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Abstract
Edge computing and multi-access edge computing (MEC) are two recent paradigms
of distributed computing that are growing due to the rise of the fifth-generation (5G) of
broadband cellular networks. The development of edge computing andMEC architec-
tures involves the hosting of applications close to the end-users, allowing: an improved
privacy, given that critical data is not shared with other systems; a reduced commu-
nication latency; an improved application speed; and a more efficient energy use.
However, many applications are challenged by edge computing and MEC. In the case
of machine learning (ML) applications, there can be privacy rules that do not allow
data to be shared among distinct edges. Additionally, the devices used to train ML
models might present lower computational capabilities than traditional computers. In
this work, we present a Federated ML architecture that uses decentralized data and
light ML training techniques to fit MLmodels on the 5G Edge. Our system consists of
edge nodes that train models using local data and a centralized node that aggregates
the results. As a case study, an international revenue share fraud task is addressed by
considering two real-world datasets obtained from a commercial provider of Telecom
analytics solutions. We test our architecture using two iterations of a Federated ML
method, then compare it with a centralized ML model that is currently adopted by the
provider. The results show that the Federated Learning decentralized approach pro-
duces an excellent level of class discrimination and that the main models maintain the
performance across two rounds of decentralized training and even surpass the existing
centralized model. After validating the results with the Telecom provider, we have
built a prototype technological architecture that can be deployed in a real-world MEC
scenario.
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1 Introduction

The fifth-generation (5G) of broadband cellular networks not only represents an evo-
lution from the previous generation (4G) but is also a new technological standard
that aims to achieve improvements in the quality of service by offering, for instance,
higher throughput and low latency. These improvements present a challenge and, in
response, a new computing paradigmhas emerged: EdgeComputing. EdgeComputing
technology moves computational resources to the devices at the edge of a communi-
cation network. Computations that were typically made in the cloud or at the end-user
devices are now made on edge devices. This move allows the desired high throughput
and low latency but also diminishes the data transfer between end-user devices and
the cloud, allowing the data to be kept on the edge, near the end-user devices [1].

This way, Edge Computing technology offers the possibility of hosting applications
close to the users, thus reducing communication latency, and improving application
performance and energy efficiency [2]. In particular, Multi-access Edge Computing
(MEC) provides Cloud Computing and Information Technology capabilities within
the Radio Access Network (RAN), at the edge of mobile communication networks,
close to mobile subscribers [3]. MEC technology offers a distributed environment
for the provision of applications and services, as well as for content processing and
storage, in the proximity of mobile users.

This paper proposes a framework to detect International Revenue Share Fraud
(IRSF) on the Edge. In this framework, we instantiate a ML application on the edges
and on a central module, using a common ML model to be used on all the edges
and Federated Learning to perform decentralized training on the edges. IRSF is one
of the most prevalent frauds among the mobile phone network. Due to how interna-
tional agreements among telecommunication companies are made and also for privacy
concerns, this fraud is difficult to avoid or backtrack, making it a popular choice for
malicious actors [4, 5]. This framework also aims to cope with the novel data protec-
tion and privacy regulations [6], which introduced strict rules regarding the possible
usages of costumer data and limitations on how that data may be transferred among
locations and business partners.

Our work is part of the R&D project “Opti-Edge: 5G Digital Services Optimization
at the Edge”, which is being developed by a leading provider of analytics solutions
for the Telecom industry. The goal of the Opti-Edge project is to develop a solution
capable of running ML algorithms to detect IRSF in a MEC scenario. In this scenario,
typically there are a group of base stations where phone calls occur and that generate
data records. For privacy reasons, each base stationmust be capable of detecting fraud-
ulent calls without sharing data with other base stations, while consuming the least
possible amount of computational resources. The proposed Federated ML framework
can deal with the training and deployment ofMLmodels within aMEC scenario using
decentralized data and lighter ML algorithms.
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For the experimental results, we used real-world IRSF data from one of the software
company’s clients to evaluate our architecture. We simulate the application of the
proposed architecture during two rounds of decentralized training using three edge
nodes and one centralized location. Then, we analyze the results and compare them
with a pure centralized ML model that was previously developed by the software
company. Moreover, we monitor the performance of the ML models when tested on
more recent data. After validating the results with the Telecom company, we designed
a prototype technological architecture that can be deployed in a real-world MEC
scenario.

This work consists of a rather extended version of our previous work [7] and that
includes several new elements. Firstly, we describe the IRSF task in more detail and
perform an updated survey of the state-of-the-art works regarding application of Fed-
erated Learning in Edge Computing architectures (Sect. 2). Secondly, the IRSF data
is presented with more depth (Sect. 4.1). Thirdly, we analyze the proposed federated
ML architecture using an additional and larger IRSF dataset. Fourthly, the new Sect. 6
discusses the technologies that were used to implement a demonstrator prototype of
the proposed Federated Learning solution.

The paper is organized as follows. In Sect. 2, we present the related work. Next,
Sect. 3 describes the proposed ML architecture for Federated Learning at the Edge.
Section4 describes the used datasets, ML frameworks, and the algorithm used to
aggregate the ML models. Section5 shows and discusses the experimental results.
Section6 details the technological architecture of the prototype demonstration that was
built using the proposedMLarchitecture. Finally, Sect. 7 presents themain conclusions
and future work directions.

2 Related work

2.1 5G and edge computing

5G offers the potential to create new applications, business models, and to improve
quality of life through almost instantaneous data communication and high transmis-
sion rates, low communication latency, andmassive connectivity for new applications,
including autonomous vehicles, smart cities, smart homes, or Industry 4.0 [8]. To reach
5G goals, the Edge Computing paradigm has emerged and, with it, the extension and
transference of cloud capabilities to the edge of the network are enabled. This allows
computationally-intensive tasks and data storage to happen near the end-user equip-
ment and within the RAN, increasing the quality of service requirements, including
low latency and high throughput, needed by the applications running on that equipment
[1, 9].

Several technologies have emerged to support Edge Computing and to define a
new Cloud Computing paradigm that breaks through the centralized architecture and
alleviates the constraints that are faced by the centralized cloud paradigm [2]. Of
these emerging technologies, the MEC is of particular interest to this work due to
its use and orientation to the telecommunications sector. MEC has several benefits
for Mobile Network Operator (MNO), Application Service Provider (ASP), and other
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Fig. 1 The wangiri call scam (adapted from [12])

participants in this sector. MNOs can allow access to the RAN to third-party vendors
for the deployment of their applications and services, ASPs may profit from a MEC-
enabled infrastructure that offers low latency and high bandwidth along with ease
of scalability, and also end-users can experience performance improvements through
offloading techniques [9]. The particular MEC technology was standardized by the
European Telecommunications Standards Institute (ETSI) and the Industry Specifica-
tion Group (ISG) and it is recognized by the European Public-Private Partnership on
5G Infrastructure as a key emerging technology for 5G networks [3].

2.2 International revenue share fraud

Telephony networks and, in particular, mobile networks are subjected to many types
of fraud, including toll evasion frauds, retail billing frauds and revenue share fraud
[10]. The last one is specifically known as IRSF and it consists of a relevant fraud type
that is addressed by this work.

According to the Communications Fraud Control Association 2021 fraud loss sur-
vey [11], IRSF is still the most reported fraud scheme with losses totaling $6.69B.
IRSF takes many forms and evolves rapidly, making it one of the favorite fraudster
schemes [4]. It usually requires coordination and cooperation among several types
of fraudsters that can range from individual fraudsters to providers of International
Revenue Premium Numbers. Among its forms, the wangiri1 scam is the most used
[11] and it is depicted in Fig. 1. Under this scheme, the fraudster calls the victim, lets
the call ring once and then drops the call. When and if the victim calls back, the call
is redirected by a fraudster operator to the premium number and the victim incurs the
high costs of the premium call. The call profit is then shared among fraudsters [12].

1 Wangiri is a Japanese word meaning ‘one ring and drop’.
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Within our knowledge, there is scarce research related with the detection of IRSF
using ML algorithms. In [13], IRSF was approached as an anomaly detection task by
using an Isolation Forest algorithm fed with input features that are only available at
the start of the call. However, this approach resulted in a large rate of false positives
and an overall accuracy of 45% to detect an IRSF call. Another study [14] performed
a comprehensive study on the nature of International Premium Rate Number (IPRN)
and IRSF. Firstly, the authors defined a set of features based on relations between
known test IPRNs and the origin and destination numbers of the calls. Then, using
these features in conjunctionwith a supervisedRandomForest algorithm, a data-driven
model was developed, obtaining a 98% accuracy with a 0.28% false positive rate in
detecting fraudulent calls. Yet, the study relied on a set of known IPRNs that tend
to dynamically evolve over time. Thus, the proposed approach requires a continuous
IPRN database collection, that changes regularly and needs to be kept up to date, an
issue that is also present in the features. One interesting aspect studied in [14] is that
the IRSF scam can happen when considering only certain operators or when the call
is initiated from a particular geographic point, since some types of IRSF frauds rely
on the routes that the call follows from origin to destination. This means that, at times,
the classification of a call as a scam call depends on the context in which it happens,
which can increase the difficulty of the ML learning task.

Federated Learning is a modern technique that trains ML models using local data
that is not shared. Then, it aggregates the local models to generate a global model that
contains all the local models knowledge. It presents itself as a potentially good choice
to solve this context problem, as each local model is trained under its own context.

2.3 Federated learning

In the past decade, diverse studies have approached ML in Edge Computing andMEC
scenarios to optimize the planning of the architecture [15] or develop operational
intelligence [16]. Several of these works are based on centralized approaches that
train the ML models in a single location using all the data generated from the edge
devices.

In the last few years, there has been an attempt to train models without sharing the
data between edge devices, using Federated Learning concepts, which were the works
we analyzed in more depth. Table 1 summarizes the related works that use Federated
Learning in Edge Computing scenarios in terms of the following columns: Ref.—the
study reference; ML—which ML techniques were used in the study (we adopt the
DL acronym to refer to shallow and deep structures of neural architectures); FL—if
the work uses a Federated Learning; HC—if the approach explicitly considers the
hardware constraints of the edge devices for ML training and inference; EC—if the
study is applied to an Edge Computing scenario; MEC—if the study is applied to a
MEC scenario; 5G—if the work considers 5G;Telecom—if the approach is applied to
the Telecom domain; and FLApproach—brief explanation of the Federated Learning
approach.

Most of the analyzed works are from 2020 and 2021 (seven studies from each year),
which confirm that Federated Learning and Edge Computing are trending research
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topics. The majority of the related works are related to MEC architectures, even
though some studies consider other paradigms of Edge Computing (e.g., Vehicular
Networks [17]). Similar to our approach, most studies use Deep Learning models,
even though distinct neural network architectures are used among these works (e.g.,
Convolutional Neural Networks, Long Short-Term Memory). Only five works do not
use Deep Learning, using instead Deep Reinforcement Learning [18–20], classical
ML algorithms [21], and optimization methods [22]. Around half (11) of the studies
consider the hardware constraint of the edge devices in the study. However, contrary
to this work, none of the studies use ML frameworks especially designed for edge
devices (e.g., TensorFlow Lite). Of the 20 surveyed works, only one considers 5G
networks [20]. In addition, none of the works are applied to the telecommunications
domain. Regarding the research topics, seven works use existing Federated Learning
techniques (e.g., Federated Averaging) to developML applications from decentralized
data. Other works propose new Federated Learning frameworks, for example, devel-
oping new techniques for model aggregation (e.g., [23, 24]) or to prevent network
attacks (e.g., [25]).

3 Proposed architecture

This paper is part of the R&D project “Opti-Edge”, developed by a leading Portuguese
software company in the area of telecommunications. One of the expected results of
the project is the development of a ML architecture that allows the company to train
and deploy ML models at the edge, responding to a set of realistic assumptions made
by the company.

First, to ensure data privacy, the data (e.g., phone calls) must not be shared between
edge nodes, meaning that each edge must train ML models only with its local data.
Second, the computation effort should be minimal, by using lighter ML models. This
assumption is also related to sustainability concerns, to reduce the carbon footprint of
the data centers. Third, the latency for the inference should be low, since the company
needs to quickly detect fraudulent behaviour. Lastly, the fourth assumption is related
to reliability, since if one of the edges is compromised the others should be able to
keep responding.

To tackle these challenges of projectOpti-Edge,wepropose an architecture that uses
concepts of Federated Learning and lighter ML algorithms. The proposed architecture
consists of two main components: the edge nodes and a centralized location (Fig. 2).

3.1 Edge nodes

In the proposed architecture, the main steps made by each edge node are inference
(generate predictions) and local training. Figure 3 represents the internal operation of
the edge node (the left side is related to the inference task and the right side is related
to the training task).

At every moment, there is a commonMLmodel that is shared across all edge nodes
(copies of the same model). This model is a TensorFlow Lite model, a format used to
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Fig. 2 The proposed ML architecture for Federated Learning at the edge (adapted from [7])

Fig. 3 Representation of an edge node (adapted from [7])

reduce inference time and disk space occupation. This model is used every time there
is the need to make predictions. In contrast with the inference task, the training of new
ML models is typically more sporadic. When there is a need to update the main ML
model, each edge node uses its local data to train a model.

3.2 Centralized location

The proposed architecture also identifies a centralized location (e.g., cloud),which per-
forms the tasks of aggregation and sharing of the main model. The aggregation phase
is responsible for updating the main ML model. Since the learning step is decentral-
ized (i.e., every edge node trains using its local data), this step is used to aggregate all
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local models into a single model. The aggregation technique is Federated Averaging
(FedAvg) [37], widely used in the context of Federated Learning. This technique is
explained in more detail in Sect. 4.3. The sharing step is usually processed right after
the aggregation. The sharing consists of sending a copy of the new aggregated model
to each edge node, replacing the previous model.

4 Materials andmethods

4.1 Data

For the practical experiments, we used data provided by the analytics software com-
pany, related to IRSF. The analyzed data consists of two datasets that contain phone
call records from one of the company’s clients. The first dataset included 1 month of
phone calls (from July 1, 2019, to July 31, 2019), corresponding to 78,174 records.
The second and larger dataset contains a total of 1,948,504 records related with 4
months of data (from August 1, 2020 to November 30, 2020). All data is anonymized
to safeguard the companies and their customers. Both datasets have a similar structure,
with the same 35 column attributes. Sincemost columnswere either constant or empty,
we opted to remove these non informative attributes from both datasets, resulting in
final datasets that contain the 14 attributes described in Table 2.

The data included a target column (APN) that classifies a call between “normal”
and “fraud”, thus this attribute is modeled in this work assuming a supervised learn-
ing binary classification. Figure 4 shows the distribution of the two classes for both
datasets. As is usual within the fraud domain [14], in both datasets most phone calls
were considered “normal”, with only a small percentage of records being considered
“fraud”. For the first batch of data, around 15.71% of the records were labeled as fraud
(around 12,000 calls). The second batch of data wasmore unbalanced, containing only
2.48% of “fraud” records (around 48,000 calls).

Table 3 shows the number and percentage of missing values and unique values for
each attribute. For the only column that presented missing data (COUNTRY_CODE),
we replaced themissing valueswith zero,which is assumed as a numeric code value for
the “unknown” level. Given thatmost columnswere categorical (which are not directly
handledbynumeric basedMLalgorithms),weopted to encode all categorical attributes
into numerical values by using a Label Encoding, which transforms the values of
the attribute into integers (between 1 and the number of levels of that attribute). In
cases where a new category that was not present in the train data appears on test
data, we encoded these values to zero, corresponding to an “unknown” category. We
chose this technique because it is easy to implement and it does not generate new
columns, resulting in data-driven models that are faster to be trained and that require
less memory. It should be noted that most categorical attributes have a high cardinality
(e.g., IMSI), thus using an one-hot encoding would heavily increase the number of
inputs of the ML models.
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Fig. 4 Distribution of the target classes (normal and fraud) for the two datasets

4.2 ML framework

The base framework for the development of the experiments was TensorFlow, an
open-source ML library for graph-based numerical computing [38]. In particular, we
used twomodules of the TensorFlowAPI: TensorFlowLite andTensorFlowFederated.
TensorFlow Lite is a ‘lighter’ implementation of TensorFlow, developed especially for
resource-constrained devices (e.g., smartphones, IoT devices). TensorFlowLite allows
the development and deployment of Deep Learning modules on edge architectures. It
is compatible with Linux and alsomobile operating systems, such as Android and iOS.
TensorFlow Federated is the TensorFlow module focused on ML models trained with
decentralized data. This module was developed to work within Federated Learning
scenarios, where a centralized model is shared across many clients.

4.3 Federated training and aggregation

One of the main decisions when applying Federated Learning is the approach used
to unify the local models trained with local (i.e., decentralized) data, similar to this
project where one of the requirements is that there is no sharing of data between clients.
The aggregation approach we used in this paper was the FedAvg algorithm proposed
in [37]. The FedAvg algorithm assumes the existence of one common model that is
shared across several clients. Having a copy of the common model, each client applies
the Stochastic Gradient Descent (SGD) method using its local data. In practice, to
generate a local model, each client uses the current model and its local data as input.
During the local training, the client typically applies one step of SGD to the main
model, resulting in a slightly different model.

The aggregation phase of FedAvg generates a single model based on the local
models. This aggregation is similar to a weighted average of the weights of each
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Fig. 5 Representation of the FedAvg technique

model, using Eq. (1).

wt+1 ←
n∑

k=1

nk

n
wk
t+1 (1)

In this equation, wt+1 represents the new main model, nk is the number of records
using during the training of model of client k, n is the total number of records (sum
of all local models) and wk

t+1 represents the weights of the local model of client k. A
representation of this technique is shown in Fig. 5.

4.4 Initial model architecture

One of the assumptions of FedAvg is that during the Federated Learning iterations the
architecture of theMLmodel does not change, only the weights are updated. Given the
constraints of the project, we designed a neural network with few layers and neurons.
In particular, it consists of a multilayer perceptron network with four hidden layers,
ReLU activation functions in all processing neurons except the output one, which
assumes a logistic function (Fig. 6).

Themodels are executed during 100 epochs, assuming also an early stopping proce-
dure that considered three epochs. We used binary cross-entropy as loss function, the
Adam optimizer and we computed the Area Under the Curve (AUC) as the validation
and evaluation metric.
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Fig. 6 Architecture of the neural
network used for the initial
model (adapted from [7])

TheAUCmeasure is based on theReceiverOperatingCharacteristic (ROC) analysis
[39]. When a binary classifier outputs a decision score di ∈ [0, 1], the class can be
interpreted as “positive” if di > K , where K is a decision threshold, otherwise it is
considered “negative”. With the obtained class label predictions, there will be True
Positives, True Negatives, False Positives, and False Negatives. The ROC curve shows
the False Positive Rate or one minus the specificity (x-axis) versus the True Positive
Rate or sensitivity (y-axis), for all possible threshold values. The AUC measure has
two main advantages. First, the quality values are not affected by unbalanced data
(which is our case). Second, the AUC values can be easy interpreted as [40]: 0.5
– random classifier, 0.7—reasonable; 0.8—very good; 0.9—excellent; 1.0—perfect.
Figure7 exemplifies one of the ROC curves related to the predictive results (Table 4).
For this ROC curve, two distinct thresholds were selected. The more sensitive and
lower threshold is colored in green, while the more specific and higher threshold point
is colored in red.
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Fig. 7 Example of a ROC curve related to the predictive experiments (shown in Table 4)

5 Results

5.1 Experimental evaluation

For the computational experiments we simulated, using three nodes as edges and one
node as the central node, the proposed Federated Learning architecture to detect IRSF
(described in Sect. 3). We performed two Federated Learning experiments, using the
two provided datasets, including 1 month and 4 months of data. For each dataset, we
used the first half of the data (ordered by timestamp) to train an initial model inside the
centralized node, using the neural network architecture described in Sect. 4.4. Then,
we shared the obtained models (in TensorFlow Lite format) across the three edge
nodes.

During two iterations of local training and aggregation, we used the second half
of each dataset to train local models on all edge nodes, send each local model to the
cloud, aggregate the local models, and, lastly, share the new main model across all
edges. For each round of the local training, the first 75% of the data was distributed
among the edges, separating the records by phone codes (e.g., +351). The remaining
25% of data for each round was used as a common test dataset on the central node,
to evaluate the predictive performance of the ML models. Figure8 shows the division
strategy used for each dataset.

We note that we focused our experimental evaluation exclusively on the predictive
performance of the ML models, in particular on the decentralized approach. We did
not evaluate latency (e.g., to send the models to the central node) since we considered
that those values were not significant for these simulated experiments. Given that the
TensorFlow Lite models are rather small (around 100 KB) and the transfer of the
models between the edge nodes and the central node in our environment was less than
ten milliseconds, even in an extreme scenario where we train the local models every
day, this would imply spend less than one second per day.
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Fig. 8 Division of the dataset between rounds of local training (adapted from [7])

5.2 Local training results

Table 4 shows the obtained results for the conducted experiments. For each of the two
used datasets, the table details the obtained test set AUC across the three Federated
Learning steps: the initial round, the first round of local training, and the second round
of local training. For each Federated Learning round, the obtained AUC includes the
scores both for the local models (trained on the edge nodes) and for the main model
(Main), which resulted from the aggregation of the local models. Since the two initial
models (one for each dataset) were trained with centralized data, we did not include
the local model results for that round. In each round, the AUC represents the result
obtained on the test set for that round, meaning that, for each round, the test set was
the same for all models (local and main). In Table 4, we also included the score of a
Random Forest model that was developed by the company using a pure centralized
approach. This ML model is used for comparison purposes since it is currently used
by the software company for detecting IRSF.

For the first dataset (1 month of data), the results show that during the two rounds of
local training, the obtained AUC values on the test set can be considered of excellent
quality (always higher than 0.96), both for the local models and for the main models
(which aggregate all local models of that round). Moreover, during the two rounds of
local training, the main model was able to maintain the AUC value obtained by the
initial model, which was trained using only centralized data. Another interesting result
is that for the first and second rounds of local training, the performance of each of the
three local models (one for each edge node) was slightly lower than the performance
of the main model. Those results might be explained by the fact that the test sets for
each round include phone calls from the three edge nodes. Thus, it is not expected
that a local model can perform as well as the main model. However, the maximum
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Table 4 Results obtained by the local models and the main models during the federated learning iterations
(adapted from [7])

Dataset Round Measure Model used to predict

Edge 1 Edge 2 Edge 3 Main

1st batch (1 month) Initial model round AUC – – – 0.980

Local training (1st round) 0.974 0.977 0.973 0.981

Local training (2nd round) 0.976 0.964 0.975 0.980

2nd batch (4 months) Initial model round AUC – – – 0.980

Local training (1st round) 0.934 0.969 0.969 0.979

Local training (2nd round) 0.969 0.966 0.972 0.980

Company model (Random Forest) AUC – – – 0.932

predictive difference between a local model and the respective main model was less
than 1 percentage point (pp).

The second dataset (which considered a larger period and 25 times more records)
produced consistent predictive results when compared to the first batch of data. The
obtained AUC values were also of excellent quality, with the minimum value of 0.934
obtained by one of the local models. The performance of the main model was also
consistent during the local training rounds, maintaining the value of the initial model.
Similar to thefirst dataset results, the fourmonths dataset always presented higherAUC
values for the main model when compared to the local models of that round. However,
for the second dataset, the differences between the local models and the respective
main model were higher. The maximum difference between a local model for the first
round of local training and the main model was 4.5 pp and for the second round was
1.4 pp. While the maximum differences for the one-month data were smaller, this
might be due to the fact that the second dataset had significantly more records than
the first dataset.

Nonetheless, the obtained results are a good indicator that the Federated Learning
process helps theMLmodel tomaintain its performancewhen predicting the existence
of IRSF, even when considering different intervals for the local updates. This capa-
bility is especially important in the telecommunication domain since the ML models
typically require many updates. This need is mainly due to the fact that Telecom com-
panies frequently generate a huge amount of data (e.g., phone calls) and that new fraud
methods are constantly being developed by the fraudulent agents [4, 14].

Comparing the obtained results with the Random Forest model, it is possible to
verify that for all local training rounds of both datasets, the initial model and the
other main models present a higher AUC than the baseline model, with an average
difference of 4.8 pp. However, a word of caution is necessary. Our main goal with
this work was to assess the performance of the proposed ML approach, by comparing
the performance of the local models with the main models, since the value of the
application is that the learning is performed in a decentralized manner, keeping the
data processing local to the edges and respecting data privacy constraints made by
the company. It is worth noticing that the Random Forest model might have used
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Table 5 Results obtained by previous main models on new data (adapted from [7])

Dataset Round Measure Main model used to predict

Initial round 1st round 2nd round

1st batch (1 month) Initial model AUC 0.980 – –

Local training (1st round) 0.979 0.981 –

Local training (2nd round) 0.977 0.978 0.980

2nd batch (4 months) Initial model AUC 0.980 – –

Local training (1st round) 0.979 0.979 –

Local training (2nd round) 0.971 0.979 0.980

a different time period during its training. Also, unlike our approach, this process
used different preprocessing procedures and was developed with a centralized dataset.
Thus, the comparison of our approach with the baseline prediction model only serves
the purpose of demonstrating that the decentralized models can achieve AUC values
that can match the company’s current production model, even though we cannot make
a direct comparison. Nevertheless, this is another indicator of the potential of the use
of Federated Learning at the edge within the domain of telecommunications.

5.3 Model degradation analysis

Additionally, after the previous experiment we evaluated the performance degradation
of the main models. To do that, we used every main model available to predict on the
test data in each Federated Learning round. This means that, for the initial round we
only used the initial model, since it was the only model available; for the first local
training round, we used the main model from this round and also the initial main
model; for the second local training round, we used all three main models. Our main
goal was to monitor the performance degradation of the main models and the need for
model updates.

The obtained results are presented in Table 5, which confirm that the performance of
themainmodels decreases over time, when themodels are applied tomore recent data.
It should be noted that the differences are rather small (maximum difference of less
than 1 pp), which can be justified by the small interval of the datasets (1 month and 4
months). As other works that applyML to the Telecom domain show, the performance
of the models can stay stable for a few months and then drastically drop. For example,
in [41] the authors applyML algorithms to predict churn for the Telecom domain, with
some of the algorithms maintaining almost perfect Accuracy (around 100%) during 6
months and then dropping to around 10% on the seventh month. These performance
deterioration patterns are common within the Telecom domain, due to a continuous
“arms race” between the fraudsters and the anti-fraudsters, where the anti-fraudsters
introduce a new technology to block frauds, which forces the fraudsters to develop new
fraudulent techniques and so on. Nevertheless, the results obtained in this article help
support the need for constant updates of the ML models, which can be achieved with
Federated Learning when the data is decentralized and there are privacy constraints.

123



International revenue share fraud prediction on the 5G… 1925

6 Demonstrator technological architecture

The experimental evaluation in Sect. 5 confirms that the Logical Architecture proposed
in Sect. 3 has value as a distributed architecture for detecting IRSF while assuring
data privacy. To verify that that architecture was viable in a real-life environment, a
prototype demonstration was built using a selection of technologies agreed upon with
the telecommunications company.

It is important to notice that, on this paper scope, this prototype was not subjected
to performance tests, and some realist assumptions were made. In particular, regarding
latency, it was considered that due to the nature of edge technologies and since the
inference model is closer to the end user, the use latency of said model is lower than
the use latency of a model executing on a remote cloud location.

Regarding the communication latency that happens during model transference
between the edges and the cloud, and vice-versa, we consider that this step will happen
sparsely and thus latency is not considered an issue. First it is expected that this latency
is lower enough to be irrelevant within the update frequency of the models (currently,
at most once a day). Secondly, the current solution, used by the Telecom company, is
based on a centralized solution that requires the edge data to be transferred to the cloud
and the volume of the data, from our observations, is, at least, two orders of magnitude
higher than the volume of the generated inference models, meaning that the proposed
solution should have a much lower communication latency than the current solution.

The Federated Learning architecture presented in Sect. 3 was implemented, as a
prototype demonstration, in a MEC based on Open Network Edge Services Software
(OpenNESS). OpenNESS is a software toolkit for optimizing and performing edge
platforms, integrating and managing network applications and functions with cloud-
like agility across any type of network.2 This implementationwas based onOpenNESS
clusters, using one cluster as cloud platform and others as edges. The technological
architecture for this implementation is presented in Fig. 9.

The implementation follows a micro-service architecture [42] where, in the cloud,
an aggregation micro-service is kept while on the edges the predict and trainingmicro-
services are both kept, all following a service per container pattern. For the interaction
among the micro-services, a one-to-many interaction style is used, which is based on
an asynchronous publish/subscribe service, ensured by a message broker RabbitMQ
and by publishing and subscribing micro-services on each edge and cloud.

The one-to-many interaction style decouples the aggregation, predict and train-
ing micro-services keeping the dependencies among them to a minimum. For such
architecture, scaling, failure handling, or integration tasks of new services are sim-
plified. In particular, any resource-adequate node can substitute the central node and
new configurations may be experienced. In the future, this solution may be integrated
with the operators MEC platforms that provide sophisticated service instantiation and
orchestration among MEC nodes.

For the service client interaction with the application, a one-to-one synchronous
interaction style is used, based onRESTfulAPIs implemented by anAPI gateway. This
API gateway also implements a service composition that orchestrates the interactions

2 https://www.openness.org/docs/doc/overview.
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Fig. 9 Technological implementation of the proposed federated learning architecture

between the micro-services. The needed data storage for each service, both on the
edges and the cloud, follows a shared database pattern, where on each edge and on the
cloud there is a data volume for all the micro-services running on that edge or cloud.

The training micro-service follows the sequence diagram of Fig. 10. This service
is invoked regularly by a client service and starts by fetching the model used by the
prediction service from the edge volume. This model is then trained with the new
registries that are present on that edge and saved to the edge volume. Once the training
process finishes, the Edge Publisher publishes the new model on the message broker,
which in turn, notifies the Cloud Subscriber micro-service that saves the model to the
cloud storage.

The aggregation service follows the sequence diagram of Fig. 11. This service is
invoked regularly by a client service and starts by fetching all edge models from
the cloud volume, the models that were previously received from the training service.
Thesemodels are then aggregated and the resultingmodel is saved to the cloud storage.
The cloud publishing service then publishes this model to the message broker that
notifies all the edges. The edges then save this model to the storage and this model
will be used by the predicting service.

The prediction service follows the sequence diagram of Fig. 12. This service is
invoked whenever a client needs to predict if a call is a fraud call or not. Once it is
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Fig. 10 Sequence diagram for the training service

invoked, the predict micro-service uses the last main model to predict if the call is a
fraud or not.

7 Conclusions

With the rise of Edge Computing and 5G networks, companies are able to design
and host applications closer to the data sources, lowering latency and increasing
performance and efficiency. One of the primary issues of Edge Computing for ML
applications is the need to perform the training using decentralized data, which is
usually accomplished via Federated Learning approaches. In the last few years, there
have been many works that use Federated Learning concepts in Edge Computing sce-
narios. For the Telecom domain, one of the main applications of ML is related to fraud
detection, such as IRSF. However, within our knowledge there are no research works
that predict IRSF in a decentralized manner, nor considering 5G networks.

In this work, we propose a framework that can train and update ML models using
decentralized data. The framework was developed for the Opti-Edge R&D project,
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Fig. 11 Sequence diagram for the aggregation service

Fig. 12 Sequence diagram for
the prediction service

which includes amajor provider of analytics solutions for the Telecom domain.Within
this domain, typically there are several edge nodes that cannot share data between each
other or with the cloud (e.g., for confidentiality reasons). Thus, our proposed frame-
work uses Federated Learning to aggregate models that were trained with different
data.

To evaluate the framework, we simulate two rounds of federated training and aggre-
gation using two datasets provided by the Telecom analytics company concerning the
IRSF fraud: the first dataset considering 1 month of data (about 78,000 records); the
second dataset including 4 months of calls (almost 2,000,000 records). Then, we com-
pare the obtained results for both datasets with a baseline model, developed before this
work using centralized data. The results show that the decentralized approach (which
used Federated Learning) produces an excellent level of class discrimination (always
higher than 0.93 of AUC) and it can maintain its performance across two rounds of
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local training (with weekly or monthly periodicity). In effect, the proposed frame-
work received very positive feedback from the software company. After validating the
results with the company, we build a prototype technological architecture to deploy
the proposed framework in a real-world MEC scenario.

In future work, we wish to further evaluate the framework with more datasets from
the telecommunication domain and consider longer periods of time (e.g., one year), to
verify the consistency with our results and to better evaluate model degradation during
the model updates. Moreover, we intend to apply concepts of Automated Machine
Learning (AutoML) and Neural Architecture Search (NAS) to automate the design of
the neural network architectures for the initial ML models. We also intend to perform
a sensitivity analysis on the aggregation frequency of the models, since we recognize
that in certain scenarios that require a highmodel update frequency, the communication
latency may become an issue. Additionally, we intend to evaluate the robustness of
the Federated Learning approach regarding attacks to the local edges (e.g., verify if
the attacks propagate to the main models). Finally, we aim to develop a new Federated
Learning architecture that does not require either a centralized module in the cloud or
a previously trained initial model.
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