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Abstract
Architecting a self-adaptive system with decentralized control is challenging. Indeed,
architects shall consider several different and interdependent design dimensions and
devise multiple control loops to coordinate and timely perform the correct adaptations.
To support this task, we propose Decor, a reasoning framework for architecting
and evaluating decentralized control. Decor provides (i) multi-paradigm modeling
support, (ii) a modeling environment for MAPE-K style decentralized control, and
(iii) a co-simulation environment for simulating the decentralized control together
with the managed system and estimating the quality attributes of interest. We apply
the Decor in three case studies: an intelligent transportation system, a smart power
grid, and a cloud computing application. The studies demonstrate the framework’s
capabilities to support informed architectural decisions on decentralized control and
adaptation strategies.
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1 Introduction

Modern software systems are envisioned as large-scale distributed execution envi-
ronments populated by myriads of pervasive real-world things, which collaborate to
provide rich functionalities - e.g., smart homes, smart cities, intelligent traffic systems,
and smart power grids. Since these applications operate under highly dynamic con-
ditions, the traditional stability assumptions on systems’ design are no longer valid.
The dynamics introduce uncertainty, which may harm the system and lead to incom-
plete, inaccurate, and unreliable results [34]. Managing the run-time uncertainty is
then crucial for the dependability of such systems.

Self-adaptation is widely considered a practical approach to deal with the uncer-
tainty and dynamic of the environment [18]. Self-adaptive systems are conceptually
organized as a managed system that implements the main functionality and a manag-
ing system that executes the adaptation logic through a control loop. The control is
organized according to the well-established MAPE-K model [37], with Monitor (M),
Analyze (A), Plan (P), and Execute (E) components, plus a Knowledge component
(K ) that maintains information the other components utilize.

When dealing with large-scale distributed systems, centralized control is hardly
adequate to manage large-scale systems as several challenges must be tackled, e.g.,
maintaining consistent global knowledge, timely analyzing it, and routing all adap-
tation decisions through a centralized manager [14, 23, 25]. Hence, self-adaptation
should be achieved through decentralized control, where multiple loops interact with
each other to address run-time uncertainty [60].

Architecting decentralized control is challenging: architects shall consider several
different and interdependent design dimensions and devise multiple control loops to
coordinate and timely perform the correct adaptations. Typically, several architecture
candidates exist to organize decentralized control. Different candidates entail differ-
ent quality attributes (e.g., performance and cost), which architects should carefully
evaluate when selecting a candidate for a given system.

In this work, we address the problem of adequately designing the decentralized con-
trol for a given managed system at the architecture level.To this end, architects should
evaluate different architectures and determine the degree to which a decentralized
control would provide the desired level of quality. In this context, reasoning frame-
works [6] are used to guide architecture definition by predicting the extent to which a
candidate architecture satisfies the quality requirements. Reasoning frameworks have
been reported as a successful approach and are applied for assessing different types of
quality attributes, e.g., modifiability [27], reusability [2], safety [36], and performance
[43].

Therefore, our objective is to devise a reasoning framework that allows for (O1)
modeling the decentralized control alongwith themanaged systemand (O2) evaluating
how they affect each other. Towards this objective, the main contribution of this work
isDecor (DEcentralized COntrol Reasoning framework), a tool-supported reasoning
framework satisfying the following requirements1:

1 Decor is available at the following link: https://github.com/mi-da/DECOR
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R1.1 Multi-paradigm Modeling The framework shall provide support for
multi-paradigmmodeling [33] and allowarchi-
tects to specify the self-adaptive system as
a multi-model composed of interacting mod-
els [10] (i.e., for the managing and managed
systems), each using its formalism to specify
entities and operations on a different spatial
and temporal scale.

R1.2 Decentralized Control. The framework shall support the design of
decentralized control for large-scale distributed
systems at the architecture level. The frame-
work shall support multiple MAPE-K control
loops and their constituents as first-classmod-
eling elements [60].

R2 Evaluation The framework shall provide support for
evaluating the overall system (managing and
managed systems), as well as focusing on
attributes specific to the managed system
under analysis.

The rationale forR1.1 is to promote reusability and separation of concerns between
managed andmanaging systems throughmulti-paradigmmodeling;R1.2 aims to tame
complex and distributed systems through decentralized control; finally, R2 aims to
close the loop by providing support to evaluate the system quality.

Modeling control architectures has been largely addressed in Literature (e.g., [38,
40, 54]). However, the proposed approaches are agnostic to the underlying managed
system and do not consider how the control impacts the managed system’s behav-
ior. Including the managed system in the modeling effort is the research gap this
work addresses. We propose a reasoning framework with comprehensive support for
multi-paradigm modeling and co-simulation of both the decentralized control and the
managed system, which – to the best of our knowledge – is a novel contribution to
the field of engineering self-adaptive systems. Indeed, Decor leverages the model-
based systems engineering paradigm [41] and promotes the systematic use of models
as first-class elements in engineering decentralized self-adaptive systems. On the one
hand, the reasoning framework allows analyzing the quality of a control loop with
respect to system requirements. On the other hand, the model-based system engineer-
ing paradigm reduces the development complexity through a generative approach –
i.e., generating different models, among which selecting the proper one [46].

Decor has been developed by leveraging model-driven software engineering tech-
niques [11]. In particular, we exploit a metamodel-centric design for (i) specifying a
MAPE-K Control Modeling Language, (i i) defining a graphical modeling environ-
ment, and (i i i) transforming the modeled MAPE-K Control into a simulation model.
In order to demonstrate the framework’s capabilities, we usedDecor in three different
application scenarios: an intelligent transportation system, a smart power grid, and a
cloud computing system. We use these scenarios to demonstrate how Decor allows
software architects to evaluate different Control architectures and make informed
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Fig. 1 Intelligent transportation system

decisions on decentralized control and adaptation strategies tomeet the system require-
ments.

The remainder of the article is organized as follows. Section 2 introduces a running
example illustrating the type of problems we intend to tackle. Section 3 discusses
related work and describes the research gap. Section 4 formalizes the core elements
of the proposed reasoning framework, whereas Sects. 5 and 6 provide details about
Decor implementation. Section 7 demonstrates how to use Decor, and Section 8
discusses obtained results and threats to validity. Finally, Sect. 9 presents conclusions
and hints for future work.

2 Running example

In this section, we describe a scenario serving as a running example throughout the
paper to illustrate concepts and usage of Decor.

An Intelligent Transportation System (ITS) is a transportation infrastructure
enrichedwith control logic to optimize the overall quality and fulfill particular require-
ments, such as a situation-oriented goal. Figure 1 illustrates a 2-lane road section
including normal vehicles (e.g., cars), special vehicles (e.g., ambulances), a wireless
communication network, and a remote cloud computing infrastructure. The entities
communicate with each other by exchanging data (see dashed lines) through different
communication media (e.g., 5G network) and communication strategies (e.g., vehicle-
to-vehicle, or vehicle-to-cloud).

The situation-oriented goal for the system is to “minimize the average travel time of
ambulances crossing the road section”. That is, when an ambulance enters a congested
road, the cars should prioritize their transit so that the average travel time for the
ambulance shall be less than 50 seconds.

Different architecturesmight be employed to organize the control for such a system.
For example, vehicles can interact with a centralized cloud computing infrastructure,
which is in charge of planning the adaptation actions for the whole system. Alterna-
tively, the vehicles can interact with each other in a fully decentralized peer-to-peer
(P2P) fashion and exchange information to free a lane for the upcoming ambulance.
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However, as different architectures entail different advantages and disadvantages
(e.g., performance, and cost), they should be carefully evaluated to make sensible
decisions, e.g., how should the control be organized? and howdoes the control, directly
and indirectly, impact the system quality?

3 Related work

Implementation approaches for self-adaptive systems are categorized according to the
type of integration between the control logic and the managed system [45]. In inter-
nal approaches, the control logic is intertwined with the managed resources, whereas
external approaches separate the control logic from the managed system by recon-
ciling them via sensors and actuators. This makes external approaches well-suited
for implementing decentralized self-adaptive systems, as they promote separation of
concerns and modularity, which lead to scalability and reusability [45]. Nevertheless,
establishing paths from design space to system implementation, via architectural pat-
terns, frameworks, and middleware is still recognized as one of the main research gaps
for self-adaptive systems [12]. To this end, during the last few years, different external
approaches have been proposed. Table 1 classifies the related literature concerning
requirements R1 and R2.

Abbas et al. [2] propose an engineering methodology called Autonomic Software
Product Lines engineering (ASPLe). ASPLe provides developers with process support
to implement product lines of self-adaptive systems with reuse at the managing system
level. This work extends on ASPLe with dedicated support for architectural reasoning
of decentralized self-adaptation in multi-domain systems.

The RAINBOW framework [31] makes use of architectural models to reason about
the system’s behavior and allows the explicit specification of reusable adaptation
strategies for multiple concerns in a centralized self-adaptive system. In particular,
RAINBOW aims to monitor the system’s runtime properties, evaluate violations of
the architectural model, and perform adaptation if a problem occurs. Differently from
RAINBOW, we aim to support architects with a multi-paradigm modeling framework
for designing and evaluating both the managing and managed system.

The FESAS framework [39] focuses on the reusability of the components defining
the managing system architecture. On the other hand, we aim to investigate how dif-
ferent control patterns affect themanaging architecture and the system’s requirements.

Malek et al. [40] propose an architecture-based framework that supports engineer-
ing mobile software systems. The proposed framework offers complete life-cycle
engineering support. However, the scope of [40] is restricted to mobile software sys-
tems, whereas we aim at embracing the more general class of large-scale self-adaptive
systems. Moreover, the control design space of this work does not embrace the prin-
ciple of MAPE-K components as first-class modeling abstractions for self-adaptive
systems. Multi-paradigm modeling support is also not provided.

FUSION [29] aims at analyzing and self-tuning the adaptive behavior of a system
in the presence of unanticipated changes. The focus of FUSION is on learning the
impact of adaptation decisions on the system’s goals at runtime for automatic online
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Table 1 Related work classification

Related work Previous work
[2] [31] [39] [40] [29] [9] [38] [3] [54] [57] [22] [24]

R1.1 � �
R1.2 � � � � �
R2 � � � � � � � � � � �

tuning of the adaptation logic. On the other hand, we aim to provide architects with a
general framework for explicitly designing decentralized control.

Bolchini et al. [9] propose a framework for specifying the characterizing elements
for which the system will exhibit self-adaptive properties. Their model offers rigorous
support for the identification and management of the aspects that characterize con-
text and self-awareness. However, this framework does not support the design of the
system’s decentralized self-adaptation.

Kit et al. [38] advocate using component-based abstractions to engineer self-
adaptive systems. The proposed framework allows for the simulation of real-time
deployments by evaluating the system behavior under different network configura-
tions and settings. However, this work does not provide mechanisms for designing
decentralized control.

Arcaini et al. [3] propose a formal framework to specify self-adaptive systems. The
framework allows for describing complex MAPE-K loops according to patterns and
exploits validation and verification techniques for assuring the correctness of compo-
nents’ interactions. However, the investigation of timed adaptation is not possible. On
the other hand, we leverage analytical theories that make it possible to evaluate these
properties.

EUREMA[54] is amodel-driven engineering approachproviding adomain-specific
modeling language and a runtime interpreter for feedback loops-based adaptations.
DEUREMA [57] extends the former approach by supporting distributed feedback-
loops coordination. Both works provide a modeling language that supports the explicit
design of feedback loops. However, multi-paradigm modeling is not provided.

The related work survey indicates a focus on modeling the managing system archi-
tecture. In this respect, the approaches are agnostic to the managed system and provide
interfaces to connect a given managed system. Hence, referring to Table 1, any ana-
lyzed related work does not provide multi-paradigm modeling support. Moreover,
besides [40], no related work supports the evaluation of capabilities during architec-
tural reasoning.

Further, Table 1 also reports how our previous work [22] [24] position with respect
to the stated objectives. Even though both papers address requirements R1 and R2,
they do not present theDecor reasoning framework as a whole nor relate the proposed
approach with respect to state of the art. Specifically, in [22] we present the design
of the multi-paradigm modeling and co-simulation environments, whereas [24] is
devoted to the tool developed by leveraging [22]. With respect to these papers, the
main additions and extensions presented herein are: (i) a specification of Decor
according to the reference architecture for reasoning frameworks defined in [6], (i i)
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Fig. 2 Iterative reasoning process

a straightforward connection, specified in EMF [49], between the Decor modeling
language and FORMS, awell know referencemodel for the formal specification of dis-
tributed self-adaptive systems [59], and (i i i) extensive experimentation demonstrating
the applicability of Decor in different settings.

4 Decentralized control reasoning framework

As introduced above, it is common to decentralize the control and deploy multiple
coordinated adaptation elements in large-scale distributed systems. To this end, given
a specific managed system, the proper architecture for organizing the decentralized
control is identified through an iterative reasoning process (see Fig. 2) used by archi-
tects to make informed architectural decisions on the system under investigation. Such
decisions might lead to potentially cutting out or exploring in detail those architectures
that show bad or good levels of quality, respectively.

As depicted in Fig. 2, the process starts with the usual Requirement Analysis, which
elicits the set ofDesired Quality Attribute Measures for the to-be system. Then, Identi-
fication and Design is devoted to modeling the given Managed System and a candidate
Control. Then, in the Reasoning activity the self-adaptive system (i.e., the managed
system and the candidate control) is evaluated by assessing it with respect to the
Desired Quality Attribute Measures. If the system does not satisfy the desired quality,
the process feeds back into the Identification and Design activity by creating a design-
evaluate loop (see Fig. 2).When the candidate architecture satisfies the desired quality,
the design of the self-adaptive system is completed. Indeed, the Reasoning activity
should consider twodifferent concerns: (i) the quality of the control, and (i i) the impact
of adaptations on the quality of the managed system itself. To facilitate the decision
process, we need a systematic and integrated approach to perform the Reasoning and
evaluate the control and its impact on the managed system.

Reasoning frameworks allow for evaluating quality attributes of the architecture
under development through the use of well-defined theories. According to [6], a Rea-
soning Framework shall instantiate the following elements:

1. Problem Description: the set of quality attributes that can be calculated by the
Reasoning Framework (e.g., latency, response time).
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Fig. 3 Decor approach

2. Analytic Theory: the theoretical foundations on which analyses are based (e.g.,
queuing theory).

3. Analytic Constraints: the set of constraints imposed on the analytic theory to restrict
the design space (e.g., execution time).

4. Model Representation: the system model in a form suitable for use with the evalu-
ation procedure (e.g., queues).

5. Interpretation: the procedure used to generatemodel representations from the archi-
tectural descriptions (e.g., from UML to queues).

6. Evaluation Procedure: the methods used to calculate quality measures from the
model representation (e.g., analytical solution, simulation).

To this end, Decor combines established analytic theories and model-driven engi-
neering practices [11] to implement such key elements (see gray boxes in Fig. 3) and
support the Reasoning activity.

Problem description Problem Description the reasoning framework is used. In
particular, Decor focuses on quality performance measures (e.g., adaptation time,
scalability, etc..) at the Control level, as well as different domain-specific quality
measures at the Managed System level. To this end, Decor leverages the extended
Architectural Reasoning Framework (eARF) [2] to specify the Desired Quality
Attribute Measures as domainQualityAttribute Scenarios (dQAS). In particular, eARF
focuses on requirements and design with explicit support for variability specification
and modeling supports. To this end, eARF provides dQAS, a template for specifying
the requirements of self-adaptive systems. The dQAS extends the well-known quality
attribute scenario (QAS) [5] with three adaptation-specific elements: namely Variants,
Valid Configurations, and Fragment Constraints (see description in Table 2).

Indeed, dQAS allows for specifying how a system should behave in specific situa-
tions.

For example, in the introduced ITS scenario, the quality requirement is “When an
ambulance enters the managed road section, the cars should prioritize its transit so
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Table 2 dQAS elements

Source The origin of a Stimulus.

Stimulus A condition that triggers self-adaptation.

Artifact The affected parts of a system.

Environment Operating environment under which a Stimulus arrives.

Response How the system responds to the Stimulus.

Response Measure How the Response is monitored and measured.

Variants Different forms of a self-adaption property.

Valid Configurations How the Variants can be combined.

Fragment Constraints Constraints on the selection of dQAS elements’ fragments.

Table 3 Desired quality attribute measure for the ITS scenario

Source software (sub)system

Stimulus state update: ambulances entering the road section

Artifact The control subsystem

Environment Runtime operating environment with any work-load

Response Prioritize the transit of ambulances

Response measure Ambulance travel time < 50 seconds

Variants centralized control and Decentralized control

Valid configurations Not specified

Fragment constraints Not specified

that the average travel time of the ambulance shall be less than 50 seconds”, and
the corresponding Desired Quality Attribute Measure, specified as dQAS, is shown in
Table 3.

Analytic theory (and Constraints) Analytic Theory represents the foundations of
the reasoning framework, as it enables the systematic analysis of the desired quality
attribute measures. Indeed, it provides architects with concrete values for assessing
and comparing different adaptations, as well as their impact on the managed system.
Given the heterogeneity of the systems under consideration (e.g., traffics systems,
smart grids, and pure software systems), Decor employs a multi-paradigm Analytic
Theory. Specifically, since Queuing Theory is widely recognized as a powerful and
versatile tool for evaluating and predicting system performance [7], it is employed at
the Control level for assessing its quality performance measures, e.g., adaptation time,
response time, latency. On the other hand, other theories, suitable for the addressed
domain and the specific quality measures of interest, are used at the Managed System
level. For example, ITS makes use of traffic theory [52], whereas the Power Grid
system makes use of electrical theory [55].

Employing Queuing theory at the Control level imposes some Analytic Constraints
on the type of control that can be analyzed. Indeed, Decor can be used to analyze
and evaluate only Control defined as a discrete-event system (DEVS) [62]. On the
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other hand, the managed system can be either discrete or continuous, depending on
the specific domain addressed.

Model Representation Usually, model representation is relative to the analytic
theory employed in the reasoning framework. To accommodate and evaluate a
multi-paradigm Analytic Theory, Decor employs DEVS [62] as ground Model Rep-
resentation. DEVS is a popular formalism for modeling complex dynamic systems
using a discrete-event abstraction. The main advantages of DEVS are the ability to
model both discrete and continuous and hybrid systems, the support for modular com-
position, and the simulation-based analysis capability. Indeed, different DEVSmodels
can be easily composed and simulated. While the Managed System is represented in
DEVS, the Control is represented as a DEVS Network Model. In particular, MAPE-K
components are modeled as nodes of a peer-to-peer network, which interact with each
other via communication links. This allows for modeling the MAPE-K architecture as
network topology, specifying how the interactions are carried on (e.g., point-to-point,
point-to-multipoint, synchronous, asynchronous, etc.), and assessing the MAPE-K
architecture in terms of network performance (e.g., throughput, latency, congestion,
etc.).

Interpretation Interpretation refers to the mapping procedure converting the archi-
tectural model into the analysis model. Indeed, Interpretation is in charge of generating
a model representation suitable for executing the evaluation procedure (i.e., a DEVS
model) from an architecture description input to the reasoning framework [6]. Refer-
ring to Fig. 3, Decor takes as input a model of the Control specified in terms of
MAKE-K components, and a model of the Managed System specified according to a
suitable domain-specificmodeling language. For example, the ITS scenario ismodeled
in MovSim [51], the Smart Power Grid in Modelica [30], and the Cloud Computing
system in CloudSim [13]. Indeed, the interpretation is a model transformation [11]
from the specific input modeling language to DEVS. In particular, I nter pretationM S

is a model-to-model transformation from a Domain Specific modeling language to
DEVS, whereas I nter pretationC is a model-to-model transformation from MAPE-
K Modeling Language (Sect. 5) to DEVS Network Model (Sect. 6.1).

Evaluation procedure The Evaluation Procedure is the application of the analytic
theory to calculate specific quality attribute measures. Evaluation techniques might be
formal, semi-formal, or simulation-based [44]. Formal methods (e.g., model checking,
Petri-net, timed automata) are largely used in the literature for evaluating self-adaptive
systems [3, 35, 58]. Despite their inherent ability to provide guarantees, these tech-
niques do not scale well to large-scale systems. The effective use of formal methods
requires reducing the computational problem by various techniques likemodel decom-
position/composition or simplifying assumptions. However, even with simplifying
assumptions and decomposition, the resultant analytic models are often not mathe-
matically tractable. Therefore, a viable alternative for evaluating large-scale systems
is through simulation. In particular, Decor estimates the Desired Quality Attributes
Measures by employing a co-simulation engine to simultaneously execute the DEVS
model representing the Managed System and the DEVS Network Model representing
the Control together. This enables for observing how the two models interact with
each other and for evaluating how the Control affects the Managed System behavior
(Sect. 6.2).
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Fig. 4 Tool-supported reasoning

4.1 TheDecor tool-supported reasoning

In order to facilitate the reasoning activity and close the loop in the Reasoning Process
(seeFig. 2),Decorprovides supporting tools for designing theControl andperforming
the evaluation through co-simulation. To this end, Fig. 4 shows the tool-supported
process and depicts how stakeholders make use of Decor core functionality, i.e.,
Control Modeling Environment (CME) andCo-Simulation Environment (CoSE).Tools
are detailed in Sect. 6.

Specifically, Control Architect and Domain Analyst analyze the Desired Quality
Attribute Measures andmap them toControl (see 1 in Fig. 4). Such amapping is estab-
lished through the extended Architectural Reasoning Framework (eARF)methodology
[2], which revolves around four elements (see Fig. 5): namely dQAS, dRS, Architec-
tural Tactics, and Architectural Patterns. As already discussed above, dQAS specifies
the domain requirements for the self-adaptive system and describes how the system
may react (adapt) to internal or external stimuli.Domain responsibility structure (dSR)
models the decisions regarding architectural components, how they are structured, and
the responsibilities assigned to each component. Architectural Tactics is a widely used
architectural approach [4] to outline design decisions that influence the achievement
of a given quality attribute response. In general, the specific architectural tactic to be
employed is determined according to the given quality requirements. However, in this
paper, we focus on MAPE-K Tactic (see Fig. 5). Architectural Patterns are structural
schemas for organizing software systems, which provide a set of predefined subsys-
tems, specify their responsibilities, and include rules and guidelines for implementing
the software architecture. In general, an architecture pattern packages several tactics
to realize one or more quality attributes. As Decor focuses on MAPE-K Tactic, then
we only consider MAPE-K Patterns [60]. The mapping from dQAS to dRS is per-
formed by means of the Responsibility-Driven Design approach [61]. In particular,
the responsibilities are extracted from dQAS andmodeled asMAPE-K components in
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Fig. 5 extended Architectural reasoning framework [1]

theControl architecture.MAPE-K patterns are essential to this activity as they provide
valuable knowledge to identify design alternatives (responsibilities and structure).

Once the mapping is established, the Domain Analyst (e.g., a traffic engineer in the
ITS scenario) models the managed system functionalities by using a Modeling Tool
(see 2 in Fig. 4) suitable for the specific addressed domain (e.g., a micro-simulation
traffic model [48]). The Managed System model is then imported in Decor so that
the observable and controllable elements (e.g., entities, relationships, properties, mea-
sures) of the managed system are automatically made available in CME. For example,
referring to the ITS scenario, for each modeled vehicle (i.e., ambulances and cars), we
can observe and control the position and speed.

Once the Managed System model is imported in CME, the Control Architect starts
modeling the control structure to realize the adaptation logic (see 3 ) by mapping
MAPE-K components to the observable and controllable elements of interest, accord-
ing to the responsibilities extracted from the dQAS. Still referring to the ITS scenario,
we Monitor the ambulance position, Analyze the road conditions (e.g., number of cars
in the road section), and adapt the cars’ position so that the ambulance’s transit is
prioritized.

When the managing and managed systems are ready, they can be evaluated in
CoSE (see 4 ).Decor provides for different evaluation strategies: the control and the
managed system models can be simulated either separately to verify their properties
in isolation (or together) to evaluate the overall system behavior. Based on the analysis
of simulation results (see 5 ), architects may initiate a new iteration to improve the
managing and managed systems model.

In the ITS scenario,Decor allows for investigating the quality attributes concerning
both themanaged system (e.g., the average speed of vehicles) and themanaging system
(e.g., adaptation time, and the number of exchangedmessages). These quality attributes
highly depend on the specificMAPE-K control adopted, as different patterns can entail
different results.
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Fig. 6 Metamodel-centric language design [11]

5 MAPE-Kmodeling language

Decor makes use of the MAPE-K tactic, which is widely recognized to be effective
in realizing self-adaptation [37]. More specifically, Decor relies on decentralized
MAPE-K control, which allows for structuring and coordinating multiple interacting
MAPE-K components (see Fig. 5). In [60], the authors introduce a simple notation for
describing interactiveMAPE-K loops.Decor formalizes such a notation and provides
a modeling language for specifying MAPE-K control loops.

To this end, the MAPE-K Modeling Language (Mape- ML) is defined as a
metamodel-centric language [11], where all aspects of the language are defined on
the basis of the metamodel (see Fig. 6). In particular, the Mape- ML metamodel is
specified by using the Eclipse Modeling Framework (EMF) [49], which provides the
metamodeling language Ecore. Ecore is based on a subset of UML class diagrams for
describing structural aspects and is tailored to Java for implementation purposes (see
Sect. 6). Specifically, Ecore is used to formalize the identified modeling concepts by
modeling the abstract syntax ofMape- ML. In contrast, modeling constraints are for-
malized by means of OCL [56], a declarative language for describing rules applying
to UML models.

The output of this process is the Mape- ML Metamodel depicted in Fig. 8. It is
worth noticing that the metamodel takes root in FORMS [59], a well know and widely
accepted reference model for the formal specification of distributed self-adaptive sys-
tems. This allowsMape- ML to inherit and use concepts already defined in FORMS.
FORMS consists of several modeling elements that specify the key aspects of a self-
adaptive software systemand the set of relationships guiding its composition.However,
FORMS does not detail how the MAPE-K components should coordinate to perform
the adaptation.

To this end, Figure 7 shows how theMape- MLMetamodel builds on FORMS and
extends it to provide a concrete perspective on the coordination aspects concerning
the MAPE-K components that realize the decentralized control. That is, Mape- ML
Metamodel allows for specifying how to structure and coordinate multiple MAPE-K
components that interact with each other to achieve the adaptation goal.

FORMS defines a Coordination Mechanism as the rules governing the interactions
among the participating computations [59]. MAPE-K Control extends such a concept
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Fig. 7 Relation between FORMS and theMape- ML Metamodel

by concretizing it into a set of architectural elements to be instantiated. In particular,
MAPE-K Control is composed of a set of architectural elements, namely Subsystem
and Interaction (see Fig. 8). These elements define, respectively, the components and
the connectors of the decentralized control.

Subsystem specializes in Self-Adaptive Unit and Local Managed System. Local
Managed System models a managed system and specifies the set of attributes repre-
senting its observable/controllable aspects. Self-Adaptive Unit models the managing
system in terms of five different types ofMAPE-K components, namely Monitor, Ana-
lyze, Plan, Execute, and Knowledge. Note that Monitor and Execute components can
possibly be associated with a Self-Adaptive Unit to define complex hierarchical archi-
tectures, where a MAPE-K loop is controlling other MAPE-K loops. Monitor checks
the Subsystem that is managed by the self-adaptive unit and stores collected data into
the Knowledge. Analyze assesses the collected data in the Knowledge to determine
whether Subsystem is satisfying its requirements. If the requirements are not satisfied,
Plan determines the actions needed to adapt Subsystem and mitigate the observed
problem. Finally, the Execute component changes the Subystem. It is whort noticing
that Mape- ML Metamodel allows for defining the architecture realizing the control
(i.e., components and connectors) but not the behavior of the MAPE-K components,
which is application specific (see Sect. 6.1).

Interaction models the communication between two MAPE-K Components. The
abstract Interaction defines a context and a target. The former indicates the component
initiating the interaction, whereas the latter indicates the destination component. Fol-
lowing the notation used in [60], Interaction specializes in InterComponentInteraction,
IntraComponentInteraction, and ReadWriteInteraction. In turn, IntraComponentIn-
teraction is further specialized by DelegationInteranction and CoordinationInter-
anction. Specifically, InterComponentInteraction models the interactions between
different types of MAPE-K components, whereas IntraComponentInteraction models
the interactions betweenMAPE-Kcomponents of the same type,CoordinationInterac-
tion models a bi-directional interaction used when two MAPE-K components have to
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Fig. 8 Ecore metamodel for the MAPE-K modeling language

coordinate each other, DelegationInteranction models a mono-directional interaction,
and ReadWriteInteraction represents the interaction between aMAPE component and
a Knowledge.

As introduced above, to express constraints on themodels, wemake use of theOCL.
Specifically (see Fig. 8), theMape- MLMetamodel defines fiveOCL rules or, using the
OCL terminology, invariants. For amodel to be valid, all itsOCL invariantsmust hold2.
For example, Listing 1 shows the OCL invariant hasAtLeastOneMapeCompenent (see
Fig. 8), which specifies that a Self-Adaptive Unit must contain at least one MAPE-
K Component. The invariant retrieves the MAPE-K components of the Self-Adaptive
Unit (e.g., self.monitor in line 2), and checks whether at least one of them is not null.

Listing 1 invariant hasAtLeastOneMapeKComponent

invariant hasAtLeastOneMapeKComponent:
self .monitor <> null or
self . analyze <> null or
self . plan <> null or
self . execute <> null or
self .knowledge <> null ;

2 The interested reader can find the complete formal specification of the OCL rules at the following link:
https://github.com/mi-da/DECOR
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Fig. 9 Modeling MAPE-K components in CME

6 DECOR supporting tools

As introduced above, Decor provides two tools for supporting the reasoning activity,
namely Control Modeling Environment (Sect. 6.1) and Co-Simulation Environment
(Sect. 6.2).

6.1 Control modeling environment

The Control Modeling Environment (CME) is based on Mape- ML and allows for
architecting the control as a set of architectural elements, each implementing a spe-
cific MAPE-K component. The Mape- ML graphical concrete syntax (depicted in
Fig. 9a) is specified according to the notation introduced in [60], and allows for easy
and effective modeling of MAPE-K control. CME allows users to architect control by
specifying their own set ofMAPE-K components and interactions or, as an alternative,
by leveraging the ready-to-use control patterns [60] available in the Control Pattern
Catalog (see Fig. 9b). For example, the Master/Slave pattern organizes into a hierar-
chical relationship where one (centralized) Master component is responsible for the
analysis (A) and planning (P). In contrast, one ormany Slave components are responsi-
ble for monitoring (M) and execution (E). On the other hand, the Information Sharing
pattern organizes into a peer-to-peer relationship restricting the inter-component inter-
actions to monitor (M) components only. Note that, the Control Pattern Catalog can
be easily extended by defining new patterns. It is worth noting that the Control Pat-
terns, as defined in [60], intentionally exclude the knowledge component to simplify
the design and avoid dependencies of the knowledge element on system domains
and underlying infrastructure. However, whether needed, CME allows architects to
instantiate the knowledge component as it best suits the specific domain or infrastruc-
ture. CME is implemented as an Eclipse plugin and is based on the Eclipse Graphical
Modeling Project3, which provides proper mechanisms for developing model-driven
development tools (see Fig. 10).

3 http://www.eclipse.org/modeling/gmp/
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Fig. 10 Decor Control modeling environment

As mentioned in Sect. 4 the Managed System model should be imported in
Decor. To this end, CME provides functionality for importing third-party models
as a Functional Mock-up Unit (FMU) via Functional Mock-up Interface (FMI) [8],
a tool-independent standard for the exchange of dynamic models and co-simulation.
When the FMU is imported, the modeled entities are made available in CME so that
they can be used as Managed Subsystems and their properties can be observed/manip-
ulated. For example, in the ITS scenario, the FMU includes the road section and the
vehicles, each with its own properties (e.g., position and speed).

Once the FMU entities are available in CME, architects model theMAPE-K control
(by either instantiating one of the patterns in the catalog or making a customized
one) and map the MAPE components to the underlying Managed Subsystems to be
monitored and controlled. For example, in the IST scenario, the MAPE-K control can
be implemented according to two different control patterns, namely the Master/Slave
pattern and the Information Sharing pattern. In the Master/Slave pattern, the Master
can be deployed in the Cloud, whereas the M and E components are mapped to all
vehicle entities. This pattern models a centralized control in charge of analyzing (A)
the data monitored by all the entities and planning (P) the adaptation strategy for
each vehicle, which will execute the adaptation. On the other hand, in the Information
Sharing Pattern shown in Fig. 10, all vehicles are running all the MAPE components.
Such a pattern models a scenario where the information concerning the current status
of each vehicle is shared among all the MAPE-K loops, which in turn locally analyze
the situation, and plan/execute their adaptation in isolation.When theMAPE-K control
is finalized, CME validates whether it is compliant with the Mape- ML Metamodel
and/or with one of the Control Patterns in the Catalog. The correctness of the model is
validated through OCL. For example, Listing 2 shows one of the OCL rules defining
the Information Sharing pattern shown in Fig. 102. In particular, according to the
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pattern definition (see Fig. 9b), the invariant intraComponentInteractionIsMCoord
states that the only IntraComponentInteraction allowed is the one occurring between
MapeKComponents of type Monitor (line 6 and 7).

Listing 2 invariant intraComponentInteractionIsMCoord

invariant intraComponentInteractionIsMCoord :
i f ( type = PatternType : : InfoSharing)
then self . interactions −> select (oclIsKindOf(IntraComponentInteraction))
−> select (oclAsType( Interaction ) . targetAndContextNotNull)
−> reject (oclIsKindOf(Coordination) and
oclAsType( Interaction ) . context ?.oclIsKindOf(Monitor) and
oclAsType( Interaction ) . target ?.oclIsKindOf(Monitor)) −> size () = 0
else true

endif ;

Valid models can finally be evaluated in the Co-Simulation Environment. To this
end, CME exploits the EMF parser to perform a Model-to-Text Transformation and
generate a DEVS Network Model of the MAPE-K control (see Sect. 4). Indeed, the
modeled MAPE-K components are mapped into protocol classes according to the
PeerSim specifications [42]. PeerSim is a discrete-events simulator designed to effi-
ciently simulate large-scale peer-to-peer networks. TheModel-to-Text Transformation
consists of a set of transformation rules executed while parsing the MAPE-Kmodel to
generate a set of PeerSim-compliant Java classes. Once the Java classes are generated,
the end-user can edit them by adding the specific behavior needed for implementing
the adaptation policy. Note that CME currently does not provide architects with the
ability to specify the behavior of the MAPE components (e.g., how to analyze data,
adapt, etc.). While Mape- ML allows for defining the components and connectors to
realize the control, the end user should specify the specific behavior of modeled com-
ponents. Future extensions of Decor will allow for formally specifying the behavior
of MAPE components (e.g., [35]).

6.2 Co-simulation environment

The Decor Co-Simulation Environment (CoSE) includes a Co-Simulation Engine
for co-simulating the Managed System model and the MAPE-K Control modeled in
CME. CoSE implements different simulation strategies by enabling the estimation of
different quality attribute measures: the control and the managed system models can
be simulated separately to verify their properties in isolation or together to evaluate
the overall system behavior.

Co-simulation refers to the ability to simultaneously execute multiple simulation
models by allowing information exchange among them [16]. To this end,Decor lever-
ages MECSYCO (Multi-agent Environment for Complex SYstem CO-simulation)
[15], a multi-models co-simulation platform. MECSYCO is based on the Agents &
Artifacts for Multi-Modeling paradigm [47] and is implemented as a multi-agent sys-
tem,where eachmodel corresponds to anAgent, and the information exchangebetween
the models correspond to the interactions between the agents. Indeed, each interaction
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Fig. 11 Co-simulation environment (modeled with MECSYCO notation [47])

between agents is reified by an Coupling Artifact that holds a buffer used by agents
to exchange input/output events. An agent handles its associated model as a DEVS
atomic model through the Model Artifact, which implements the DEVS simulation
protocol and acts as a DEVS wrapper for the model.

Figure 11 shows how the MECSYCO platform is exploited to implement CoSE
and co-simulate the Control model and the Managed System model. In particular, the
FMU representation of theManaged System is managed through an FMUArtifact that
exposes a DEVS view of the FMU [17]. On the other hand, the PeerSim representation
of the Control is managed through the PeerSim Artifact that exposes a DEVS view
of the PeerSim model. To this end, we re-engineered PeerSim by implementing the
following set of functions, which are needed by MECSYCO for handling the co-
simulation4:

– ini t() initializes PeerSim by setting the parameters, and the initial state of the
model

– process External Event(e, t, k) processes the external input event e at simulation
time t in the kth input port of PeerSim model.

– process I nternal Event(t) processes the internal event of the PeerSim model
scheduled at simulation time t .

– get Output Event(k) returns the external output event e at the kth output port of
PeerSim model.

– get Next I nternal EventT ime() returns the time t of the earliest scheduled inter-
nal event of the PeerSim model.

Once the Managed System and Control are exposed as DEVS model, their simulation
is coordinated byMECSYCO via theManaged System (MS)Agent andControl Agent,
which interact with each other bymean ofMS Coupling Artifact andControl Coupling
Artifact, respectively.

4 For further details, refer to the MECSYCO website: http://mecsyco.com/
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Fig. 12 Control patterns for the ITS scenario

7 Decor in practice

In this Section, we use Decor in three different application scenarios. The purpose is
twofold: (1) to demonstrate the expressiveness ofMape- ML, and (2) to demonstrate
the ability to deal, at the Managed System level, with different application domains
and their domain-specific quality attributes. In particular, the ITS (Sect. 7.1) is used to
demonstrate how to evaluate two different MAPE-K patterns and observe their impact
on the managed system. A Smart Power Grid (Sect. 7.2) is used to demonstrate the
ability of Decor to deal also with continuous systems. Finally, a Cloud Computing
System (Sect. 7.3) is used to demonstrate how to leverage Decor for testing and
evaluating different adaption policies.

7.1 Intelligent transportation system

Scenario ITS is described in Sect. 2.
Goal The Desired Quality Attribute Measure for the ITS is formulated in Table 3.

The goal is to experiment with different MAPE-K Patterns and: (1) check whether
they can achieve the Response Measure “Ambulance travel time < 50 seconds”, (2)
assess the MAPE-K Controls behavior in terms of adaptation time and the number of
interactions among the MAPE components.

Managed system model The managed system is modeled and simulated using
MovSim [51], a multi-model and open-source simulator for lane-based microscopic
traffic. Since MovSim does not allow exporting models in FMU, we followed the
same approach used to integrate PeerSim (see Fig. 11). In particular, we implemented
a MovSim Artifact to expose a DEVS view of the MovSim mode by implementing
the functions described in Sect. 6.2. Once MoveSim is integrated into MECSYCO,
the ITS model can be co-simulated with the Control Model.

Control Model. The Control model can be modeled according to any Control
Pattern in the patterns catalog. However, Coordinated Pattern and Regional Planning
Pattern are not appropriate for the given scenario:
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– Coordinated Pattern requires all the M , A, P , and E components to be deployed on
each vehicle and to coordinate with corresponding components of other vehicles.
As the number of vehicles can be very large, the total number of M , A, P , and E
components (and the interactions among them) grow exponentially and become
intractable.

– Regional planning use regional planners (i.e., the P components responsible for
each region) to interact with each other and coordinate global adaptions, that is
adaptations that span multiple regions. This would require extra resources at the
infrastructure level for physically dividing the managed road section into several
regions and monitoring the borders among them. In fact, when a vehicle crosses a
border, control responsibility should be transferred from one regional planner to
another without interruption of service.

On the other hand, both Master/Slave Pattern and Information-sharing Pattern might
represent a viable choice for implementing the control scenario.

Co-simulation.TheDesiredQualityAttributeMeasure is evaluated by experiment-
ing with the proposed MAPE-K control patterns (see Fig. 12). In the Master/Slave
control pattern, where the cloud is responsible for ingesting the data, we tested two
network configurations with different latency: (i) the first configuration models a net-
work characterized by a latency value between 100ms and 150ms, whereas (i i) the
second configuration models a network characterized by a latency value between 1s
and 1.5s.

On the other hand, for the Information Sharing control pattern, we rely on a vehicle-
to-vehicle wireless network with a communication range of 200meters and latency
between 3 and 10ms. These values comply with state-of-the-art vehicular wireless
protocols like 802.11p [26].

In Fig. 13 we report the performance results of the two MAPE-K control patterns.
Figure 13a shows that there are no substantial differences between the Master/Slave
and Information Sharing control patterns regarding the average travel time of ambu-
lances. In particular, Fig. 13a shows that for every architecture, the Desired Quality
AttributeMeasure is satisfied up to≈ 2200 vehicles, which indicates that the identified
metric is not latency-sensitive.

A noteworthy outcome of this experiment is that with over≈ 2500 vehicles per hour
crossing the road section, our adaptation procedure performs worse than in case of no
adaptation. We analyzed this result deeper and found that the continuous trigger of
the self-adaptation procedure saturates the left lane by causing a bottleneck of the two
lanes road (even on the right lane). In this unfortunate case, the ambulances are trapped
by the same self-adaptive system that, instead, was intended to speed up their transit.
Another result of this experiment is the behavior of the Information Sharing pattern
for traffic conditions around 500 vehicles per hour. The performance degradation peak
shown in Fig. 13a and d is caused by the lack of active network links for propagating the
messages.When thenumber of vehicles is low, the distancebetween twovehiclesmight
exceed 200 meters (i.e., the communication range between vehicles). The intr-vehicle
distance affects the correct propagation of the messages over the vehicle-to-vehicle
network and prevents triggering the adaptation. A possible solution to this problem
would be to set a retransmission timeout.
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Fig. 13 Intelligent transportation system - experiments

Figures 13b and c illustrate the cost of self-adaptation. In particular, Figure 13b
shows how the average travel time of cars is always penalized in adaptive scenarios.
Further, Figure 13c reports the cost of the average number of messages per vehicle
sent for the experimented MAPE-K control patterns. The Information Sharing pattern
is the most expensive, with up to 300 messages per vehicle sent when the road is fully
saturated.

Finally, Figure 13d depicts the average adaptation time for the self-adaptive archi-
tectures, measured as the time between an ambulance sends a message until all the
cars move to the left lane (i.e., from the start to the end of the adaptation). Such a
metric is intrinsically measured by the average travel time (see Fig. 13a), hence the
same considerations that we did before hold.

Analysis. The architect can reason on the system and obtain important insights
about the experimented scenarios. In particular, for the defined, planned adaptation,
the Desired Quality Attribute Measure is satisfied in a certain operational range (i.e.,
between 0 and 2000 vehicles per hour). Centralized planningwith a slow connection to
the planning component has aminimal effect on the average travel time of ambulances,
and the Desired Quality Attribute Measure is still satisfied. Adaptation introduces an
unavoidable overhead to the system.Specifically, the average travel timeof a car always
increases. The engineer is then required to consider such results in conjunction with
other system requirements. Finally, the Information Sharing control pattern yields
overhead with the high number of messages sent through the network. With such
measures, we may examine if the wireless communication channel can support such
a load without degradation. A more detailed network protocol model could take this
aspect into account in the next design-evaluate cycle of Decor.
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Table 4 Desired quality attribute measure for the SPG scenario

Source Power grid component

Stimulus Ground fault detection

Artifact The control subsystem

Environment Runtime operating environment with any work-load

Response Flow routed through a non faulty path

Response measure Fault recovery time

Variants Decentralized control

Valid configurations Not specified

Fragment constraints Not specified

7.2 Smart power grid

Scenario A Smart Power Grid (SPG) is a cyber-physical system integrating the
electrical power grid (i.e., managed system) with information and communication
infrastructures for managing stable and sustainable electric energy provision (i.e.,
managing system). To guarantee the provision of stable and sustainable energy, the
SPG should support adaptive behavior and mitigate run-time uncertainty by control-
ling the power distribution. A system quality requirement for the SPG is “the power
grid shall be able to continue operatingwithminimal interruptionwhether components
fail”.

Goal From the above general requirement, we can derive several different Desired
Quality Attribute Measures, one for each type of failure occurring in a power grid.
Table 4 shows the Desired Quality Attribute Measure for a “Ground Fault”. A ground
fault is an inadvertent contact between the energized conductor and the ground, usually
because of insulation breakdown due to, for instance, damaged appliances, worn wire
insulation, or cable cutting. When a ground fault is detected, the affected line should
be isolated, and the electricity flow should be routed through an alternative path (if
existing). The goal is to (1) assess the behavior of the SPG (with and without self-
adaptation) in case of a ground fault and measure the fault recovery time (i.e., the
time needed to detect, isolate, and recover from the ground fault), and (2) evaluate the
performance of different MAPE-K Controls.

Managed system model Figure 14a shows the model of the Nordic 32 bus system
[50], representing an approximation of the Swedish and Nordic Power systems. The
model involves 20 generators, 32 transmission, and 22 distribution buses. It includes
102 branches, amongwhich 22 distribution and 20 step-up transformers. TheManaged
System is modeled in Modelica [30] and imported in Decor as FMU.

Control model In order to achieve the stated Desired Quality Attribute Measure,
the SPG shall (a) Monitor the actual behavior of the components in the grid (e.g.,
buses, generators, transmission lines), (b) Analyze the data, and detect the Ground
Fault, (c) Plan the needed reconfiguration actions (i.e., switching distribution path),
and (d) Execute the grid reconfiguration. In real-world settings, self-adaptation cannot
be enacted autonomously due to safety reasons and regulations. Instead, an operator
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Fig. 14 Smart power grid

should check and validate the adaptation plan before being executed. This restricts our
design space, and we consider only Master/Slave and Regional Planning patterns as
both patterns have centralized planning.

Figure 14b (top side) shows the Control Model organized according to the Regional
Planning pattern, with multiple Managed Subsystem, one for each component in the
grid (i.e., Managing grid components), and a single Regional Planner component
which aims at helping the operator, that is, the regional grid planner providing optional
reconfigurations [32]. The managing grid components monitor and analyze local grid
information (e.g., voltage amplitude, voltage angle), trigger adaptations if needed, and
execute the adaptations. On the other hand, depicted in Fig. 14b (bottom side), in the
Control Model organized by the Master/Slave pattern, the Managing Grid Compo-
nents monitor the local grid components and send data to the Master. The Master
analyzes the data and plans the adaptation actions when needed. The adaptation is
then forwarded to and executed locally by the Managing Grid component.

Co-simulation We run two experiments: the first aims at assessing the behavior
of the grid with and without self-adaptation after a ground fault, whereas the second
aims at evaluating the two MAPE-K controls described above.

During the simulation, we inject a ground fault at the line between bus N4042 and
bus N4043 (see the lightning symbol in zoomed area of Fig. 14a) at simulation time
t = 12m05s. The Managed Subsystem components managing the bus monitor and
analyze the voltage every 1s and, if necessary (i.e., the value deviates from a standard
known threshold), communicate the monitored information to the Regional Planner
through a network with latency in the range 30 − 80ms and no packet loss.

In the first experiment, we measured the ground fault’s effect by observing the
voltage amplitude level of Load43 and Load46. Figure 15a shows the behavior of the
two components in normal operation, i.e., without self-adaptation. In particular, after
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Fig. 15 Smart power grid - experiments

the failure happens at t = 12m05s, the voltage of the loads deviates from its expected
p.u. value5.

We then assess the self-adaptive capability of the SPG. The Control is aware of
the altered voltage of the loads’ value. It knows which component is causing the
fault and devises a reconfiguration plan using this information. The plan consists in
reconfiguring the energy distribution path to isolate the faulted line. Figure 15b shows
how, thanks to the reconfiguration, the voltage level at the loads is re-established
quickly. Note that with both the Master/Slave and the Regional Planning, we observed
the same results (showed in Fig. 15a and b. This observation is because the Managing
Grid component monitors the value of the voltage every 1s. Then, in both cases, the
fault is detected at simulation time t = 12m06s, and the fault recovery time is less
than 1 second.

The second experiment evaluates the advantages/disadvantages of adopting the
two control patterns. To this end, we analyze the number of cumulative messages sent
through the network by the group of components realizing the self-adaptive behavior
via the two control strategies (see Fig. 15c).

Analysis Figure 15c shows that even though both patterns satisfy the stated Desired
Quality Attribute Measure, Regional Planning pattern outperforms the Master/Slave
one. In fact, since Regional Planning analyses the data at the edge of the network
(within the Managing Grid components), messages that are not relevant for the adap-

5 In the power systems analysis field of electrical engineering, the numerical per-unit value of any quantity
is its ratio to a chosen base quantity of the same dimension [28].
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Table 5 Desired Quality Attribute Measure for the CC scenario

Source Power grid component

Stimulus Load greater than a given threshold q

Artifact The control subsystem

Environment Runtime operating environment with any work-load

Response Spawn new virtual machines

Response Measure Response time < 10s

Variants Decentralized control

Valid configurations Not specified

Fragment constraints Not specified

tation are managed locally. Whereas, in the Master/Slave pattern, the number of
cumulative messages sent through the network linearly increases. In real cases, where
the number of managed components in the power grid is very large, this could lead to
scalability issues.

7.3 Cloud computing system

Scenario Cloud Computing (CC) concerns the on-demand availability of computer
system resources without direct active management from the user. In this application
scenario, we experiment with a system simulating the characteristic of the SEAMS
exemplar “zzn.com” [19]. The zzn.com website uses a load balancer to balance
requests across a pool of replicated servers, the size of which is dynamically adjusted
to balance server utilization against service response time. A quality requirement
for the CC scenario can be “When the load on the system increases, a new virtual
machine shall be spawned so that the response time for requests is always lower than
10 seconds”.

Goal From the above quality requirement, we can derive the Desired Quality
AttributeMeasure specified in Table 5. The goal is to experiment with different adapta-
tion policies and understand how the system behaveswhen varying some configuration
parameters.

Managed system model Figure 16a shows CC scenario described above mod-
eled in CloudSim [13], an extensible simulation toolkit for modeling and simulating
cloud infrastructures and services. Specifically, clients c j send requests to the Vir-
tual Machine Manager (V M M) hosted in the cloud, which in turn balances the load
by forwarding requests to Virtual Machines (V Mi ) in a service tier. The V M M is
also in charge of managing the V Mi lifecycle (i.e., create, modify, monitor, start, and
stop). CloudSim does not export models in FMU. Therefore, as done for the ITS, we
implemented a CloudSim Artifact and integrated it into MECSYCO.

Control model To satisfy the Desired Quality Attribute Measure, the proposed
control pattern shall continuously monitor the performance of each V Mi , detect the
congestion of resources and reconfigure the pool of available virtual machines. To
this end, Figure 16b shows a custom control pattern where each V Mi is in charge of
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Fig. 16 Cloud computing system

monitoring the response time for each served request and sending such a measure to
the V M M , which in turn analyzes the data and, if necessary, plans and executes a
reconfiguration for the pool of managed V Mi .

Co-simulation In our experimentation, the pool of V Mi is initialized with a single
V M able to process multiple requests according to the time-shared scheduling policy.
We adopt the simplifying assumption of uniform requests (i.e., requests of the same
size). There exists only one type of V M which can respond to a request in isolation
in 1sec. The V M M load balances the requests to the pool of V Mi by adopting the
round-robin policy.Anew request is submitted to the systemevery 700ms from t = 5s.

Let r be a request submitted to the V M M and RTi (r) be the response time of the
virtual machine V Mi serving the request r . Every time a request r is successfully pro-
cessed by a virtual machine V Mi , the resulting response time RTi (r) is communicated
to the V M M (see the arrow from M to A in Fig. 16b).

The analyzing component of the V M M aggregates the last w response times
observed from the V Mi pool in Dw. Similar to [21], the concept of learning windoww

avoids giving too much weight to old historical data, which would be inappropriate in
a highly dynamic environment. The P component of the V M M predicts the expected
response time of a V M in the pool of resources by calculating the average value of
the last w observations, L = Dw/w.

Finally, the designed scaling policy works as follows: let q be a threshold quality
value for the response time, St the time of the last scaling operation and, g be the
grace period between two scaling operations (i.e., the minimum time that should
elapse between scaling commands). At the time t , a new V M is launched if L > q
and t > St + g.

In the first experiment, see Fig. 17a, we experiment with the proposed control
pattern by setting g = 1 and test the proposed scaling policy for different threshold
quality values q = 5, 10, 15. The baseline curve shows how the response time of the
single virtual machine linearly increases if a scaling policy is not adopted (i.e., the
system does not self-adapt to the emerging conditions). The response time of the other
curves, representing the q-parameterized scaling policies, is symmetric. Note that by
increasing the threshold value q, the response time for the pool of resources increases.
We can see that only the scaling policy with q = 5 is able to satisfy the Desired Quality
Attribute Measure (i.e., the response time of requests is lower than 10s).
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Fig. 17 Cloud Computing - Experiments

An exciting outcome of the experiment appears by looking at the number of scaling
operations executed by the policies, reportedwith crossmarks on the respective curves.
In particular, we can see that for q = 5, the system can keep control of the incoming
load by satisfying the Desired Quality Attribute Measure. However, it does this by
increasing the pool of resources by 8 virtual machines between 15− 20s. For q = 10
and q = 15, the number of scaling operations is 4 and 6, respectively.

We then experiment with q = 5 and see if such a policy can achieve the same
performance (i.e., still satisfy the Desired Quality AttributeMeasure) by issuing fewer
VMs. Frequent scale-up operations might incur more costs and cause more energy
consumption for the CC infrastructure. To this end, we experiment with different
values of grace periods g = 1, 2, 3. Referring to Fig. 17b we can see that the system
can still satisfy the Desired Quality Attribute Measure for all the experimented cases.
Moreover, for g = 3 the policy instantiates only 3 VMs against the 8 VMs adopted
by the policy with g = 1 and 5 VMs for the policy with g = 2.

Analysis Themain insight obtained from the simulation results in Fig. 17 is that the
defined scaling policy imposes a trade-off between the quality attribute (i.e., response
time) and the overhead cost (i.e., number of launched VMs). The operational point of
the adopted adaptation policy must then be selected concerning the Desired Quality
Attribute Measure at hand. In this scenario, we did not experiment with different
MAPE-K control patterns. The identification of the responsibility structures for the
managing components entails the adoption of one specific control. However, we have
shown how Decor allows not only for evaluating and choosing the desired MAPE-
K control but also for improving the designed adaptation policy once a particular
architecture is instantiated. In particular, in this scenario, the engineer selected the
control structure and explored how the adaptation policy behaves initially by varying
a single parameter (see Fig. 17b). In the second round, the behavior of the policy
is further explored to reduce its overhead while still respecting the Desired Quality
Attribute Measure (see Fig. 17a).

8 Discussion

ObjectivesO1 andO2 have been achieved by fulfilling the set of elicited requirements
(see Sect. 1): R1.1 Multi-paradigm Modeling, R1.2 Decentralized Control modeling,
and R2 Evaluation of control alternatives.
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The insights obtained in each of the experimented scenarios (see Sect. 7) demon-
strate how Decor can be used to reason about the self-adaptive system under
investigation and to determine whether the given control achieves critical quality
attribute requirements. Indeed, for each experimented system, (i) we investigated
whether the control and/or the adaptation policy under examination can satisfy the
DesiredQualityAttributeMeasure, and (i i)we analyzed the cost of the considered con-
trol in terms of different quality measures (e.g., adaptation time, number of exchanged
messages).

The multi-paradigm modeling support provided by Decor (i.e., R1.1) allows for
reasoning about different types of systems: it is possible to model closed systems,
where the model is known at design time and does not change over time (e.g., as in the
SPG scenario), as well as open systems, where the model is inherently dynamic and
continuously changes its structure and behavior (e.g., in the ITS scenario). It is possible
to model cyber-physical systems (e.g., ITS and SPG scenarios) and ICT systems (e.g.,
CC scenario).

The Decor CME provides a graphical concrete syntax for modeling decentralized
control (i.e., R1.2). Specifically, we modeled Master/Slave and Information Sharing
patterns in the ITS scenario, Master/Slave and Regional Planning patterns in the SPG
scenario, and a Custom Control, which does not adhere to any pre-specified pattern,
in the CC scenario.

Finally, we showed how to evaluate the designed multi-paradigm models through
co-simulation (i.e.,R2). The simulation results considered quality attributes measure-
ments specific to the employed control (e.g., average adaptation time), as well as
quality attributes measurements that depend on the specific type of managed system
examined (e.g., voltage amplitude). In each case, we have shown how different archi-
tectures and self-adaptation policies can lead to different performance measures. For
the sake of simplicity and understandability, in all experimented scenarios, theDecor
has been used to evaluate only a single MAPE-K control. However, it is worth notic-
ing that Decor also allows for modeling multiple concurring MAPE-K patterns and
observing through simulation whether they affect each other. For example, in case of
conflicting MAPE-K, the simulation results would show the system not behaving as
expected and not fulfilling the stated Desired Quality Attribute Measure. A thorough
investigation of these aspects is left for future work.

8.1 Threats to validity

There are some potential threats to the validity of the proposed approach.
A threat to internal validity might be that we defined a single Desired Quality

Attribute Measure for each of the addressed application scenarios. A given control
may satisfy a Desired Quality AttributeMeasure but invalidate or affect the realization
of other Desired Quality Attribute Measures. To this end, it is worth noticing that
Decor allows for adding a new Desired Quality Attribute Measures at each design-
evaluate cycle and re-evaluating the control according to the new set of requirements.
However, analyzing each requirement in isolation might lead to inconsistencies. A
control mechanism designed for addressing a specific quality aspect might not be
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optimal for a recently introduced Desired Quality Attribute Measure. On the other
side, evaluating all the quality requirements in a single design-evaluate cycle canmake
the reasoning very complex. One strategy to tackle this problemmight be: (i) start with
all the Desired Quality Attribute Measures, (i i) if the problem becomes intractable,
group similar Desired Quality Attribute Measures and execute a design-evaluate cycle
for addressing them, (i i i) evaluate the identified control with respect to the remaining
DesiredQualityAttributeMeasures. This is only an example strategy, and other divide-
et-impera approaches might be as effective. Hence, to mitigate the threat to internal
validity, a future investigation might be based on finding and documenting state-of-
the-art approaches. Further, it is worth mentioning that, if it is not possible to satisfy
all the identified Desired Quality Attribute Measures, a prioritization of requirements
based on user-defined preferences is required.

Another threat to internal validity is the integration of third-party simulators in the
Decor CoSE. One of the main design decisions we made for implementing CoSE, is
to rely on FMU/FMI [8], as it is a well-known and broadly used standard for specifying
and exchanging simulation models6. However, only one (i.e. SPG) of the three sce-
narios discussed in Sect. 7 exploits such a functionality. For the other scenarios – i.e.,
ITS, and CC – we had to re-engineer the used simulators – MovSim and CloudSim,
respectively – and manually integrate them into MECSYCO. In general, if the given
simulator leverages discrete event simulation, the integration procedure is easy and
does not require much effort. However, it is not as straightforward as with FMU/FMI
and requires (i) to have access to the simulator source code and (i i) to re-design
the event processing routine so that the simulation can be progressed step-wise by
MECSYCO7.

A threat to external validity concerns the approach evaluation. Indeed, we demon-
strated the framework’s applicability by using it in three application scenarios.
Although the three scenarios are different in nature and have different requirements
and characteristics, this is not enough to validate the generality of the approach. Indeed,
a more extensive and deep evaluation is required. To mitigate such a threat, we plan, as
part of future work, to conduct a set of controlled experiments. In particular, we plan to
identify a few real use cases considering multiple domains, requirements, and design
dimensions. Then, a group of professionals and students will be selected from ICT
companies in the Växjö area and from the Software Technology Master Programme
at Linnaeus University, respectively. Each identified use case will be addressed by 2
teams of students (T S

1 , T S
2 ) and 2 teams of professionals (T P

1 , T P
2 ), by using differ-

ent approaches: T S
1 and T P

1 will make use of Decor, T S
2 and T P

2 will make use of
approaches/tools from the state-of-the-art (see Sect. 3). During the development, we
will constantly monitor the different teams and gather some data. The objective of the
study is manyfold and aims at: (i) evaluating the generality and applicability, as well
as understanding the limitations of the proposed approach, (i i) assessing the number
of design-evaluate cycles needed to satisfy all the quality requirements when using
Decor and the other approaches/tools, (i i i) measuring the time spent for modeling the
MAPE-K Control inDecor and other tools, (iv) assessing the usability of theDecor

6 https://fmi-standard.org
7 For more details, see https://github.com/mi-da/DECOR

123

https://fmi-standard.org
https://github.com/mi-da/DECOR


Architecting decentralized control in large-scal… 1879

tools (e.g., Mape- ML/CME, and CoSE). Indeed, all these aspects will be addressed
from the professionals’ and students’ points of view.

9 Conclusions and future work

Designing decentralized control architectures is challenging: architects should con-
sider many different and interdependent design dimensions to devise a control able
to timely perform the correct adaptations and make the system meet its goals. To this
end, several different alternatives might exist to architect the control. However, differ-
ent control alternatives entail different properties (e.g., performance and cost), which
should be carefully evaluated to select the best candidate for the given system.

In this paper, we presented Decor, a model-based reasoning framework for
designing and evaluating decentralized control. In particular, Decor provides (i)
multi-paradigm modeling support, (i i) a modeling environment for architecting
MAPE-K decentralized control, and (i i i) a co-simulation environment for simulat-
ing the decentralized control together with the managed system and estimating the
quality attributes of interest. Therefore, Decor allows architects to model the decen-
tralized control along with the managed system and to evaluate how they affect each
other.

We used Decor to model and evaluate three different application scenarios: an
intelligent transportation system, a smart power grid, and a cloud computing system.
In these scenarios, we demonstrated how Decor allows architects to make informed
design decisions on the decentralized control and adaptation strategies to satisfy the
system requirements.

Ongoing and future work proceeds toward different lines of research. First, we aim
to consolidate both the CME and CoSE tools by, e.g., removing bugs, improving the
GUI, and providing an installation package. Further, though intuitive, the Ecore repre-
sentation of theMape- MLMetamodel does not give a precise semantic description of
the language constructs, which is instead available in FORMS. First, we plan to pro-
videMape- ML with denotational semantics by defining a mapping fromMape- ML
to Z [20], the formal language used for specifying FORMS. Second, we aim to pro-
vide developers with the ability to specify the behavior of the managing components
formally and automatically deploy them (e.g., [35]). In this way, developers could
define the algorithms determining the concrete behavior of the MAPE components at
design time. Further, as in [53], we envision the development/adoption of a validation
technique able to test and analyze the control behavior at run time and automatically
detect unintended interactions. We also aim to investigate how to evolve/adapt the
defined control itself. The run-time adaptation of the collective control might be nec-
essary due to changes in the system resources, the environment, or the system goals.
Finally, as remarked in Sect. 8.1, we plan to conduct a set of controlled experiments
with professionals and students to conduct an extensive and deep evaluation of the
approach’s generality.
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