
Computing (2023) 105:1745–1768
https://doi.org/10.1007/s00607-023-01165-x

REGULAR PAPER

Towards high-availability cyber-physical systems using a
microservice architecture

Manel Mena1 · Javier Criado1 · Luis Iribarne1 · Antonio Corral1 ·
Richard Chbeir2 · Yannis Manolopoulos3

Received: 14 June 2022 / Accepted: 9 February 2023 / Published online: 11 March 2023
© The Author(s) 2023

Abstract
In the past few years the use of IoT devices has grown exponentially. When it comes to
working with them, we find a series of problems that are not easy to solve. On the one
hand, the simple fact of communicating with those devices can be problematic since
they canuse different types of technologies regarding that communication.On the other
hand, these types of devices usually aim to perform their function using the lowest
possible energy,meaning they have certain constraints in terms of performance. Trying
toworkwith these devices in high-availability environments becomes difficult because
of those restraints. This paper introduces digital dice, a virtual representation of IoT
devices and cyber-physical systems based on microservices that uses the standard
established by the W3C, the Web of Things, as the underlying framework to declare
its possible interactions. The article puts forward the different strategies that Digital

Javier Criado, Luis Iribarne, Antonio Corral, Richard Chbeir and Yannis Manolopoulos have contributed
equally to this work.

B Manel Mena
manel.mena@ual.es

Javier Criado
javi.criado@ual.es

Luis Iribarne
luis.iribarne@ual.es

Antonio Corral
acorral@ual.es

Richard Chbeir
richard.chbeir@univ-pau.fr

Yannis Manolopoulos
yannis.manolopoulos@ouc.ac.cy

1 University of Almería, Almería, Spain

2 University Pau & Pays Adour, E2S UPPA, LIUPPA, Anglet, France

3 Open University of Cyprus, Nicosia, Cyprus

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-023-01165-x&domain=pdf
http://orcid.org/0000-0003-1084-8489
http://orcid.org/0000-0002-8035-5260
http://orcid.org/0000-0003-1815-4721
http://orcid.org/0000-0002-0069-4642
http://orcid.org/0000-0003-4112-1426
http://orcid.org/0000-0003-4026-4329

1746 M. Mena et al.

Dice uses tomitigate the problems raised. Furthermore, we contrast the performance of
Digital Dice with using the devices directly, demonstrating its advantages in a process
that requires High Availability.

Keywords IoT · CPS · Microservices · WoT · High availability

1 Introduction

The increasing use of IoT devices [1] or Cyber-Physical Systems (CPS) [2] in all kinds
of domains, such as smart cities, smart buildings and Industry 4.0, among others has
caused the adoption of these devices to grow unchecked. In 2020, there were more
than 20 billion devices, and there is no sign that it will stop anytime soon. One of
the biggest problems when working with this large quantity of devices is that we find
many different types of protocols when using them, which causes many headaches
when working with heterogeneous ecosystems for these types of devices.

Furthermore, given the purpose of most IoT devices, where efficiency prevails,
we find very noticeable performance restrictions when working with these devices.
Moreover, the performance depends not only on the particular devices we are working
with but, at times, the restrictions are the product of the technologies used, such as
certain bus-based technologies like KNX or Modbus. These technologies have very
marked restrictions on the number of clients who can be subscribed to a bus at a
particular time.

Usability, performance, and availability are the three main problems we face in
IoT-based architectures [3]. To solve them, we defined the concept of Digital Dice
(DD) [4], the purpose of which is: (1) to create a “highly available” (HA) virtual
representation of a Thing, hence the use of microservices [5], and (2) to help users and
developers interact with the said Things using simple web protocols, abstracting the
user from the particular underlying technologies of the Thing represented. To do so, a
Digital Dice is represented by Thing Descriptions (TD) of theWeb of Things (WoT).1

The Web of Things is a set of standards and protocols developed by the W3C to build
the IoT ecosystem in a flexible, scalable, and open way using web technologies as its
application layer. It helps declare, discover and interact with Things in a standard way
aswell asmonitor their state. The ThingDescription is a definition language, similar to
whatOpenAPI is for RESTful services. Table 1 represents the efforts established inDD
towards the attainment and improvement of the non-functional requirements (NFR) set
out in the ISO/IEC 25010 related to the quality parameters of a software product, and
compares them against an IoT device and the WoT reference implementation (WoT
Scripting API).

As an architectural solution based on the WoT, Digital Dice deploys a set of
microservices in a distributed containerized environment. This fact allowsDigital Dice
to become a highly scalable architecture, making this the first step towards attaining
the HA requirement. Furthermore, the way that the microservices are deployed allows
us to scale the architecture horizontally, increasing the number of instances of each

1 W3C Web of Things (WoT) – https://www.w3.org/WoT/.

123

https://www.w3.org/WoT/

Towards High-Availability Cyber-Physical Systems 1747

Table 1 NFR in IoT device, WoT reference implementation and Digital Dice

microservice as needed. Digital Dice microservices are responsible for specific facets
of the management of a thing, such as communication with the particular Thing, the
control of events, the visual interface of the represented Thing, etc. Furthermore, the
fact that eachmicroservice has its own purpose facilitatesmaintaining them separately,
improving the maintainability of the whole architecture.

Digital Dice takes its name from the concept of Digital Twin [6], as a result of both
being virtual representations of physical devices or systems. However, whereas Digital
Twin focuses on virtualizing devices to perform tests without influencing business
processes, Digital Dice focuses on managing these devices. The word Dice arises
from the different facets that are part of our microservices architecture, which we will
deal with later.

In previous work, we conceptually defined the parts of Digital Dice [4]. After
that, we saw how, through the so-called causality subsystem [7], Digital Dice handles
interoperability between devices. Finally, we defined a way through a library called

123

1748 M. Mena et al.

WoTnectivity [8] to establish a common communication pattern to connect with IoT
devices that use different technologies.

Extending our previous research, this paper focuses on the different strategies used
for converting Digital Dice into a High Availability (or HA) alternative to more tra-
ditional Digital Twins. That aside, we compare the performance of different Digital
Dice configurations with connecting directly to an IoT device. In addition, this paper
describes how, through establishing the WoT as the definition layer, and also a well-
defined API REST to define interactions, the use of Digital Dice can improve the
operability of IoT devices. Lastly, to demonstrate the applicability of Digital Dice
in a system where HA is a requisite, we show a virtual scenario, more specifically
a garbage recollection system, aiming to improve energy efficiency in a smart city
environment by optimizing the routes followed by the garbage trucks.

The facts mentioned above led us to pose the following research questions:

RQ1What does our proposal solve regarding communication with IoT devices?

RQ2 Are standard modeling languages expressive enough for the definition of
our architecture? Is Digital Dice more expressive/operable than typical IoT
devices?

RQ3 Can our solution improve the performance of requests sent to IoT devices?

RQ4 Is there any need for HA systems regarding IoT ecosystems?

RQ5 What do we propose to make our solution Highly Available?

Digital Dice proposes a solution that establishes an architecture based on microser-
vices, a REST API, and Server Sent-Events (SSE) for the management of IoT devices
and cyber-physical systems applying the standards defined by the WoT. First, the
article establishes a series of core concepts and fundamentals to understand how our
system works, emphasizing the WoT, microservices architectures, and the concept
of high availability (RQ1). Secondly, apart from using the language proposed by the
WoT to define the interactions of the represented IoT devices, we include a definition
language to generate different DD configurations. Accordingly, this solution considers
the modeling of the system itself and the deployment configuration at the replication
level, which is vital when talking about microservices (RQ2). Thirdly, we carry out
a performance comparison of our solution versus a direct connection with devices
and different DD configurations and check the difference in performance (RQ3). Fur-
thermore, thanks to the example based on a smart city that we show in the article,
one can see how there is a necessity for HA systems in IoT environments (RQ4).
Finally, the article establishes the different strategies used to turn our solution into a
high-availability solution (RQ5).

The rest of this paper is structured as follows. Sect. 2 describes the background
information and the fundamentals required to understand Digital Dice. Sect. 3 offers
an overview of the related works. Sect. 4 takes a closer look at the core concepts
of DD. Sect. 5 shows the different strategies used by DD to become a HA system.
Sect. 5.4 dealswith the performance ofDD in different configurations. Sect. 6 describes

123

Towards High-Availability Cyber-Physical Systems 1749

the example scenario. Sect. 7 goes over the answers to the proposed research questions.
Finally, Sect. 8 explains the advantages of our approach and future work.

2 Fundamentals and background

IoT refers to any object, electronic device, object, animal, or person with which we
can establish communication through a unique identifier as well as transfer data over
the network via digital means [9]. The most critical problems we face when working
with this type of things are defining its capabilities and establishing its digital repre-
sentation, as there is no standard or homogeneous way to define it. The WoT proposes
a language for defining the set of interactions of a Thing, the so-called Thing Descrip-
tion. Meanwhile, we propose a way to represent virtually different Things through a
distributed system, Digital Dice. Combining the efforts of the ideas proposed by the
WoT and our own, we established a solution for the management of IoT devices that
offers the strength of microservice architectures and the standardizing efforts of the
proposal of the WoT. In this section, we reviewed the fundamentals of Digital Dice,
i.e, WoT, Microservice architectures and Highly Available Systems.

2.1 Web of Things

Web of Things (WoT) describes a set of standards to create flexible, scalable, and
open Internet of Things (IoT) ecosystems using web technologies as the application
layer. The concept of Digital Dice began as a Web of Things servient system, which
is a software stack that implements some of the WoT building blocks. A servient
can expose Things, as well as consume them. Digital Dice is what the WoT calls an
intermediary servient software, a piece of software capable of doing both, consuming
things and exposing them.

A Thing Description (TD) describes the metadata and interfaces of Things,
which includes the set of properties, actions and events managed by that Thing.
Moreover, the properties, actions, and events are what the Thing Description calls
InteractionAffordance. The Interactions are simultaneously composed
by one or more Forms or ways to access data.

All the Interactions of a Thing are instances of a DataSchema. This
DataSchema defines the type of object that the interaction responds with (e.g., the
status of a light has a Boolean as a data schema). Thanks to this, both ourselves and the
system can know the type of data that will be returned when requesting an interaction.
The @type property can be located in the Thing or in the various Interacti-
onAffordances, and they essentially constitute an object with semantic tags (or
types). Because it is a semantic value, the parameter can be used for a variety of
purposes. For example, in the case of Digital Dice, it allows us to define specific char-
acteristics of a thing custom-made for our Digital Dice, such as when an interaction
has a user interface or when a device employs a protocol that the Web of Things does
not fully support.

123

1750 M. Mena et al.

Thanks to using TD to represent the capabilities of a Thing, and the flexibility
that the use of semantic values (@type) offers, DD can declare its capabilities in a
user-readable way, that at the same time is rigid enough to be unambiguous to other
computer systems.

2.2 Microservice architectures

Microservice-oriented architectures [10] are a type of Service-Oriented Architectures
(SOAs) [11] as both promote the separation of the application into decoupled services.
In microservice architectures, the microservices need to be fine-grained, meaning that
they must fulfil very specific roles. Consequently, these microservices must communi-
catewith each other using protocols as light as possible and agnostic to any technology,
such as HTTP.

In general, we should try tomake sure thatwhenwe design amicroservice, it follows
a principle of single responsibility, i.e., that “it does only one thing but does it well”.
Among the advantages thatwefindwhen developingmicroservice architectures are the
modularity, scalability, and integration they provide. However, this type of architecture
also comes with a series of problems such as higher latency due to the chain calls that
can happen betweenmicroservices, the fact that it is often more challenging to test and
develop these microservices, or that in this type of architectures we come across what
is called the nightmare of microservices. When this so-called microservice nightmare
appears, we find that we have hundreds of microservices up that sometimes we are
not even sure what they do.

To help us cope with the problems involved with microservice architectures, the
community has introduced some concepts or technologies, such as service meshes,
Netflix OSS, or Kubernetes [12]. In the next section, we will see how some of these
technologies are used to try not to fall victim to the problems of microservice archi-
tectures with our Digital Dice.

2.3 Highly available systems

One of the main metrics of a high availability system is its uptime. This parameter
denotes the time that a system is performing to a normal degree for a certain amount
of time. Architectures based on microservices are of special interest as they provide
high availability to their constituent parts since those microservices tend to be pieces
with a limited purpose that are easier to maintain. As such, these microservices can
be replicated more easily than on a monolithic architecture. The three main principles
of software system design that can help achieve that high availability are: removal of
single point of failure that can make the system stop working, generation of reliable
replicas (crossover point), and detection of failures that occur in the system in real-time
and adapt to these possible errors.

Microservice architectures almost intrinsically adhere to these principles. In most
cases, these architectures use the replication of microservices as a redundancy tech-
nique to eliminate the single point of failure, and the inclusion of operating patterns

123

Towards High-Availability Cyber-Physical Systems 1751

such as the circuit breaker to define the behavior in real-timewhen these failures occur
in crossover points.

3 Related work

Digital Dice aims to achieve interoperability and integration of IoT devices. Previous
research developed by Guinard [13] proposes an architecture and offers a series of
good practices to achieve this objective. The Webthings.io [14] approach uses
WoT as the definition language to describe the possible interactions of an IoT device.
However, Webthings.io focuses on the use of IoT devices, while Digital Dice
seeks the performance improvement and virtualization of those devices, not just their
use.

Another approach that uses the WoT as a definition language is WoT Store [15].
This solution allows the discovery and management of all Things available in the
environments in a seamless way. However, it does not really explore any approach
about the devices mentioned in those environments. This is where Digital Dice thrives,
as both approaches are perfectly compatible.WoTStore can be used to discoverDigital
Dice. Related to the WoT, a lot of different solutions to the different layers of it have
been proposed [16]. However, none of them focuses on the performance improvement
of IoT devices.

Microservices are an interesting way of improving performance when handling IoT
devices. In [17], the authors carry out an implementation based on Jolie and Java to
manage platforms that operate with a multitude of concurrent applications in Smart
Buildings. However, this solution has the handicap of being based on a particular
domain and not a much broader solution in terms of managing IoT devices and cyber-
physical systems in general.

The approach in [18] provides a generic method for using microservices in a non-
domain-specific way. It uses microservices to isolate features of IoT-centric systems
like security, events and devices, among others. This method, however, does not take
full advantage ofmicroservices since thosemicroservices are complex,making system
replication and maintenance more challenging. The Digital Dice architecture, on the
other hand, uses less sophisticated microservices to improve the capabilities of these
systems.

The IoT-A project [19] is an Architectural Reference Model (ARM) that develops
a shared knowledge of the IoT domain and offers a common technological basis and
set of rules for IoT system developers to derive a concrete IoT system architecture.
This ARM is used to create communication across distinct groups of IoT devices in
both the WoT and Digital Dice designs.

At the industrial level, there are several developments of different Digital Twins
[20]. However, they focus on the most classic definitions of the concept, where the
simulation of devices prevails, forgetting the facet of Digital Twins as possible virtual
abstractions of physical devices to be used as middleware for the management of these
devices. Our Digital Dice describes the necessary communication between devices for
the full integration of those with their physical counterparts. Digital Dice embraces
the concept of virtual entity and the ability to establish Physical-to-Virtual, Virtual-to-

123

1752 M. Mena et al.

Table 2 Features comparison of CPS and IoT management solutions

[14] [17] [18] [23] [24] [25] [26] [27] [28] DD

Interoperable • • • • • • • • • •
Fault tolerance • •
Virtualization •
Management • • • • • • • • • •
Scalable • • • • •
Highly available • •
Standard WoT WoT WoT SDN WoT WoT WoT

Thing-2-thing • •
Domain G SB G SB E G G SB G G

Implementation • •

Physical and Virtual-to-Virtual communication between different artefacts (devices
and software abstractions). The work undertaken in [21], thoroughly explains these
different definitions and terms that surround the concept of Digital Twin.

Another work of interest in the industrial domain is [22], which uses a microservice
approach to develop a framework for manufacturing assembly lines. One of the partic-
ularities of their approach is that workers and other artefacts involved in the assembly
process are transformed into cyber-physical entities. This work just like Digital Dice
uses anMDEapproach to design the orchestration and choreography of their approach.
Contrary to the general solution of Digital Dice, this solution is focused on solving a
particular problem in the mass customization of assembly lines.

Table 2 summarizes the main features of different alternatives to Digital Dice.
For clarification, the table uses the following abbreviation in the Domain row: G for
General, SB for Smart Buildings, and E for Environmental. As we can see, there are
several works that use WoT as the underlying definition language. However, none of
them focuses on the performance and scalability of the solution, which is the main
goal of Digital Dice and HA systems. In addition, virtualization is an important feature
that we only tend to see in the industrial domain and Digital Dice provides this feature.

The management of CPS in a HA environment is a complex task. As far as we
know, DD is the first approach that uses WoT as the definition language and aims to
become a highly available solution for managing CPS. In addition, another feature of
DD is its capability to establish Thing-to-Thing communication. Finally, we provide
an actual implementation of our approach, that has not been carried out in any of the
works mentioned in the table, except [14].

4 Digital dice: core concepts

This section summarizes Digital Dice and describes its different parts, challenges and
strengths in an IoT scenario. Digital Dicewas createdwith the idea of providing virtual
representations of things capable of managing IoT devices and trying to extend their

123

Towards High-Availability Cyber-Physical Systems 1753

functionality in the best possible way. To achieve our goal, we decided to adopt WoT
as a common language for the definition of Digital Dice. Using a standard supported
by the W3C ensured the compatibility of Digital Dice with systems and platforms
that use the WoT as a definition language, like WebThings.io [14], a platform
for monitoring and managing devices over the web, recently liberated by the Mozilla
foundation.

As an intermediary WoT servient, Digital Dice can consume and expose things.
Moreover, it adopts microservices as one of its building blocks. The use of microser-
vices adds complexity to our infrastructure but also offers the possibility of adding
replicas to the services that need it. As we mentioned previously, one of the main
problems that we have when working directly with physical devices is that they tend
to have constrained resources in some cases. The use of microservices, as well as other
strategies that are shown in the next subsection, helps to alleviate this problem.

Figure. 1 represents the metamodel for the definition of Digital Dice, in which
we can see the microservices that can be part of it, each of which has different
Environments where the necessary environment and configuration variables are
declared. Furthermore, for internal and external communication, each microservice
has a series of Resources defined by href and its DataSchemas input and out-
put. The green classes denote those already established in the Thing Description of the
WoT. DeployConfig sets the parameters required for the scaling and target CPU
usage of microservices. The microservices that DD will use are generally defined by
the type of interactions the device can use, as seen in some of our previous work [4].
Digital Dice can make use of the following microservices:

– Controller (C). This microservice is responsible for communicating with
clients or other software components. Furthermore, it orchestrates the requests
to the rest of the microservices.

– Reflection (R). This microservice is responsible for recording the interactions
that occur on the IoT device onto a database, defined by the DBConfig, as well as
executing the interactions requested by the user on said device. This microservice
establishes a permanent connection with the IoT device it represents.

– DataHandler (DH). This microservice is responsible for communication with
the underlying database. It records all the interactions requested for a particular
device on the database and recovers the data requested by users. This microservice
acts as an intermediary and decides when a request can be resolved with the
database without establishing a direct connection with the IoT device.

– EventHandler (EH). Thismicroservice handles the events generated by the IoT
device. It is also responsible for listening to events that affect some interactions of
the represented device.

– User Interface (UI). This microservice is responsible for offering user inter-
faces when necessary. These interfaces can be at the interaction level, thing level,
or both. Furthermore, the interfaces must be declared as a link in the TD that
represents the particular DD.

– Virtualizer (V). This microservice is a substitute for the physical IoT device,
simulating its operation if required. It is the closest thing to the general concept of
Digital Twin within Digital Dice.

123

1754 M. Mena et al.

Fig. 1 Digital Dice metamodel

As seen in Fig. 1, microservices C, R and DH are mandatory in every Digital Dice,
while EH, UI and V are optional, depending on what is being represented. Finally,
DD offers a Thing Description to interact with the represented device through the
Controller. The td parameter allows DD to be compatible with other WoT systems.

The language represented by the metamodel, allows us to automatically generate
DD code simpler than that established in [4] since the process is more direct than
starting from a Thing Description, limiting the casuistry and the number of rules that
are applied for its generation.

Fig. 2 represents the architecture of Digital Dice with all the different artefacts. We
can see how the parts interact with each other and how Digital Dice offers an API for
communication with users or other devices. Digital Dice can have different configura-
tion states, as well as different declared microservices. In this case, DD#1 has an EH,
and the DH microservice is replicated. Meanwhile, DD#2, has a UI microservice, and
the controller has a replica.

Apart from the microservices established in the metamodel for each DD, the archi-
tecture requires a series of common artefacts for their correct operation. First, Digital
Dice needs a database. For that, we use MongoDB due to its capability of working
with all types of unstructured data and the possibility of making replicas, which allows
simpler scalability than other types of databases.

It is important to note that DD establishes its own schema when saving the data
generated by the IoT device or the requests made by the user. Creating a general
schema is necessary since the data required or provided by different IoT devices can
be diametrically different. In the best case, these devices will offer data in the form of
readable JSON or XML-type schemas, although this is not always the case, since we
can also find textual or binary data. Table 3 shows the parameters used in this schema.

123

Towards High-Availability Cyber-Physical Systems 1755

Fig. 2 Digital Dice Architecture

Table 3 Thing interaction schema (*) action.*, property.* or event.*

As a result, we can establish a set of standard metadata for all the requests performed
on the system, making it easier to carry out simple data analysis afterwards.

The second piece necessary for the proper operation of DD is the causality subsys-
tem [7]. It allows the establishment of a mechanism to define interactions between
different devices. This relationship is formed by two entities, causes and effects.
Causality relationships help us to define how different devices interact without human
intervention, all through a common definition schema.

123

1756 M. Mena et al.

Fig. 3 Flow of write and read request in a Digital Dice

Finally, our architecture has a discovery service to be able to consult the different
Thing Descriptions that are available on the network. This service appears in the
recentmodifications included in theWoT recommendations, which call for a discovery
subsystem to establish public domain implementations.Wecreated adiscovery service,
which can be found in the WoT-Lab2 of our research group, in which the users can
interactwith the different physical andvirtual devices thatmakeup the experimentation
environment.

In some cases devices or the different parts of DD may require other services, such
asOpenData platforms (e.g., OpenCEMS [29]), external APIs (e.g., GoogleDirections
API), or auxiliary services (e.g., Mosquitto MQTT server).

Due to the requirements of working with IoT devices, such as the necessity of being
able to work with real-time data, some of the DDmicroservices, like the DataHandler,
do not follow the traditional stateless pattern of RESTful APIs. This microservice, in
particular, needs to be stateful because besides offering a REST API to its users, it
offers communication through Server-Sent Events (SSE) so that users can access the
data required in real-time.

We have now seen all the pieces that make up the architecture of DD. However, it is
interesting to see how different types of requests are orchestrated in this architecture
to understand its operation better. To do so, in Fig. 3 we depict two different types of
requests. On the one hand, the invocation of an action X, and, on the other, the request
of a property Y to a Digital Dice. In the first request, the user asks the controller of
the DD that represents the device to invoke the action X, while the controller requests
the action from DH. DH then registers the aforementioned request on the database,
which will be seen by the Reflection of the device that executes the action X on the
device. In the second request, the user asks the controller for the value of the property
Y, before the controller redirects the request to the DH, which asks the database about
this property. Finally, the database retrieves the last value of this property and returns
it to the DH which will then send the response to the user. The choice of these two
operations is not accidental. The first is a write operation, while the second is a
read operation.

It is essential to realize that only write operations require communication with
the device. In contrast,read operations use the database as a kind of cache for the data
requested by the IoT device. When we are talking about TD, we see that the possible
interactions of an IoT device according to this schema are actions, properties, and

2 ACG WoT-Lab - https://acg.ual.es/wot-lab.

123

https://acg.ual.es/wot-lab

Towards High-Availability Cyber-Physical Systems 1757

events. The invocation of an action will always be a write operation while listening
to an event is always a read operation, and in the case of properties, these can be
both read and write operations.

Reducing the number of requests executed by the IoT device is very important,
especially when talking about industrial environments. In these environments, many
devices or cyber-physical systems use bus-type protocols, such asModbus or Profibus,
which have more than obvious limitations in the number of agents carrying out oper-
ations.

5 Digital dice as a highly available solution

There are twomain reasons behind the creation ofDD. First, to homogenize the ecosys-
tem of IoT devices. Generally, these types of ecosystems tend to be very heterogeneous
due to the myriad of different devices that tend to coexist in different deployments.
Secondly, to improve the performance of the devices, as they tend to have limited
resources. In previous sections, we have explained how DD establishes a common
query language for different IoT devices based on the use of the definition language
established by the Thing Description of theWoT. This section will look at the different
strategies we have used to provide DD with the concept of high availability (HA) and
see how these strategies help improve the system’s overall performance.

To better understand these strategies, we have divided them into three different
types: (a) Physical device strategies related to communication with a particular physi-
cal device or cyber-physical system; (b) Microservices replication strategies related to
how the different microservices generate more replicas or stop some of them; and (c)
Communication strategies related to the inter-communication between microservices
and the communication between the said microservices and the end-user.

5.1 Physical device strategies

Reflection is the only point of connection with the physical device and prevents
the device from collapsing; it is the primary decision regarding device communication
strategies. As we have previously said, many IoT devices have notable limitations in
terms of performance since they are often governed by micro-controllers of the ESP32
type or similar, which are designed above all to prioritize energy saving. Furthermore,
in some IoT environments, such as the bus-based KNX or Modbus installations, we
find limitations in the number of connections we can establish. When many users
want to request data simultaneously, the bus can collapse and then all the requests are
denied.

The use of Reflection, as well as using the database as an intermediate sys-
tem, lead to the reading operations not having to reach the physical device, which
already avoids many requests to the said devices. In addition, having a single point
of connection with the device ensures that the writing operations are on a first-come,
first-served basis. The Reflection operation is based on subscribing to the reading
interactions of the device. If the device does not allow the subscription to interact,

123

1758 M. Mena et al.

Reflection is responsible for making long-polling requests to the device every
X seconds, X being a configurable time. Furthermore, Reflection listens to the
writing operations related to the controlled device. When the microservice detects
that a given operation requests changes on the device, it will execute it. The choice of
MongoDBmeans that the Reflection does not need to be continuously requesting
data from the database. MongoDB allows us to subscribe to particular queries through
a reactive pattern, making the database responsible for notifying the subscriber when
new data meets the parameters established in the query.

5.2 Microservices replication strategies

As for microservices replication strategies, we must first understand that the microser-
vices which are part of DD are based on docker-type containers. Thanks to the use of
containers, we can isolate each of the microservice executions and work environments
from the deployment machines. Using containers offers the great advantage of being
able to deploy our solution in any machine, both in bare-metal machines or in cloud
infrastructure.

When deploying Docker containers, we can use different clients, like the original
docker client (docker CLI), docker-compose, Rancher and Kubernetes, among others,
each one having its advantages and disadvantages. However, due to its direct compati-
bility with different cloud services and the possible installation of small infrastructures
based on them in our machines, we decided to deploy them using Kubernetes.

Cross-platform support is not the only reason we have decided to use Kubernetes.
Unlike some of its alternatives, this system has a series of pre-installed services that
save us from having to install new artefacts necessary for Digital Dice to work, as well
as a series of advantages:

(a) It offers the automatic generation of subnets to isolate the microservices for each
of our DD.

(b) It allows communication between the different containers by using the container’s
name as an internal DNS, thus avoiding the need to install a discovery service
since Kubernetes has already implemented it.

(c) Moreover, thanks to how widespread this client is, we are able to work with a
series of tools that allow us to track the performance and other metrics for each
container, like Prometheus,which can be used to design a dashboard usingGrafana,
to facilitate the tracking of these metrics.

Kubernetes also allows us to replicate containers automatically, unlike other clients.
To do this, we establish a series of predefined parameters: the number of CPU
requested, the CPU limit, the minimum and the maximum number of replicas that
each microservice can have, and the target CPU utilization for each container of a par-
ticular microservice. Then, when the Kubernetes system realizes that any container is
receiving a CPU load close to the established limit, it automatically launches another
replica of that microservice. The opposite takes place in the event of it realizing that
there is a container not being sufficiently used, meaning it will be responsible for
stopping it. It should be noted that Kubernetes, by default, not only uses the level of
CPU utilization for the replication of microservices but can also use the memory level.

123

Towards High-Availability Cyber-Physical Systems 1759

However, given our experimentation with handling microservices of Digital Dice, it is
better to use the CPU instead of thememory.Whenwe use containers withKubernetes,
in front of every one of them, there is a service commonly called entryPoint, which
is responsible for distributing requests to each of the replicas from the corresponding
microservice through a predefined strategy. In the scenario example that we describe in
the next section, a deployment configuration file for Digital Dice can be seen3. Each of
themicroservices (deployments) are pairedwith a configuration of type service. More-
over, each deployment has another configuration of typeHorizontalPodAutoscaler for
handling the replicas of a particular microservice.

5.3 Communication strategies

When discussing communication strategies in DD, we have to divide them into two
different viewpoints, namely, how DD communicates with the end-user and what
happens with the communication between the microservices.

As we have already mentioned, DD uses the standard proposed by the WoT. This
standard establishes a definition file, the Thing Description, which encapsulates all
the interactions DD can manage. The Thing Description aims to be to things or virtual
things (Digital Twins - Digital Dice) what Open API is to a service. One of the
Digital Dice premises is to facilitate its use by any web or mobile developer, so
from the inception of DD, we decided that end-users should be able to interact with
DD through an API. However, the use of an API in the field of IoT brings with it
a series of limitations when we talk about data in real-time, so in the end, our DD
uses what we could call a hybrid connection pattern. Firstly, with a REST API, that
by definition is Stateless, which means that the query is made and answered at the
moment. Secondly, the use of Server-Sent Events (SSE), a stateful protocol, means
that the user is subscribed to a method until the connection is closed. In DD, we
can subscribe to any read interaction through SSE, meaning that we can subscribe
to a device’s property through an HTTP request and then receive the changes of the
property in real-time. All without the end-user having to learn a technology outside
their domain. The use of SSE presented us with a problem that, in the beginning, we
had not taken into account. With HTTP/1 connections, a service can only keep five
connections openwith each user. HTTP/2 andHTTP/3 solve this problem by removing
that limitation. In our Digital Dice, we have chosen to establish the connection with
the user through the HTTP/2 protocol since HTTP/3, although it is faster than HTTP/2
as it works over UDP, is not supported by most browsers. Furthermore, using HTTP/2
requires that every DD path is secured by an SSL certificate due to the need for this
by the HTTP/2 protocol.

The use of HTTP/2 in communications with the user means that internal commu-
nications in each subnet of DD must also be secured internally, so we also use the
HTTP/2 protocol. As we discussed earlier, when using a microservice architecture,
we find that turning replicas on and off can cause what is commonly called the night-
mare of microservices. In this type of architecture, it can happen that requests are
being made to containers which are no longer available, some of the containers are

3 Garbage Containers Kubernetes file - https://cutt.ly/YIgtLAW.

123

https://cutt.ly/YIgtLAW

1760 M. Mena et al.

Table 4 Horizontal-pod-autoscaler configuration parameters

Service ReqCPU MaxCPU Min replicas Max replicas Average utilization

Controller 300m 600m 1 5 ‖ 7 50%

Data handler 300m 600m 1 5 ‖ 7 50%

Reflection 200m 1000m 1 1 Non-Applicable

continuously causing errors, or a communication overload is caused in the subnets
without us noticing.

Digital Dice uses a service mesh, more specifically envoy and istio, to solve
these problems. A service mesh is used to control how microservices share data.
Unlike other systems that can also manage communication, the service mesh is a
layer integrated into the application, which is visible and allows us to record whether
the interaction between different parts of an application is good or bad. It facilitates
the optimization of communication and prevents downtime as the application grows.
Apart from monitoring, it also applies a series of recommended patterns in microser-
vice architectures. One of them is the circuit breaker, which avoids communication
with a microservice method if it continuously generates problems, forcing a default
response. Furthermore, the use of envoy and istio allows load balancing between
the different replicas of a microservice automatically and without the need to imple-
ment it in the microservice itself.

5.4 Performance evaluation

Performance evaluation needs to establish a baseline for the characteristics of the
infrastructure where DD are deployed. For this test, even though Digital Dice can be
deployed on bare metal, we decided to deploy them on a cloud service, in this case,
Google Cloud. Of course, making this choice comes with a penalty in response times.
However, we can experiment with more fine-grained control and fewer limitations
when allocating resources for each microservice.

Table 4 shows the different parameters required by the different microservices used
to measure the performance of Digital Dice. Those parameters are the minimum num-
ber of replicas, the maximum number of replicas, the requested CPU level measured
in milicores (1000m = 1 core), the maximumCPU level and the target CPU utilization
requested by the system for each microservice container. Apart from the parameters
of each microservice, we need to define the number of replicas used in our MongoDB
deployment. We use a replica set with two machines equipped with 2 vCPU and 2
GB of RAM each in this experiment. We decided to use two different configurations
(config#1 and config#2) to see the difference in performance. As can be seen, the only
difference in the second configuration (config#2) is that we added two more possible
replicas to the maximum number of replicas allowed.

The physical device used to measure the performance of Digital Dice is a sim-
ple light since we can quickly deploy this device with different technologies, more
specifically a Philips light controlled by the Zigbee protocol, a KNX light and light

123

Towards High-Availability Cyber-Physical Systems 1761

controlled by a web server mounted on an ESP32 microcontroller. This choice allows
us to carry out a performance comparison by abstracting from the technologies that
have been used. At the same time, this device allows us to work with the three types
of operations we deem as “basic” in a thing, namely read operations, write operations
and subscriptions.

In Listing 1, we can see the Thing Description of the Digital Dice that governs these
devices,which is the same in all three cases, since although the internal implementation
is different in the case of Reflection (microservice that establishes the connection with
the physical device) for each of them, they all have the same operations, and the Thing
Description is a black box for the user when operating with our DD.

1 {
2 "@context": "https://www.w3.org/2019/wot/td/v1", "id": "acg:lab:light", "title": "ACG Lab

Light",
3 "properties": {
4 "status": {
5 "type": "object",
6 "properties": {"value": { "type": "boolean" }},
7 "forms": [{
8 "href": "https:// example.com/acg:lab:light/property/status /",
9 "contentType": "application/json"}, {

10 "href": "https:// example.com/acg:lab:light/property/status/sse",
11 "subprotocol": "sse", "response": {"contentType": "text/event -stream" }}] }},
12 "actions": {
13 "switch": {
14 "input": {
15 "type": "object",
16 "properties": {"value": { "type": "boolean"}}},
17 "required": ["value"],
18 "forms": [{
19 "href": "https:// example.com/acg:lab:light/action/switch /",
20 "contentType": "application/json" }]} }
21 }

Listing 1 Thing Description of Digital Dice Light.

In Fig. 4, we measure the performance of Digital Dice for the two different config-
urations (config#1 and config#2) stated in Table 4, by checking the level of expected
responses, along with errors that appear as we increase the number of requests to the
system. In this figure, we mean by errors those requests where the response is part
of the 400 Series Client Error Status Codes, like the responses 404 Not found or 408
Request Timeout. To perform the measurement, we used two different platforms for
the synthetic generation of requests on our system, Locust and JMeter.

In the upper-left chart of Fig. 4a, we see that errors appear from a relatively low
number of requests per second in the different physical devices we used as a baseline.
Interestingly, in bus-based connections, likeKNX,wefind that after eight simultaneous
reading operations, time-outs begin to surface since the data buffer of this system
collapses.

Conversely, in the upper-right chart of Fig. 4b, we can see how our Digital Dice
performs as far as reading operations are concerned. As we increase the number
of requests, our system responds much better than any baseline devices shown in
the upper-left chart because we do not need to establish direct communication with
the physical devices. However, in the chart, we can see how some errors appear for
approximately every 500 users making requests to our Digital Dice. The errors arise
when a new replica is being booted, which causes requests to be directed to that
new container before it finishes booting. At this point, the number of errors appears
to stabilize again. It is important to see that, although we have previously defined
that our system can work with five replicas (config#1), in the graph, the fifth spike

123

1762 M. Mena et al.

Fig. 4 Performance charts: Example IoT devices vs Digital Dice

in the number of errors does not appear. However, from a certain point, the system
reaches the limit for the number of requests it can handle. This point is reached
when we get to the maximum amount of requests that can be handled by the database
simultaneously. At that time, the database becomes the limiting factor. After increasing
the database resources, we observed that the number of requests increased as expected.
Furthermore, suppose we increase the number of replicas of the microservices and the
number of replicas of the database in our deployment to more than five. In that case,
we reach another limiting factor, the bandwidth from where we launch the synthetic
requests. We suspect that if we used a network of nodes to launch the requests in a
parallelized way, our system would continue to scale the requests as expected, but due
to the cost it would entail, we have not yet been able to confirm this hypothesis. The
same happens with config#2, as DD is not the limiting factor.

The lower-left chart of Fig. 4c represents the write requests that our system can
handle. Again, the behavior is similar to read operations, but collapse occurs much
earlier in the two configurations. The collapse happens because Reflection establishes
a queue with the write requests that arrive at the database, requests that will be sent
sequentially to the physical device. This behavior occurs when the number of requests
that reach the database exceeds the number of requests that our physical device can

123

Towards High-Availability Cyber-Physical Systems 1763

accept, and the queue in Reflection gets filled up. As such, we run into the limitation
of writing operations onto the physical device.

Finally, the result displayed in the lower-right chart of Fig. 4d allows us to see the
behavior of server-sent events (SSE). This type of request is quite challenging to test
since practically none of the load testing tools can work with these. To test SSE, we
must generate custom test scripts using a Java Sampler. Once launched, we see that the
behavior differs from the usual read operations. First, fewer requests can be processed
at the same time. In addition, we can observe that the error spikes, even though they
appear to be in sync with the replication of a service, are more pronounced and seem
to affect the number of requests processed by the system. Furthermore, using five
as the maximum replication factor, the system does not find any limitations in the
database, unlike with the read operations. In config#2, where the replication factor for
the microservices is set at seven, we can see how we start to find the same limiting
factors again as with the read operations.

The replication becomes erratic with SSE using the CPU limit as a replication
metric because the containers are almost idle until a message is triggered. We are
studying how to establish other custom replication metrics in future work, such as the
number of requests per second our system receives. With this metric, microservices
will anticipate the need for replication, making our system even more resilient.

Augmenting the number of replicas or giving more resources to the database cer-
tainly improves the performance of the different operations in Digital Dice. However,
due to the cost of the operation using more replicas, we decided that the configuration
used was good enough to see the behavior of Digital Dice for all the different types of
operations.

6 Smart city example scenario

In this scenario, we intend to demonstrate the viability of Digital Dice in a smart
city environment. To do so, we decided to develop a virtualized system based on
a process very important for citizens, the garbage collection process. We chose this
scenario because it alignswith ourDD’s strengths. In this process, the actual citizen is a
stakeholder, so developing a high-availability alternative is of great interest to citizens
as it provides them with real-time information about the status of the containers and
the routes followed by the garbage collection trucks. Moreover, since we will work
with a completely virtual system, we present DD as a proper implementation of a DT.

The scenario comprises three Things to control: containers, trucks, and routes.
The possible interactions available in each of the Things are defined in Table 5. It is
worth noting that each of the Thing Descriptions in our scenario does not represent an
individual entity. Thismeans that, for example, in the containers, theThingDescription
does not just represent a single container; it represents a complete set. One of the
significant advantages of WoT is its flexibility when defining the concept of Thing.
Conceptually, the Thing exposed in the example could be considered an aggregated
Thing in WoT terms. The public code repository is online4 and provides more details

4 Garbage collection repo. - https://github.com/acgtic211/garbage-iiot-dd-public.

123

https://github.com/acgtic211/garbage-iiot-dd-public

1764 M. Mena et al.

Table 5 Garbage collection scenario - Interaction Affordances

about the different interactions as well as the input and output parameters required.
This repository contains all the Thing Descriptions of the scenario, the source code of
the different microservices, and the configuration files of both Docker and Kubernetes
to replicate the scenario when necessary.

This scenario seeks to maximize the length of the different routes in real-time as
the garbage containers fill. To execute this behavior, we need to declare a series of
causality relationships represented in Fig. 5, whose formal definitions are found in the
EventHandlers of each of the Things that intervene in the scenario. These relationships
lead to the execution of a series of actions or modifications of a certain property in
their Things. For example, we can see in Fig. 5 how when a container exceeds 90% of
its capacity (cause), the rule tries to add it to the route through the addContainer
action (effect), which will internally look for the optimal route to add the container,

123

Towards High-Availability Cyber-Physical Systems 1765

Fig. 5 Garbage collection scenario-causalities

prioritizing active routes that neither exceed the fuel capacity, nor the load capacity of
the particular truck that is working on it.

In this scenario, the virtualization services are responsible for imitating the behavior
of containers and trucks. The latter’s movements are established from the generated
route, which is defined by the containers to be collected, whose optimal route is
calculated thanks to Google Directions API. Unless the user indicates how much to
fill a particular containermanually, the containers can execute a virtualization behavior,
which fills each container every x seconds with a semi-random weight depending on
the container we are dealing with.

In the ACGWoT-Lab you can find an interface for the management and monitoring
of this scenario, specifically in this case, the interface to follow the data from truck
2. Furthermore, WoT-Lab shows a scenario related to smart homes and gives access
to Thing Descriptions that represent physical devices, virtual devices, and Digital
Dice. These Thing Descriptions are available through a public discovery service to
experiment with this technology.

7 Discussion

If we go over the challenges and the research questions discussed in Sect. 1 , we can
now see how our proposed solution meets all the expectations.

In summary, Digital Dice is a virtual abstraction of IoT devices that aim to improve
the interoperability, integration, and management of these types of devices in mul-
tiple domains. The idea arises from creating Digital Twins based on microservices,
but providing them with the capability of virtualizing devices and managing them by
establishing a common pattern of communication that is completely agnostic with the
underlying technologies in the device (RQ1). We also describe how Digital Dice uses
the standard established by the W3C, the Web of Things, to declare the functionality
provided by each virtual device abstraction. Furthermore, thanks to the ThingDescrip-
tion of the WoT, Digital Dice is compatible with the platforms that use this standard
(RQ2).

The article presents the pieces that can form part of a Digital Dice, both microser-
vices and external artefacts. Furthermore, this work introduces a language represented

123

1766 M. Mena et al.

by the DD metamodel, which helps define the different microservices and configura-
tion parameters of a specific deployment (RQ2).

In addition, we have seen how Digital Dice establishes behaviors and communica-
tion between different devices, forming a series of rules called causality relationships.
These rules facilitate the possible automation of processes, avoiding the need for
human intervention.

On top of that, we have described the different strategies that Digital Dice uses
to improve its performance, focusing on strategies regarding communication with
physical devices, microservice replication strategies and communication strategies
between them and the user (RQ5). Moreover, we have verified empirically and exper-
imentally how the application of these strategies improves performance, making it
a high-availability alternative for managing devices with performance restrictions
(RQ3).

Finally, we have established an example scenario based on the garbage collection
process to see how Digital Dice could work without significant problems in a smart
city environment. From this scenario, we have provided a public repository with the
source code and the Thing Descriptions and deployed a web interface to enable exper-
imentation (RQ4).

Through the article, we have seen howDigital Dice can be used as a virtual abstrac-
tion of CPS, particularly IoT devices, and how the proposed architecture helps us
to achieve high availability and scalability. This brings about a series of challenges
yet to overcome, such as the fact that the current version of Digital Dice has some
potential improvements related to the load balancing offered by the service mesh the
moment that the number of replicas of a microservice is increased or decreased, espe-
cially when talking about SSE requests and in the case of write requests, as we saw in
Sect. 5.4. Furthermore, even though Digital Dice can establish and use typical autho-
rizationmechanisms, such as OAuth2, and uses secure communication protocols, such
as HTTPS, it is still necessary to implement a security layer capable of protecting the
data exchanged between the different microservices. As of right now, for the data
exchanged, we rely on the security mechanisms offered by the service mesh, but we
are aware that this is not enough.

8 Conclusion

DigitalDice provides a newway tomanageCPSbyproviding an architectural approach
that allows the creation of virtual abstractions of IoT devices. This approach is based
on creating microservices that represent the different functionalities of the devices,
which can be deployed in a distributed way. The main advantage of this approach is
that it allows the creation of high-availability and scalable systems, which can be used
to manage IoT devices with performance restrictions. However, we are aware that
there are still some challenges to overcome, as discussed in Sect. 7. Still, we believe
this approach is a good starting point to create a new way to manage CPS that does
not require proprietary solutions and that can be used in a wide range of domains and
applications, especially in those that require high availability and scalability.

123

Towards High-Availability Cyber-Physical Systems 1767

Wehave a series of open issues when discussing future work related to Digital Dice.
Regarding the replication behavior of microservices, we plan to establish new custom
metrics to anticipate peak requests and improve the performance as far as SSE requests
are concerned. These performance issues can be seen in the Sect. 5.4. To solve them,
we will try to apply smoothing strategies when microservices are replicated, as well
as in the load balancing phase applied by our service mesh. Moreover, another aspect
we want to improve about our Digital Dice is the security of our system, going further
than the suggestions offered in the security guidelines of the WoT. To do so, we want
to implement request filtering in our service mesh to mitigate the possible malicious
code injection in the communication between our microservices. Another open line
in our architectural proposal is to make Digital Dice compatible with some open data
platforms, such as Open CEMS [29], to serve as data sources. Finally, we want to
create an application to ease the generation of Digital Dice models using the proposed
language.

Acknowledgements R&D Projects UrbanITA (PY20_00809) and HERMES (PID2021-124124OB-I00).
Manel Mena: Spanish Government FPU17/02010.

Funding Funding for open access publishing: Universidad de Almería/CBUA.

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Laghari A, Wu K, Laghari R et al (2021) A review and state of art of internet of things (IoT). Arch
Comput Methods Eng. 1–19. https://doi.org/10.1007/s11831-021-09622-6

2. Pivoto DG, de Almeida LF, da Rosa RR et al (2021) Cyber-physical systems architectures for industrial
internet of things applications in Industry 4.0: a literature review. J Manuf Syst 58:176–192. https://
doi.org/10.1016/j.jmsy.2020.11.017

3. Botta A, De Donato W, Persico V, Pescapé A (2016) Integration of Cloud computing and Internet
of Things: a survey. Future Gener Comput Syst 56:684–700. https://doi.org/10.1016/j.future.2015.09.
021

4. Mena M, Criado J, Iribarne L, Corral A (2021) Assembling the web of things and microservices for
the management of cyber-physical systems. J Univers Comput Sci 27(7):734–754. https://doi.org/10.
3897/jucs.70325

5. Bucchiarone A, Dragoni N, Dustdar S et al (2020) Microservices. Springer Cham. https://doi.org/10.
1007/978-3-030-31646-4

6. Tao F, Zhang H, Liu A, Nee AY (2018) Digital twin in industry: state-of-the-art. IEEE Trans Industr
Inform 15(4):2405–2415. https://doi.org/10.1109/TII.2018.2873186

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11831-021-09622-6
https://doi.org/10.1016/j.jmsy.2020.11.017
https://doi.org/10.1016/j.jmsy.2020.11.017
https://doi.org/10.1016/j.future.2015.09.021
https://doi.org/10.1016/j.future.2015.09.021
https://doi.org/10.3897/jucs.70325
https://doi.org/10.3897/jucs.70325
https://doi.org/10.1007/978-3-030-31646-4
https://doi.org/10.1007/978-3-030-31646-4
https://doi.org/10.1109/TII.2018.2873186

1768 M. Mena et al.

7. Mena M, Criado J, Iribarne L, Corral A (2021) Defining interactions of WoT servients with causality
relations. In: Proc. MEDES’2021, pp 112-119. https://doi.org/10.1145/3444757.3485102

8. Mena M, Criado J, Iribarne L, Corral A (2020) WoTnectivity: a communication pattern for different
web of things connection protocols. In: Proc. COMPSAC’2020, pp 1059-1064. https://doi.org/10.
1109/COMPSAC48688.2020.0-133

9. Whitmore A, Agarwal A, Da Xu L (2015) The internet of things-a survey of topics and trends. Inf Syst
Front 17:261–274. https://doi.org/10.1007/s10796-014-9489-2

10. Pautasso C, Zimmermann O, Amundsen M et al (2017) Microservices in practice, part 1: reality check
and service design. IEEE Softw 34(1):91–98. https://doi.org/10.1109/MS.2017.24

11. Papazoglou MP, van den Heuvel WJ (2007) Service oriented architectures: approaches, technologies
and research issues. VLDB J 16(3):389–415. https://doi.org/10.1007/s00778-007-0044-3

12. Balalaie A, Heydarnoori A, Jamshidi P (2016) Microservices architecture enables Devops: migration
to a cloud-native architecture. IEEE Softw 33(3):42–52. https://doi.org/10.1109/MS.2016.64

13. Guinard DD, Trifa VM (2016) Building the web of things with examples in node. js and raspberry Pi.
manning publications

14. WebThings. https://webthings.io. Acc.: 2022-12-29
15. Sciullo L, Gigli L, Trotta A, Felice MD (2020) WoT store: managing resources and applications on

the web of things. Internet Things 9:100164. https://doi.org/10.1016/j.iot.2020.100164
16. Sciullo L, Gigli L, Montori F, Trotta A, Felice M (2022) A survey on the web of things. IEEE Access

10:47570–47596. https://doi.org/10.1109/ACCESS.2022.3171575
17. Khanda K, Salikhov D, Gusmanov K et al (2017) Microservice-based iot for smart buildings. In: Proc.

AINAW’2017, pp 302-308. https://doi.org/10.1109/WAINA.2017.77
18. Sun L, Li Y, Memon RA (2017) An open IoT framework based on microservices architecture. China

Commun 14(2):154–162. https://doi.org/10.1109/CC.2017.7868163
19. Krčo S, Pokrić B, Carrez F (2014) Designing IoT architecture(s): A European perspective. In: Proc.

WF-IoT, pp 79-84. https://doi.org/10.1109/WF-IoT.2014.6803124
20. Uhlemann THJ, Lehmann C, Steinhilper R (2017) The digital twin: realizing the cyber-physical pro-

duction system for industry 4.0. Procedia CIRP 61:335–340. https://doi.org/10.1016/j.procir.2016.11.
152

21. Jones D, Snider C, Nassehi A et al (2020) Characterising the digital twin: a systematic literature review.
CIRP J Manuf Sci Technol 29:36–52. https://doi.org/10.1016/j.cirpj.2020.02.002

22. Thramboulidis K, Vachtsevanou DC, Kontou I (2019) CPuS-IoT: a cyber-physical microservice and
IoT-based framework for manufacturing assembly systems. Annu Rev Control 47:237–248. https://
doi.org/10.1016/j.arcontrol.2019.03.005

23. Ibaseta D, García A, ÁlvarezM et al (2021)Monitoring and control of energy consumption in buildings
usingWoT: a novel approach for smart retrofit. Sustain Cities Soc 65:102637. https://doi.org/10.1016/
j.scs.2020.102637

24. Teriús-Padrón J, Simeoni E et al (2019) Autonomus air quality management system based on
web of things standard architecture. In: Proc. UIC-ATC’2019, pp 184-189. https://doi.org/10.1109/
SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00074

25. Jararweh Y, Al-Ayyoub M, Darabseh A et al (2015) SDIoT: a software defined based internet of things
framework. J Ambient Intell Humaniz Comput 6:453–461. https://doi.org/10.1007/s12652-015-0290-
y

26. Benomar Z, Longo F, Merlino G, Puliafito A (2020) A stack 4 things-based web of things architec-
ture. In: Proc. Cybermatics’2020, pp 113-120. https://doi.org/10.1109/iThings-GreenCom-CPSCom-
SmartData-Cybermatics50389.2020.00036

27. Silva B, Khan M, Lee K et al (2020) Restful web of things for ubiquitous smart home energy manage-
ment. In: Proc. ICNC’2020, pp 176-180. https://doi.org/10.1109/ICNC47757.2020.9049774

28. Yang H, Kim Y (2019) Design and implementation of high-availability architecture for IoT-cloud
services. Sensors 19:3276. https://doi.org/10.3390/s19153276

29. Mansour E, Chbeir R, Arnould P, Allani S, Salameh K (2021) Data management in connected envi-
ronments. Computing 103:1121–1142. https://doi.org/10.1007/s00607-020-00884-9

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1145/3444757.3485102
https://doi.org/10.1109/COMPSAC48688.2020.0-133
https://doi.org/10.1109/COMPSAC48688.2020.0-133
https://doi.org/10.1007/s10796-014-9489-2
https://doi.org/10.1109/MS.2017.24
https://doi.org/10.1007/s00778-007-0044-3
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1016/j.iot.2020.100164
https://doi.org/10.1109/ACCESS.2022.3171575
https://doi.org/10.1109/WAINA.2017.77
https://doi.org/10.1109/CC.2017.7868163
https://doi.org/10.1109/WF-IoT.2014.6803124
https://doi.org/10.1016/j.procir.2016.11.152
https://doi.org/10.1016/j.procir.2016.11.152
https://doi.org/10.1016/j.cirpj.2020.02.002
https://doi.org/10.1016/j.arcontrol.2019.03.005
https://doi.org/10.1016/j.arcontrol.2019.03.005
https://doi.org/10.1016/j.scs.2020.102637
https://doi.org/10.1016/j.scs.2020.102637
https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00074
https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00074
https://doi.org/10.1007/s12652-015-0290-y
https://doi.org/10.1007/s12652-015-0290-y
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00036
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00036
https://doi.org/10.1109/ICNC47757.2020.9049774
https://doi.org/10.3390/s19153276
https://doi.org/10.1007/s00607-020-00884-9

	Towards high-availability cyber-physical systems using a microservice architecture
	Abstract
	1 Introduction
	2 Fundamentals and background
	2.1 Web of Things
	2.2 Microservice architectures
	2.3 Highly available systems

	3 Related work
	4 Digital dice: core concepts
	5 Digital dice as a highly available solution
	5.1 Physical device strategies
	5.2 Microservices replication strategies
	5.3 Communication strategies
	5.4 Performance evaluation

	6 Smart city example scenario
	7 Discussion
	8 Conclusion
	Acknowledgements
	References

