because the information-
sharing function is implemented as a core function; all information obtained from 
one frame can be sent to the robot concurrently. Therefore, one message per frame 
is applied. For Phase 2 (Core on Edge Server scenario), we measured the number 
of messages using a video 26.36 s long video (790 frames) captured at 29.97 fps, 
and we revealed that the edge server sent 854 messages. Thus, 1.08 messages were 
sent every time the information was updated(i.e, at every frame). For Phase 3, 11 
gazes occurred in the same video compared to that used in the Phase 2 experiment. 
Because a recommendation is sent once for each gaze, the rate is approximately 
0.014 times per frame. These results indicate that the number of messages in the 
Core on Edge Server scenario is 2.094 × n times per frame. 

When extrapolating the results of our experiment shown in Fig. 7, the messages 
occur at a rate of k × 1.094 × n × (n − 1) times per frame (where k represents the 
number of information types, which in this implementation is three) under the No 
Core scenario, and at 1.094 × n × (n − 1) times per frame under the Core on Robot 
scenario. For a single robot, the number of messages under the Core on Edge Server 
scenario is the largest. However, as n increases, the number of messages under the 
No Core and Core on Robot scenarios increases, and the overhead is considered to 
become larger than the number of messages under the Core on Edge Server scenario.

5.3  Penalty in the core on edge server scenario

Dividing functions and placing them in different devices creates extra communica-
tion paths and a penalty of service responsiveness. We conducted another experi-
ment to investigate this penalty; in this experiment, the penalty of communicating 
through an edge server when robots share information is calculated.

In this experiment, we evaluate the application-level delay using the service sce-
nario of information sharing among robots. Figure 8 shows our experimental envi-
ronment; the robot NAO (192.168.10.44) [23] is connected as an additional robot. 
The application-level delay in this service is the delay between the robot obtaining 
information about a new object, storing the information in the edge server, and pro-
viding the information based on the attention of the user. Among these delays, the 
penalty for using the edge server to provide information to the user via is about the 
same as that measured in [27] because the extra path in the Core on Edge Server sce-
nario is between the robot-side switch and the robot-side edge server. Therefore, we 
measured time as an application-level delay that indicates the time required for the 
information obtained by the object detection function to be reflected in the informa-
tion sharing function under the Core on Edge Server scenario; this is represented by 
orange arrows in Fig. 6. Further, we divided the service process into five phases to 
understand the application-level delay more clearly. Figure 9 shows the five phases, 
starting from the time the new information is acquired at the edge server, and ending 
with the time the information is stored in the edge server. The five phases are listed 
below: 



2787

1 3

Design, implementation and evaluation of a network‑oriented…

1. From the time the object detection function completes execution to the time it 
completes publishing to the MQTT broker under the Core on Edge Server sce-
nario. Under other design scenarios, this phase is not applied because the robot 
execute the object detection function.

2. Until Pepper/NAO receives the information obtained by the object detection func-
tion. The information is a list of objects seen by the camera used in our applica-
tion. Under other design scenarios, this phase is not applied because the robot 
execute the object detection function. Under the Core on Edge Server scenario, 
the edge server conducts the object detection function and then sends the list to 
the robot via MQTT for integration with the coordinate and time information held 
by the robot.

Fig. 8  Experimental environment to measure the penalty attributed to the extra communication path. The 
numbers correspond to each phase

Fig. 9  Each phase for measuring the the delay



2788 S. Takagi et al.

1 3

3. Until Pepper/NAO adds the coordinates and time information obtained by the 
robot to the object information. This is a common process for all design scenarios.

4. Until the object information that is added by the robot is received by the informa-
tion sharing function. Under the No Core and Core on Robot scenarios, the robot 
sends information to all other robots. Under the Core on Edge Server scenario, 
the robot sends information to the edge server via MQTT.

5. Until the information sent from Pepper/NAO is stored. This is a common process 
for all design scenarios.

The sum of the time taken for the five phases represents the delay taken in the Core 
on Edge Server scenario. We measure the time it takes for an object detection func-
tion in the edge server to complete publishing a list of objects to the MQTT broker 
in the same edge server. Phases 1, 2, and 4 require extra processing compared to 
other design scenarios. Therefore, the time taken in these phases considered a pen-
alty in the Core on Edge Server scenario. Phase 2 represents Pepper/NAO’s MQTT 
subscription process. Since there are different system clocks among edge servers 
and robots, it is difficult to accurately measure time in Phase 2. Thus, we calculate 
the difference between the total time taken in Phases 1 through 5 and the time taken 
in Phases 1, 2, 3, and 5, and we measure the time taken in Phase 2. For Phase 4, we 
measure the time taken for Pepper/NAO to complete publishing each information 
including the object, coordinate, and time, to the MQTT broker on the edge server. 
We measure the total time for all phases by recording the time when the edge server 
executes the object detection function and the time when the edge server receives 
the message with the coordinate and time information added by NAO for each video 
frame. In our experiment, we used 70 frames of video stored in the edge server; in 
this video, 1024 objects are detected in total. 

5.3.1  Result

We show the result of our experiment using the robot NAO. Table  1 presents 
the average, maximum, and minimum values for total time, the time for each 
phase and the penalty by time incurred under the Core on Edge Server scenario. 
The total measured time, 104 ms on average, is the application-level delay for 

Table 1  Time it taken for each 
phases

Avg [ms] Max [ms] Min [ms]

Total 104 496 10
Phase 1 0 0 0
Phase 2 76 430 1
Phase 3 4 23 1
Phase 4 24 106 3
Phase 5 0 0 0
Sum of Phases 1, 2 

and 4
99 536 4



2789

1 3

Design, implementation and evaluation of a network‑oriented…

information sharing among robots. The penalty under the Core on Edge Server 
scenario is 99 ms on average, and it can reach up to 536 ms. The application-
level delay penalty in the users’ operation of the robot is 31 ms on average [27]. 
In  [27], the extra path is between the edge server and switch at the user side 
because the penalty is for user-robot communication. In this experiment, the 
extra communication path is between the robot and the robot-side edge server; 
it is three times the number of hops, and has a larger penalty. The time taken for 
Phases 1 and 5 was 0 ms, because the functions performed in these phases com-
municate with the MQTT broker on the same edge server without communica-
tion delay. The delay of Phase 3 changes drastically because the robot does not 
have a good CPU and does process our information processing in addition to the 
fundamental control of the robot head and arms. Further, the robot sequentially 
adds and sends information for every item in the list of objects; the more objects 
there are in one frame, or the longer it takes to send other objects, the larger is 
the maximum value. This is because the waiting time required to send the object 
at the end of the list becomes large. Thus, we evaluate the penalty attributed to 
the extra communication path for Phases 2 and 4 compared to 4 ms, which is the 
average time taken for Phase 3.

Figure 10 shows the time for Phases 2, 3, and 4 under the Core on Edge Server 
scenario compared to the average time for Phase 3 only. The average communica-
tion delay is 99 ms which occupies about 95% of the application-level delay and 
is about 25 times longer than the delay for Phase 3. Wi-Fi communication is used 
in Phases 2 and 4, and therefore, the delay varies due to congestion, obstacles, 
and the distance from the access point. This result indicates that the penalty is 
tolerable because the interaction delay tolerance is 100 ms  [8]. The latency of 

Fig. 10  Minimum and average time for the Core on Edge Server scenario



2790 S. Takagi et al.

1 3

wireless communication is expected to improve with the ultralow latency offered 
by 5 G.

5.4  Hierarchical core/periphery structure

In the implementation discussed in this paper, communication is applied only 
between the periphery and core functions; however, in actual services, commu-
nication may be achieved between the core functions on the edge servers. For 
example, the core function on the edge servers can aggregate the information held 
by neighboring robots, which can communicate with each other to share informa-
tion over a wide area. In this case, we can consider the information collection 
function at each edge server as a periphery function, and the information-sharing 
function among edge servers as a core function. Therefore, we can find a hierar-
chical core/periphery structure in a large-scale service configuration where mul-
tiple edge servers exist. Considering the same scenario as illustrated in Fig. 7, it 
is is effective to place the core functions in the edge servers of a higher hierarchy 
when aggregating the information of four or more edge servers. However, this 
figure assumes that the information is exchanged every frame. In a real service, 
information sharing among edge servers is infrequent, and the edge servers for 
the core functions of higher hierarchy are only used when information is shared 
among an extremely large number of edge servers.

6  Conclusion

We introduced a core/periphery structure to actualize a flexible and adaptive ser-
vice composition in an MEC environment, and we designed and implemented a 
network-oriented service based on this structure. To this end, we designed and 
implemented multiple service scenarios and evaluated them using cyclomatic 
complexity and overhead for information sharing. We demonstrated that the 
source code did not become complex when we added functions to access differ-
ent devices using the core/periphery structure; further, we measured the penalty 
through experiments on actual devices and showed that it is tolerable.

Although this paper focused on a shopping service, a service design based on 
a core/periphery structure is not limited to shopping and can be applied to other 
network services.

In a future study, we will consider a service design that can adapt to larger 
environmental changes, such as moving to another location in the real world. Spe-
cifically, we design a service that can adapt to larger environmental changes by 
reconstructing both the core and peripheral functions.

Acknowledgements This work was partly supported by the National Institute of Information and Com-
munications Technology (NICT) in Japan. The first author is supported by Di-CHiLD (Daikin Informa-
tion Science Research Unit) at Osaka University, funded by Daikin Industries, Ltd. in Japan.

Funding Open access funding provided by Osaka University.



2791

1 3

Design, implementation and evaluation of a network‑oriented…

Declarations 

Conflict of interest The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

 1. aja (2021) HELO. https:// www. aja- jp. com/ produ cts/ helo Accessed 13 July 2021
 2. Albers A, Bursac N, Scherer H et al (2019) Model-based systems engineering in modular design. 

Design Sci 5:1–33. https:// doi. org/ 10. 1017/ dsj. 2019. 15
 3. ANA (2018) ANA Avatar. https:// ana- avatar. com, Accessed 12 November 2021
 4. Baktir AC, Ozgovde A, Ersoy C (2017) How can edge computing benefit from software-defined 

networking: a survey, use cases, and future directions. IEEE Commun Surv Tutor 19(4):2359–2391. 
https:// doi. org/ 10. 1109/ COMST. 2017. 27174 82

 5. Baldwin CY, Clark KB (1997) Managing in an age of modularity. Harvard Bus Rev 75:84–93
 6. Csermely P, London A, Wu LY et al (2013) Structure and dynamics of core-periphery networks. J 

Complex Netw 1:93–123. https:// doi. org/ 10. 1093/ comnet/ cnt016
 7. Eclipse Foundation (2021) Eclipse Mosquitto. https:// mosqu itto. org Accessed 13 July 2021
 8. ETSI (2021) 5G; Extended Reality (XR) in 5G. 3GPP TR 26928 version 1610 Release 16
 9. FFmpeg (2021) FFmpeg. https:// www. ffmpeg. org/ Accessed on 31 July 2021
 10. Hu YC, Patel M, Sabella D, et al (2015) Mobile edge computing a key technology towards 5G. ETSI 

White Paper (11)
 11. Ii R, Hudson T, Seeger A, et  al (2001) VRPN: A device-independent, network-transparent VR 

peripheral system. In: Proceedings of the ACM symposium on virtual reality software and technol-
ogy, pp 55–61. 10.1145/505008.505019

 12. MacCormack A, Sturtevant DJ (2016) Technical debt and system architecture: the impact of cou-
pling on defect-related activity. J Syst Softw 1(120):170–182. https:// doi. org/ 10. 1016/j. jss. 2016. 06. 
007

 13. McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng SE-2 4:308–320. https:// doi. org/ 
10. 1109/ TSE. 1976. 233837

 14. Microsoft (2021) Microsoft HoloLens. https:// www. micro soft. com/ ja- jp/ holol ens Accessed 13 July 
2021

 15. Miele V, Ramos-Jiliberto R, Vazquez DP (2019) Core-periphery dynamics in a plant-pollinator net-
work. bioRxiv 10.1101/543637

 16. MQTT org (2021) MQTT. https:// mqtt. org Accessed 13 July 2021
 17. Open source cloud computing infrastructure - OpenStack (2021) OpenStack. https:// www. opens 

tack. org/ Accessed 13 July 2021
 18. OpenCVteam (2021) OpenCV. https:// opencv. org Accessed 13 July 2021
 19. OpenJS Foundation (2021) Node-RED. https:// noder ed. org Accessed 13 July 2021
 20. Papazoglou M, van den Heuvel W (2007) Service oriented architectures: approaches, technologies 

and research issues. VLDB J 16:389–415
 21. Redmon J, Farhadi A (2018) YOLOv3: An incremental improvement. CoRR abs/1804.02767. http:// 

arxiv. org/ abs/ 1804. 02767
 22. Sabella D, Sukhomlinov V, Trang L, et al (2019) Developing software for multi-access edge com-

puting. ETSI White Paper (20)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.aja-jp.com/products/helo
https://doi.org/10.1017/dsj.2019.15
https://ana-avatar.com
https://doi.org/10.1109/COMST.2017.2717482
https://doi.org/10.1093/comnet/cnt016
https://mosquitto.org
https://www.ffmpeg.org/
https://doi.org/10.1016/j.jss.2016.06.007
https://doi.org/10.1016/j.jss.2016.06.007
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://www.microsoft.com/ja-jp/hololens
https://mqtt.org
https://www.openstack.org/
https://www.openstack.org/
https://opencv.org
https://nodered.org
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767


2792 S. Takagi et al.

1 3

 23. Softbank Robotics (2021a) NAO the versatile humanoid robot. https:// www. softb ankro botics. com/ 
emea/ sites/ defau lt/ files/ press- kit/ NAO- press- kit- EN. pdf Accessed 31 July 2021

 24. Softbank Robotics (2021b) Pepper press kit. https:// www. softb ankro botics. com/ emea/ sites/ defau lt/ 
files/ press- kit/ Pepper- press- kit_0. pdf Accessed 13 July 2021

 25. Tachi S (2016) Telexistence: enabling humans to be virtually ubiquitous. IEEE Comput Graph Appl 
36(1):8–14

 26. Taibi D, Lenarduzzi V, Pahl C (2017) Processes, motivations, and issues for migrating to microser-
vices architectures: an empirical investigation. IEEE Cloud Comput 4(5):22–32. https:// doi. org/ 10. 
1109/ MCC. 2017. 42509 31

 27. Takagi S, Arakawa S, Murata M (2020) Design, implementation and evaluation of core/periphery-
based network-oriented mixed reality services. J Int Serv Appl 13(1):1–10

 28. Takagi S, Arakawa S, Murata M (2020b) On the implementation and evaluation of a network-ori-
ented mixed reality service based on core/periphery structure. In: IEICE technical report (NS2019-
218) pp 221–226

 29. Taleb T, Samdanis K, Mada B et al (2017) On multi-access edge computing: a survey of the emerg-
ing 5G network edge cloud architecture and orchestration. IEEE Commun Surv Tutor 19(3):1657–
1681. https:// doi. org/ 10. 1109/ COMST. 2017. 27057 20

 30. Tsukui Y, Arakawa S, Takagi S et al (2020) Design and placements of virtualized network func-
tions for dynamically changing service requests based on a core/periphery structure. IEEE Access 
8:166294–166303

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Authors and Affiliations

Shiori Takagi1  · Shin’ichi Arakawa1 · Masayuki Murata1

 * Shiori Takagi 
 s-takagi@ist.osaka-u.ac.jp

 Shin’ichi Arakawa 
 arakawa@ist.osaka-u.ac.jp

 Masayuki Murata 
 murata@ist.osaka-u.ac.jp

1 Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, 
Suita, Osaka, Japan

https://www.softbankrobotics.com/emea/sites/default/files/press-kit/NAO-press-kit-EN.pdf
https://www.softbankrobotics.com/emea/sites/default/files/press-kit/NAO-press-kit-EN.pdf
https://www.softbankrobotics.com/emea/sites/default/files/press-kit/Pepper-press-kit_0.pdf
https://www.softbankrobotics.com/emea/sites/default/files/press-kit/Pepper-press-kit_0.pdf
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.1109/COMST.2017.2705720
http://orcid.org/0000-0002-3637-0113

	Design, implementation and evaluation of a network-oriented service with environmental adaptability based on coreperiphery structure
	Abstract
	1 Introduction
	2 Related work
	3 Service scenario
	3.1 Basic service
	3.2 Additional functions to improve the service
	3.3 Service design without a coreperiphery structure

	4 Service design and implementation
	4.1 Design scenario
	4.2 Service design based on coreperiphery structure
	4.3 Implementation
	4.3.1 Object detection and information sharing (core function)
	4.3.2 Messaging (core function)
	4.3.3 Speed adjustment (peripheral function)
	4.3.4 Displaying information to users (peripheral function)


	5 Evaluation
	5.1 Implementation cost
	5.2 Overhead for information sharing
	5.3 Penalty in the core on edge server scenario
	5.3.1 Result

	5.4 Hierarchical coreperiphery structure

	6 Conclusion
	Acknowledgements 
	References




