
Computing (2023) 105:2037–2059
https://doi.org/10.1007/s00607-023-01153-1

SPEC IAL ISSUE ART ICLE

Continuous QoS-aware adaptation of Cloud-IoT application
placements

Juan Luis Herrera1 · Javier Berrocal1 · Stefano Forti2 · Antonio Brogi2 ·
Juan M. Murillo1

Received: 30 May 2022 / Accepted: 10 January 2023 / Published online: 28 January 2023
© The Author(s) 2023

Abstract
Cloud-Internet of Things computing paradigms call for novel and efficient method-
ologies to decide where to place application services in continuity with Continuous
Integration/Continuous Deployment pipelines and infrastructure monitoring. In this
article, we present Continuous Adaptation (CA), a newDevOps practice for (1) detect-
ing runtime changes in the application requirements or the infrastructure that, due to
their change in resource consumption or their effects on the Quality of Service (QoS),
can affect the validity and dependability of the current application placement, and for
(2) locally intervening on them by suggesting new placements that ensure all (func-
tional and non-functional) application requirements are met. We assess a prototype
of CA, ConDADO, and analyze its performance over a motivating use case. Con-
DADO adapts the application placement to environmental changes through the use of
continuous reasoning, reducing the size of the problem to be solved to optimize its
performance. The evaluation shows that ConDADO is able to obtain nearly optimal
QoS up to 4.2× faster than alternative techniques, also minimizing the cost of service
migration.

B Juan Luis Herrera
jlherrerag@unex.es

Javier Berrocal
jberolm@unex.es

Stefano Forti
stefano.forti@unipi.it

Antonio Brogi
antonio.brogi@unipi.it

Juan M. Murillo
juanmamu@unex.es

1 Universidad de Extremadura, Badajoz, Spain

2 Department of Computer Science, University of Pisa, Pisa, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-023-01153-1&domain=pdf
http://orcid.org/0000-0002-2280-2878


2038 J. L. Herrera et al.

Keywords Adaptation · Cloud computing · Fog computing · Edge computing ·
Microservices architecture · Internet of Things · DevOps

Mathematics Subject Classification 68N01

1 Introduction

The Internet of Things (IoT) can computerize real-world processes into cyber-physical
ones, transforming real inputs and outputs into their digital equivalent. The next gen-
eration of IoT applications includes critical and dependable applications, such as in
healthcare [1], industry [2], or smart cities [3]. In these applications, the criticality and
dependability are reflected by strict Quality of Service (QoS) requirements, which are
not trivial to meet. Therefore, we define a dependable application as one where the
QoS is sufficient for it to work properly under a given scenario.

In this article, concretely, we focus on the minimization of response times, as
performance is a key dependability issue. The cloud used to be the most popular
paradigm to deploy IoT applications [4]. Nonetheless, the large distance between
final IoT devices and cloud data centers complicates the achievement of these QoS
requirements [4]. Thus, recent research is focused on the use of Cloud-IoT continuum
paradigms, e.g., edge, or mist computing [4]. Furthermore, these paradigms are often
combined with each other, as well as with cloud computing, and as such, the Cloud-
IoT continuum epitomizes a multi-paradigm infrastructure. In this multi-paradigm
environment, computing nodes that are closer to users can be leveraged to perform
some computing tasks, thus reducing the response times from and to the data sources
and reinforcing the application’s dependability.

In this context, the existence of a wider variety of possible application placements,
as well as the changing conditions of the continuum, imply that the management of
the deployment and application placement in the Cloud-IoT continuum is also more
complicated. For instance, a crashed node, an overloaded server, or network conges-
tion can make an initially optimal application placement not as suitable for the current
situation. Indeed, the problem of placing a multi-service application onto Cloud-IoT
infrastructures is challenging and interesting for the scientific community, as testi-
fied by recent surveys [5, 6]. Solutions based on Mixed-Integer Linear Programming
(MILP) have been proposed in the research literature to address this problem. To this
end, in our previous work [7], we have proposed the DADO framework, supporting
multi-service application placement and replica optimization. Nonetheless, deploying
an application following one of these placements is not simple [5].

In cloud environments, deployments are often automatically managed using
DevOps practices [8]. Nowadays, Continuous Integration (CI) and Continuous
Deployment (CD) have become some of the most well-known practices in DevOps
[9]. Companies such asMeta use CI/CD pipelines, coupled with continuous reasoning
(i.e., incremental static analyses), to shorten the delivery time of new features [10, 11].
Furthermore, companies are hiring highly specialized system administrators for the
management of application deployments in cloud environments, due to the required
knowledge and skills [12].

123



Continuous QoS-aware adaptation of Cloud-IoT application placements 2039

In the Cloud-IoT continuum, the complexity of managing application deployments
grows even larger, calling for even more specialized personnel. Nonetheless, the
automation of applicationmanagement in the cloudbrought byDevOpswouldmitigate
the management complexity of Cloud-IoT continuum environments, and therefore,
DevOps proposals for IoT are already focusing on the continuum [13]. However, the
QoS achieved by the original application may change during the whole application
lifecycle. Hence, changes in the infrastructure (e.g., changes in the available comput-
ing resources due to the deployment of new applications), as well as changes in the
app usage (e.g., increases of the user base) or requirements (e.g., library updates that
change the resources needed by application components), may also affect whether the
QoS constraints are met or not, possibly affecting the dependability of the system.
This can reduce the usefulness of CI/CD pipelines because they are neither triggered
by QoS degradation due to infrastructural changes nor able to automatically determine
a new suitable application placement [13].

Therefore, the deployment of applications through the Cloud-IoT continuum may
require the application placement to be optimized and adapted over time to meet
the required QoS [5]. In this context, adapting the application placement refers to
changing the application placement for it to better suit a new or modified environment.
Although this problemmay arise inmultiple other environments, it is in this continuum
where the impact is higher, due to its characteristics (e.g., high distribution, large
traffic volume, a high number of nodes). Thus, QoS-aware DevOps systems able to
identify services unable to meet their requirements due to environmental changes, as
well as determining a new, proper placement for them, are desirable. Such systems
can automate manual tasks, such as the identification of the problems’ causes or the
adaptation of the application placement, assisting the specialized personnel.

In this context, existing QoS-aware application placement systems need to become
reactive towards environmental changes instead of re-optimizing scenarios from
scratch whenever changes occur. Moreover, the systems must be aware of the pre-
vious status of the application placement and the environment, giving them a sense of
continuity and detecting changes in the system. This awareness of the previous state
will allow systems to become reactive to changes, instead of periodically optimizing
the application placement. Continuous reasoning techniqueswere recently proposed to
perform this adaptation [14, 15]. Continuous reasoning allows application placement
systems to identify the impact of these changes, as well as determine a new place-
ment for the affected services, capable of restoring their correct functioning. Proposals
such as FogBrainX [14] use continuous reasoning to determine new potential appli-
cation placements without, however, considering any optimization metrics (e.g., the
response time of the application). To the best of our knowledge, no existing proposals
apply continuous reasoning to QoS-optimizing application placement, nor is migra-
tion cost considered part of the placement problem. Nonetheless, there is a need for
new practices in DevOps to support QoS-aware application placement throughout the
Cloud-IoT continuum, as well as for automatic tools that support these practices.

In this work, we propose a newDevOps practice to support applicationmanagement
in continuity with CI/CD pipelines: Continuous Adaptation (CA). It is important not
to confuse CA (which is the proposed DevOps practice) with continuous reasoning,
which refers to a technique that can be employed by concrete application placement

123



2040 J. L. Herrera et al.

systems.. CA features the incremental, continuous, and QoS-aware optimization of
next-gen IoT applications and the adaptation of their application placement w.r.t.
their target objectives (e.g., response time). Furthermore, we present an open-source
prototype of a framework to support CA, Continuous DADO (ConDADO), imple-
mented on top of the DADO framework [7]. ConDADO differs from DADO in that it
enables incremental, continuous optimization of application placement through ser-
vice migration, as well as considering the cost of such migrations. On the other hand,
DADO is only able to perform optimizations from scratch, unable to know if a ser-
vice is migrated or not, nor the cost of the suggested migrations. Moreover, DADO
is unfeasible for dynamic optimization due to its high optimization times, whereas
ConDADO is faster.

The main contributions of this work are: (i) the proposal of CA as a new practice in
DevOps that can be integrated into CI/CD pipelines to continuously review and adapt
an application’s placement, (ii) the proposal of ConDADO, an enabler to CA that,
through the use of continuous reasoning, can adapt an application’s placement in a
QoS-awaremanner, and (iii) the evaluation of ConDADOover an IoT facial recognition
use case, in which we conclude that ConDADO can adapt application placements to
environmental changes in a more efficient and responsive manner than the original
DADO.

The rest of this paper is organized as follows: Sect. 2 introduces the motivation
for the QoS degradation and dependability problem. Next, Sect. 3 details CA, while
Sect. 4 introduces ConDADO. Sect. 5 presents the evaluation. Finally, Sect. 6 presents
related works, and Sect. 7 concludes the paper.

2 Motivation

This section describes a use case to better illustrate the challenges of next-gen IoT
applications and the need for CA to achieve QoS-awareness. It is important to note
that the model for CA we propose abstracts from the concrete sensors, application
components, computing devices, and requests behind their technical characteristics
(e.g., CPU, RAM, size of data flows). Therefore, while the use case is based on
an IoT facial recognition application to provide a concrete point of reference, CA is
applicable to a wider variety of contexts, which can include heterogeneous sensors and
applications. Moreover, the use case is not meant to be one of the main contributions
of the present work.

The use case presented in this section is based on the proposal of Wang et al. [3],
which presents an IoT-based real-time facial recognition application. This application
is deployed to a smart university campus. The objective of such an application is to
detect any possible intruders that may try to enter the facility without authorization,
as well as to ease and automate the check-in and check-out process of authorized
personnel. To leverage this application, multiple IoT devices equipped with cameras
have been set up at the entrances and exits of the facility. These IoT devices stream
the video footage from their cameras directly to the application, which detects their
faces, extracts the features of the images, and match them against a registry of known
faces [3]. This application is expected to be dependable: it must run at nearly real-time

123



Continuous QoS-aware adaptation of Cloud-IoT application placements 2041

Fig. 1 Architecture of the IoT facial recognition application

performance, i.e. 20 frames per second [3], a strict QoS requirement that must be
satisfied at runtime and over time.

Next-generation IoT applications, as well as modern facial recognition applica-
tions, tend to follow a microservices architecture (MSA), a design pattern in which
the application consists of multiple loosely-coupled modules or microservices that
collaborate to carry out complex functionalities [3, 5, 16]. Thus, the application is
implemented as a set of four microservices, which are depicted in Fig. 1: (i) a face
detection and segmentation service that detects if and where faces are in each image
frame, (ii) a feature extraction service that extracts the features needed for face recog-
nition, (iii) a featurematching service that compares a set of extracted features with the
existing registry, and (iv) a storage service to add new entries to the registry. Each of
these microservices can be accessed by IoT devices through the HTTP protocol [16].
Moreover, two main functionalities are supported by the application, the management
of authorized users and intruder detection.

In order to perform these functionalities, the IoT devices can request for aworkflow
of these microservices to be executed, in which multiple microservices are pipelined.
For instance, to register a new user into the system, an administrator or authorized
user can trigger a request from the IoT device for the detection and segmentation
microservice to obtain an image that exclusively contains the user’s face. Then, the
feature extractor is requested and fed the facial image. The resulting features are then
added to the registry through the storage microservice. This workflow is depicted by
the blue arrows in Fig. 1. On the other hand, to perform intruder detection, the IoT
device sends a constant flow of video frames to the application. The video follows a
similar pipeline, shown in green in Fig. 1 until the features are obtained. Nonetheless,
rather than storing the features, they are fed to the matching microservice instead to
recognize the user, as the green line from Fig. 1 represents. The number of requests to
these workflows, as well as the computing capabilities and hardware resources of the
nodes, affect how many replicas of each of these microservices are deployed, as well
as each replica’s placement in the Cloud-IoT continuum.

The IoT facial recognition application for this scenario makes use of a DevOps
CI/CD pipeline, which follows the schema shown in Fig. 2, which in turn is based
on the practices surveyed in [9]. After a planned feature is implemented, the pipeline

123



2042 J. L. Herrera et al.

Fig. 2 DevOps CI/CD pipeline

is triggered by a developer pushing one or more commits to the main branch of the
application repository. Whenever the pipeline is triggered, the CI system pulls the
changes to the application and builds the new version [9]. If the build is performed
successfully, the test suite for the application runs. The built and tested version of
the application is then released to CD, which first executes acceptance tests over it,
whose role is to ensure the application is production-ready. If the acceptance tests
pass, the new build of the application is finally deployed to production, and monitored
for additional insights (e.g., using multi-paradigm compatible tools such as FogMon
[17]).

During the development of the application, in order to ensure the optimal application
placement, as well as compliance with the definedQoS requirements, some techniques
for design-time application placement optimization, have been proposed, such as [5,
7, 18]. It is important to note, however, that these techniques are meant to be used for
the deployment of new releases of the application. Metaphorically, these techniques
can only see a still picture of a live show: they do not receive information on how
the application placement or the environment was prior to that point, and thus, cannot
know whether they are suggesting for changes to the application placement or not.
Furthermore, the CI/CD pipeline employed by the application is triggered by changes
in the code, and not by changes in the infrastructure or the request volume. Hence, the
initial deployment, which makes use of this initial application placement, is optimal
and dependable, as the QoS requirements of the application are met.

However, most IoT environments, such as this university’s infrastructure, are not
static environments, and their dynamicity may change the dependability and even the
validity of the initial application placement. For instance, in case one of the nodes
goes down, or if a commit that updates a library increases the hardware resource
requirements of the application, the initial optimization may not hold valid [15]. Fur-
thermore, changes such as a reduction of the available resources due to the unforeseen
execution of additional applications may affect the application’s QoS, further com-
plicating compliance with the QoS requirements. This motivates the need for a new
step within the pipeline, able to be triggered by changes other than those made to the
application’s codebase and that continuously checks the application placement for the
microservices.

This new step of the pipeline requires not only newpracticeswithinDevOps but also
tools that support them.While one may think that the aforementioned problems can be
solved by making use of the same design-time optimization framework, there are two
important limitations. On the one hand, these systems often take a long time to yield a
solution [7].While this can be acceptable at design time, during the analyzed events, the

123



Continuous QoS-aware adaptation of Cloud-IoT application placements 2043

application does not properly work until a new application placement is applied, which
is unbearable for most applications. Moreover, design-time optimization frameworks
do not receive information about the previous status of the environment, they can only
see the still picture. Nonetheless, an approach to make existing optimization systems
able to see the live show, and thus suitable for dynamic environments, is to apply
continuous reasoning [14, 15]. This approach was originally used in large software
repositories such as Facebook: each time there is a change in the repository, an analysis
is triggered to statically analyze the parts of the codebase that are affected by the change
[10]. Within application placement, continuous reasoning is aimed at finding which
microservices of the application placement need to be migrated (i.e., moved between
nodes) after a change [15]. Continuous reasoning can be triggered not only by changes
to the application’s code but also by changes in the available infrastructure resources.
Continuous reasoning reduces the size of the application placement problem, as only
those elements that were meaningfully affected by environmental changes need to be
migrated,whichmay speed up decision-making [7], and allows for the consideration of
migration costs. Thus, through the use of continuous reasoning, existing optimization
frameworks can be adapted to CA.

To tame the exponential time complexity of optimization frameworks, it is possible
to work on two aspects. On the one hand, we should employ more efficient algorithms
to determine the new placement for microservices. On the other hand, we should
reduce the size of the problem instance. ConDADO follows both lines, by exploiting
state-of-the-art MILP solving techniques in combination with continuous reasoning to
promptly respond to environmental changes that affect the dependability and validity
of the placement of applications through the Cloud-IoT continuum.

3 Continuous adaptation

To continuously adapt the application placement of next-gen IoT applications to the
changes in their dynamic environment, we propose CA, a new practice in DevOps.
Unlike other DevOps practices such as CI or CD, CA can be triggered by events that
do not directly affect the application’s code and check the validity and dependability
of the application’s placement after the environment changes, appropriately adjusting
it if necessary. CA considers the following two kinds of effects that may appear as a
result of environmental changes:

Broken deployments are situations in which the existing application placement
cannot be used successfully after a change in the environment. For instance, in our
running example, the feature extraction deep learningmodel may be substituted by
amore precise one that also consumesmore hardware resources, but the application
placementmayhave themicroservice running in a devicewithout enough resources
to properly run it, or a fog node where some microservices replicas are deployed
may fail. In both of these cases, if the application placement is not adapted to
this situation, some microservice replicas would be impossible to run, and thus,
the deployment is labeled as broken. Due to the impact of broken deployments,
detecting them is a priority within CA.

123



2044 J. L. Herrera et al.

QoS violations are subtler than broken deployments and represent dependability
issues. In CA, a QoS violation exists whenever, after a change in the environment
and if the existing application placement is used, theQoS requirements of the appli-
cation are not met.While it is possible that the QoSmay degrade as a result of these
changes in the environment, CA does not deem such situations as QoS violations
if the QoS requirements of the application can still be met (i.e., if the application
is still dependable enough). Thus, in a QoS violation, the application, or part of
it, cannot meet the defined QoS. For instance, the university may need to close
one of the entrances of campus to perform maintenance on the area. Therefore,
the users that used that entrance to enter or exit the facility will go through other
entrances. If that entrance was usually where users were registered, it is likely that
no storage microservice exists at other entrances, as replicating the microservice
would not improve the response times. However, the existing microservices may
not be prepared for the additional burden. Thus, each of the registration requests
requires communication with the fog node at the closed entrance. This longer com-
munication increases the workflows’ latencies, possibly lowering the performance
to less than the required 20 frames per second. The priority of QoS violations is
also very high, and thus, they are detected in the same step as broken deployments.

Once either broken deployments or QoS violations are detected, the application
placement needs to be adapted to the new environment. For instance, to free some
computing resources, some microservice replicas may be migrated from overloaded
nodes to others, the microservices from a node that is currently down can be migrated
toworking nodes, or additional replicasmay be deployed to reduce latency. To perform
these actions, a new and adapted application placement must be determined, which
is the ultimate task of CA. The new application placement must not contain broken
deployments or QoS violations, and therefore the effects of QoS generated by the
solutions to broken deployments, as well as the validity of the solutions for QoS
violations, have to be considered during its determination process. It is also important
to consider the migration cost at this point, and thus, when multiple actions can be
performed to successfully adapt the application placement, it is preferable to execute
those with lower costs.

As a DevOps practice, CA is meant to be integrated with existing CI/CD pipelines.
Within this kind of pipeline, CA fits best at the beginning of CD, in a similar manner to
continuous reasoning practices such as Facebook Infer fit into CI [10]. In our running
example, a new version of the facial recognition application is coded and pushed to
the repository. This new version is analyzed for changes using continuous reasoning
à la Facebook Infer, and the parts affected by the changes in the code are rebuilt and
validated using CI. Then, the information about changes to the application and the
Cloud-IoT infrastructure is fed to CA, which detects whether a new application place-
ment is required or not using continuous reasoning. Finally, if needed, a new partial
application placement for the new release is determined using CA and is executed by
CD, as depicted in Fig. 3.

However, for CA to act as intended, environmental changes that do not trigger the
standard CI/CD pipeline (e.g., infrastructural changes) need to be able to trigger it as
well. Therefore, the infrastructure’s monitoring should be able to trigger CA. Further-

123



Continuous QoS-aware adaptation of Cloud-IoT application placements 2045

Fig. 3 Integration of CA in the
DevOps pipeline

more, the source code may not be directly involved in these changes, and hence, the
pipeline can be started directly fromCA, asCIwould not be necessary. TheCAprocess
consists of two main steps. First, the current application placement is scanned to find
any broken deployments or QoS violations. Then, both broken deployments and QoS
violations are reported and solved by determining a new application placement. The
QoS-aware application placement is finally fed to CD and then applied to the infras-
tructure, closing the CI/CA/CD cycle. Regarding other recently proposed DevOps
practices, as well as new practices that may be proposed in the future, we consider
two different types of integration with CA. On the one hand, practices that maintain
QoS outside of their scope, such as continuous testing [19], do not interfere with CA.
As such, these practices can be integrated with CA in a seamless manner. On the other
hand, practices that have an overlapping scope with CA may also be integrated with
it, although not in such a seamless manner. For example, continuous evaluation [20],
which evaluates the performance of the application, can be used to give CA a more
precise view of the application’s QoS. Furthermore, systems such as FOCloud allow
for this performance to also be predicted in an explainable manner [21]. In this regard,
the practices must be integrated by either modifying or refining CA’s inputs or using
CA’s output. To better understand the integration of CA in DevOps, as well as its
inputs and outputs for its integration with other practices, the integration of CA in a
basic DevOps pipeline with CI, CA, and CD as practices is described in Table 1.

Nonetheless, a key to the CI/CD pipeline is the existence of automated tools that
support both practices. Furthermore, tools for the automation of the continuous rea-
soning process, such as Facebook Infer, were also crucial for its integration within
CI. Thus, successfully integrating CA into DevOps and enabling CI/CA/CD pipelines
requires a framework that supports CA.

4 The ConDADO framework

In this section, we present ConDADO, a CA framework that applies the concepts of
continuous reasoning to DADO. DADO [7] is a framework to optimize the applica-
tion placement and replication of microservices in the Cloud-IoT continuum based
on Mixed-Integer Linear Programming (MILP), a technique that provides optimal
solutions at the cost of very high optimization times.

Figure 4 illustrates the flow of information and processes used by ConDADO. The
execution startswhen themonitoring system,which is running inparallel toConDADO,

123



2046 J. L. Herrera et al.

Table 1 Summary of the practices of CI/CA/CD pipeline

Practice Inputs Description Outputs

Continuous
Integration

Key Performance
Indicators (KPIs) of the
production environment
and requirement
backlog

Automated inclusion of
the implementation of
requirements into the
existing codebase,
generating binaries for
the new version and
testing them

New validated application
version

Continuous
Adaptation

New validated application
version or changes in
the system’s KPIs

Analysis of the validity
and QoS of current
application placement
for the new version or
environment and, if
required, adaptation
thereof

QoS-aware adapted
application placement

Continuous
Deployment

New validated application
version and application
placement

Release of the new
version installing and
maintaining it in the
production environment
following the
application placement,
and monitoring its KPIs

Working production
environment and
associated KPIs

detects a change in the environment, including infrastructure changes or application
commits. This monitoring system provides ConDADO with data containing the status
of the current scenario, e.g., the QoS and resource requirements of the microservices,
the available resources of the nodes, and the workflow requests. The current status
data, along with the data of the previous status of the scenario, is fed to the delta
calculatormodule. The role of the delta calculator is to quickly assess the differences
between both statuses, such as new microservices and workflows, or changes in the
existing workflows, microservices, or hardware infrastructure. After such difference
is calculated, ConDADO overwrites the previous scenario data with the current one
(dashed arrow in Fig. 4) to prepare for the next continuous reasoning optimization
step.

Once the difference has been calculated, it is fed, along with the previous applica-
tion placement, to the continuous reasoning engine (CRE), whose logic is described
in Algorithm 1. The CRE performs the first step of CA by detecting broken deploy-
ments and QoS violations. As the CRE is called, it looks up the hardware elements
whose resources have been negatively changed or that are running microservices that
have increased in resource consumption (line 6). This includes the hardware whose
resources have become zero, i.e., they are down. Then, the CRE calculates if the appli-
cation placement is still valid in spite of the identified changes (lines 7-14). If it is not
the case, the CRE detects the broken deployment (line 10), and selects and clears the
placement of microservices (line 12) until the capacity is high enough (lines 10 and
13). These microservices that have their placement cleared are marked as placement
decisions that need to be taken again because they are not valid, a process we call inval-

123



Continuous QoS-aware adaptation of Cloud-IoT application placements 2047

Fig. 4 Bird’s eye view of ConDADO

idation. For this process, the CRE invalidates first the placements of the microservices
with the lowest migration cost (line 11).

The migration cost of a microservice can be estimated as the size of the package
(e.g., Docker image) that needs to be migrated from one machine to another, as heav-
ier microservices require more time to migrate. Nonetheless, the migration cost can
be assessed with other criteria, such as the organizational cost of migrating a service
(e.g., some services may be costly to migrate because of their criticity for the organi-
zation). If multiple microservices have the same migration cost, the CRE invalidates
the microservice consuming the most resources first, as it frees more resources to
do so, thus minimizing the number of microservices that are invalidated. Finally, the
CRE detects QoS violations by listing all the workflows that have not been changed
in the delta (line 16), as those that have been changed were already analyzed in the
previous loop, and whether any of their placement decisions involves elements whose
performance has been deteriorated in the delta (lines 18-21). For these workflows, the
CRE calculates whether the performance has worsened enough to be deemed QoS
violations (line 19). If so, the CRE invalidates all the application placement decisions
of the workflow so they are re-optimized, accounting for the QoS violations that may
arise (line 20).

After the CRE runs, the copy of the previous application placement becomes a list
of the placement decisions that have not been invalidated (line 23). We label this list
as the partial application placement. The final step of the CA pipeline is performed
by the ConDADO solver1, which takes as input both the current scenario data, as well
as the partial application placement. Based on this information, the solver skips over
the parts of the model involving decisions that are in the partial application placement.
Skipping these operations speeds up the optimization time, as the problem instance is
smaller, and thus, it is faster to generate and solve. After the problem is generated, the
sameMILP optimizer software leveraged by DADO is used to solve it. Once the QoS-
aware application placement is obtained, the newmigrations, replications, and updated
placements can be easily identified by calculating the delta between the original and

1 The MILP formulation used by DADO is not an original contribution of this paper, and therefore, it is
not included. Nonetheless, interested readers can find the detailed formulation in [7].

123



2048 J. L. Herrera et al.

Algorithm 1 Pseudocode for the CRE
Require: P: previous deployment, δ: differences between the previous and current environment
1: invalid := ∅
2: Nodes := {n‖n ∈ δ.HW∧(n.resourceDi f f < 0∨(m ∈ δ.SW∧m.resourceDi f f > 0∧on(m, n) ∈

P))} � Hardware nodes n, where the resources have decreased, or at least a microservice m deployed
to it has increased its resource consumption

3: for all n ∈ Nodes do
4: M := {m‖on(m, n) ∈ P} � All microservices m placed in node n as of P
5: required := ∑

m∈M m.resources
6: while required > P(n).resources do � While the sum of resource requirements of all

microservices m placed in n as of P is greater than the resources of n
7: m := extract(M, cri teria = (migrationCost, resources)) � Extract a microservice m from

M following the criteria
8: invalid := invalid ∪ {m}
9: required := required − m.resources � Free up the resources taken by m
10: end while
11: end for
12: Work f lows := {w f ‖w f ∈ P.work f lows∧ /∈ δ.work f lows ∧ (∃m ∈ δ.SW ∧ m.resourceDi f f >

0 ∧ partO f (m, w))} � Workflows w f that have not been directly modified and request at least a
microservice m that has increased its resource consumption

13: for all w f ∈ Work f lows do
14: respT ime := get RespT ime(w f , P)

15: if respT ime > w f .minQoS then
16: invalid := invalid ∪ w f .microservices
17: end if
18: end for
19: D := P − invalid

return D: valid, partial deployment plan derived from P , i.e., D ⊆ P

the new application placement. Finally, theQoS-aware application placement obtained
as a result can be fed to CD, continuing the CI/CA/CD pipeline.

5 Performance evaluation

In this section, the performance of ConDADO is evaluated over multiple conditions
of a use case to validate the usefulness of CA in CI/CD pipelines.2 The evaluation
use case, the performed experiments, and the evaluation objectives are detailed in
Sect. 5.1. The results obtained by each of the experiments are analyzed in Sects. 5.2,
5.3, and 5.4.

5.1 Evaluation setup

To evaluate ConDADO, an environment based on the facial recognition application
from Sect. 2 has been defined. Following this application, IoT devices with cameras
can request two kinds of workflows: facial matching and user registration. While
registration workflows are triggered by an administrator, application-wise, they are

2 ConDADO, along with the experiments’ code and data is open-source and freely available at https://
bitbucket.org/spilab/condado.

123

https://bitbucket.org/spilab/condado
https://bitbucket.org/spilab/condado


Continuous QoS-aware adaptation of Cloud-IoT application placements 2049

requests of microservice execution that come from an IoT camera, and hence, they are
modeled in this manner.

The placement of this IoT application is evaluated over two different scenario sizes:
small, with 5 IoT cameras and a single fog node, and large, with 15 IoT cameras and 3
fog nodes. The IoT cameras are based on Texas Instruments CC2538microcontrollers,
which connect to the network using 6LoWPAN. The network itself is comprised
of switches that connect using Gigabit Ethernet, the same technologies fog nodes
use for connection. The fog nodes are based on the instances of the edge.network
provider, while the cloud node is based on an AWSm5.xlarge instance. Moreover, the
networking details such as latencies and bandwidths are also based on these protocols,
as well as real metrics. Regarding the number of microservice replicas, they depend on
the exact solution given by each solver. Nonetheless, if we account for the maximum
number of replicas, up to 15 microservice replicas can exist in the small scenarios,
and up to 45 can exist in the large scenarios. Approximately half of the IoT cameras in
each scenario request each type of workflow, and in the cases with odd cameras, there
is an additional facial matching workflow. In all cases, the scenarios are optimized
with DADO first, and then ConDADO is used to adapt the application placement in a
QoS-aware manner. All the experiments were executed with an Intel i7-8565U CPU,
with 16 GB of RAM. The MILP solver used is Gurobi3. Both DADO and ConDADO
are implemented in Python using the mip library. The numerical QoS-related results
are obtained using DADO’s QoS analysis tools [7]. On the other hand, the results
related to speed-ups and optimization times are not obtained from these simulations,
but from the real timings yielded by both DADO and ConDADO during the evaluation.

Overall, the evaluation has three objectives:

• To validate the usefulness of CA in next-gen IoT applications, consequently vali-
dating ConDADO as an enabler for CA (Sect. 5.2)

• To evaluate the differences in the QoS achieved by ConDADO w.r.t. the original
DADO (Sect. 5.3), and

• To assess the migration cost and the speed-up of CA solutions compared to the
traditional optimization approach (Sect. 5.4).

To achieve these objectives, we have analyzed the results of different scenarios,
in order to analyze of the effect of parameters such as the size of the scenario or the
impact of the changes. Concretely 20 experiments of two kinds have been tested:

• In the broken deployment experiments, up to 4 microservices and all their replicas
experiment an increase of up to 100% in the resources they consume, which may
lead to broken deployment situations. These experiments simulate different kinds
of changes in the application that could lead to such increases (e.g., the use of more
accurate and complex matching techniques, an improvement in video quality, and
more detailed video pre-processing).

• In the QoS violation experiments, for cost-effectiveness reasons, we assumed the
university increases the resources of their nodes and changes to a less costly cloud
provider, which increases the cloud latency by 5 ms.

3 https://www.gurobi.com/.

123

https://www.gurobi.com/


2050 J. L. Herrera et al.

Fig. 5 Continuity in the application’s QoS in the large topology

Both experiments analyze the usefulness ofCAby comparing theQoSobtained over
time, generating a change in the environment at a given point and comparing the gap
between the moment a dependable QoS is obtained with and without CA. In order to
use a baseline for the usage of non-CAmethods, we assume that the original DADO is
used to re-optimize the application placement and that it is triggered immediately (i.e.,
there is nomanual interaction). Thus, it is important to note that the gap is incomparable
to the gap caused by manual re-optimization and management. Moreover, in order to
better show the effects of the use of CA in terms of migrations, all microservices are
considered to have a migration cost of 1.

5.2 CA applicability

The first analysis compares the continuity in the application’s QoS in the large topol-
ogy, in a scenario in which the resources consumed by a microservice are increased
by 80%. In this analysis, the environmental change occurs at a given instant t . Due to
the increase in consumption, the prior deployment becomes broken, and thus, there
is a need to determine an adapted application placement. We consider a deployment
becomes broken if its response time is greater than 50 ms, as the QoS requirement for
the facial recognition application is to have 20 frames per second. This requirement is
represented by the dashed red line labeled Maximum acceptable response time in the
upcoming figures.

The analysis is depicted in Fig. 5, with the time relative to t shown in the X-axis,
and the application’s QoS can be seen in the Y-axis. The empty gap represents the
application’s downtime due to the broken deployment, which is of 27.5 s if ConDADO
is used to optimize the application placement. On the other hand, the use of DADO
requires 76 s to complete, a difference that is visually represented as the gap between
ConDADO’s marker (∗) and DADO’s (×). Furthermore, both ConDADO and DADO
achieve the same QoS with their new application placement. The gap between DADO
and ConDADO is of 48.466 s, i.e., ConDADO is almost three times faster than DADO
at suggesting new application placements in this scenario (viz., 2.76×). Moreover,
the application placement determined by ConDADO also obtains a similar QoS to that
obtained with DADO’s application placement, further motivating its use for CA, and
providing smoother and faster decision-making.

123



Continuous QoS-aware adaptation of Cloud-IoT application placements 2051

Fig. 6 Evolution of the application’s response time in the QoS violation experiment, large topology

The analysis depicted in Fig. 6 is aimed at evaluating ConDADO’s ability and
efficiency in resolving QoS violations. The first change in the topology is an increase
in the resources of the nodes, which did not create any QoS violation or broken
deployment, and thus, did not trigger CA. Nonetheless, as the latency in the cloud
was increased at moment t , the response time quickly increased, triggering CA. It is
important to note that CA was triggered at the peak of the increasing curve, as the
shape has been interpolated. In the case of ConDADO, this implies that, at the peak,
the delta calculator triggered the rest of the pipeline. Once at this peak, ConDADO
determined the placement and migrated the services from the cloud to the fog nodes in
27.5 s, as depicted by the star marker. Conversely, DADO required over 5minutes (302
s) to perform the same task, as it was not designed to solve QoS violations. Overall,
the results show that ConDADO is better suited to adapt to dependability issues such
as QoS violations, experiencing a speed-up of approximately 11×.

5.3 QoS with and without CA

The next analysis is aimed at comparing the QoS experienced by the application
workflows. The results of this analysis are shown in the form of a boxplot from the
large topology, with 4 microservices affected, in Fig. 7. It is important to note that
all 18 scenarios involving broken deployments yield very similar results, and thus,
only the three highest load scenarios are depicted. Nonetheless, the interested reader
can find the data for the response times of workflows in the additional material of
the paper. We can clearly split the workflows into two kinds: those that have all of
their microservices in nearby continuum devices (i.e., those with nearly 0 response
time), and those that have at least one microservice placed on the cloud (i.e., those
with 50 ms response time). In the first case, with the 20% hardware increase, we find
that DADO is able to bring a few more microservices closer to the IoT devices, as the
median is very close to 0. On the other hand, while ConDADO needs to use the cloud
more, as shown by the median, the impact on the average response time (depicted as
a triangle) is not very large, with under 10 ms of difference. Continuing to the case
with an 80% hardware increase, we see that both DADO and ConDADO yield equal

123



2052 J. L. Herrera et al.

Fig. 7 Boxplot of the
workflows’ response times, large
topology, 4 microservices
affected

results, i.e., ConDADO is able to find the same optimal solution as DADO. In the
final scenario, ConDADO brings most microservices to the cloud, as the lower point
is depicted as an outlier. Nonetheless, we see the difference in average response time
w.r.t. DADO is also minimal, similar to the first scenario. Thus, ConDADO is able to
provide a similar QoS to DADO for the applications that make use of its suggested
placement. Furthermore, the small increase in response time is only experienced by
a few users (i.e., workflows), rather than by the application as a whole: the median
does not change, those points affected are represented as outliers, and the effects over
average response time are minimal. Finally, as every workflow request has a response
time of 50 ms or less, the performance requirement of 20 frames per second is fulfilled
with the optimized application placements.

5.4 Migration cost and speed-ups with and without CA

Another key metric of the evaluation is the migration cost achieved by ConDADO’s
solutions in contrast to those provided by DADO. This metric has been analyzed in
both the small and large topology, as depicted by Figs. 8 and 9, respectively. Starting
with the smaller topology, in the cases with a single microservice affected (Fig. 8a),
we can find that, in some cases (e.g., 20 and 80% hardware requirement increase), the
migration cost is 0, i.e., no microservices are migrated. In these cases, the changes due
to the hardware requirement increase aremainly a decrease in the number of replicas of
certain microservices, and thus, no microservices are strictlymigrated. Similar results
are obtained when 2 (Fig. 8b) or 4 (Fig. 8c) microservices are affected.

On the other hand, in cases where microservices are migrated (e.g., 100% hardware
requirement increase in Fig. 8c), ConDADO’s solutions have half the migration cost
of DADO’s. These results are the consequence of ConDADO’s CRE, which tries to
migrate a small number of microservices, while DADO’s lack of CRE allows it to
migrate any number of them. Moving to the large topology (Fig. 9), the reduction
of migration cost is even higher. As the larger size of the topology implies a higher
number of microservices deployed, DADO is more likely to try and migrate them,
while ConDADO follows a similar approach to mitigate the migration cost. Focusing
on Fig. 9a, in the case with 20% hardware requirement increase, ConDADO simply
removes some replicas, while DADO migrates 26 of them, out of the existing 38.
Even when ConDADO needs to migrate microservices, such as the one with the 80%
increase, DADO needs to migrate up to threefold the number of microservices. If 2

123



Continuous QoS-aware adaptation of Cloud-IoT application placements 2053

(a) 1 microservice affected (b) 2 microservices affected (c) 4 microservices affected

Fig. 8 Migration costs of DADO and ConDADO, small topology

(a) 1 microservice affected (b) 2 microservices affected (c) 4 microservices affected

Fig. 9 Migration costs of DADO and ConDADO, large topology

microservices are affected (Fig. 9b), the results are similar, although in general, the
difference is even higher (on average, ConDADO migrates 20 microservices less than
DADO). Furthermore, the scenarios from Fig. 9c are also the ones depicted in Fig. 7,
and thus, this reduction in migration cost has minimal effects on the QoS experienced
by the users of the application.

Next, an analysis that compares the times ConDADO and DADO need to optimize
each of the scenarios is also performed. The optimization times for the small topology
are reported in Fig. 10, while Fig. 11 depicts those of the large topology. Starting with
the smaller topology, we see that the times reported by ConDADO are shorter than
those from DADO, with ConDADO taking 0.78 s on average, whereas DADO takes
1.38 s. Furthermore, the optimization times from ConDADO are not higher than those
from DADO in any of the scenarios. If Fig. 10a–c are compared, it is also possible to
see that the number of microservices affected does not have an important impact on
the optimization times, and the hardware increase does not have a clear impact either.
It is also important to note the case with the 80% hardware increase from Fig. 10b, in
which DADO takes 2.55 s to optimize the scenario, while ConDADO only takes 0.60
s.

123



2054 J. L. Herrera et al.

(a) 1 microservice affected (b) 2 microservices affected (c) 4 microservices affected

Fig. 10 Optimization times of DADO and ConDADO, small topology

(a) 1 microservice affected (b) 2 microservices affected (c) 4 microservices affected

Fig. 11 Optimization times of DADO and ConDADO, large topology

In the large topology (Fig. 11), the times required by both ConDADO and DADO
are higher. Thus, the size of the scenario has an important impact on the optimization
time. On average, ConDADO takes 29.41 s to optimize, while DADO requires 64.15
to do so. In this topology, the number of microservices affected does have relevance
on DADO’s optimization times, as the times from Fig. 11a (on average, 75.52 s) are
higher than those from Fig. 11b and c (55.72 and 61.19 s, respectively). While this
trend is also followed by ConDADO, its impact is much smaller (32 s on average
in Fig. 11a, 28 s on average in Fig. 11b and c. Similarly to the smaller topology, the
increase in hardware requirements does not have a clear impact on optimization times.
Finally, it is important to note that the results from Fig. 11c correspond with those
from Fig. 7, and thus, this reduction in optimization time has very minor effects on
the solution’s QoS.

Finally, Fig. 12 shows theoptimization speed-ups obtainedbyConDADO, compared
with the original DADO. The reported speed-ups are high, with an average speed-up
of 1.93× for the small topology (Fig. 12a) and 2.2× for the large topology (Fig. 12b),
and thus, an overall average speed-up of 2.07×. The speed-up tends to grow with
infrastructure size due to the fact that ConDADO needs to perform the continuous
reasoning step before optimizing, while the original DADO does not. Nevertheless,
since the delta calculator and CRE have a smaller complexity than the solver, their
burden becomes relatively less significant in larger infrastructures, hence saving more
time.

123



Continuous QoS-aware adaptation of Cloud-IoT application placements 2055

Fig. 12 Optimization speed-ups
of continuous DADO w.r.t.
original DADO

(a) Small topology (b) Large topology

6 Related work

The classic approach toCI/CDpipelines inDevOps literature is to focus on the delivery
of software [9]. Therefore, while CD automatically follows a specified application
placement, it does so as a means of delivery to production, and not as a means of
meeting the application’s QoS requirements [9]. While this approach is adequate for
cloud-based deployments, this is not the case in the Cloud-IoT continuum, in which
dependability is crucial and each node can provide substantially different QoS. In this
section, we briefly summarize the state of the art in the Cloud-IoT continuum and
IoT-oriented DevOps and QoS-aware application placement.

DevOps has the objective of shortening the delivery time of new features and
allowing for quick reactions to client demands. These features are also relevant in next-
gen IoT [13]. DevOps practices need to be adapted to this newparadigm. In [13], Lopez
et al. propose an adaptation of the feedback and monitoring from DevOps to the IoT
paradigm and multi-paradigm infrastructures. The proposal specifies how to perform
fast and continuous monitoring in IoT applications, and can thus be an enabler for CA.
Truong andKlein propose the development of DevOps contracts for IoTmicroservices
in [22]. These contracts define the requirements each of the microservices have and
are stored in a blockchain ledger. The application developer can write scripts that will
be triggered by microservice deployments, requests, or violations of the contract. The
main difference between these contracts andCA is their approach toQoS enforcement:
DevOps contracts are imperative, as the IoT application developer needs to implement
a method to obtain the desired state; while CA is declarative, and the developer only
needs to define the desired state. EU projects, such as SODALITE [23], are also
working on approaches towards DevOps-integrated systems for the orchestration of
application deployment making use of declarative systems, which could be integrated
with CA to enable a more fine-grained detail of the deployed microservices and their
scaling. Furthermore, SODALITE@RT [24] allows proposals such as SODALITE to
be used in the Cloud-IoT continuum.

On the other hand, the obtention ofQoS-aware application placements in the Cloud-
IoT continuum is currently an open research topic. In [6], Salaht et al. characterize
the problem of placing an application’s microservices in a dependable way as the
Service Placement Problem (SPP). Furthermore, multiple solutions to the SPP are
surveyed in this work, including approaches that use different techniques such as
integer programming, constrained optimization, or Petri nets. Nonetheless, most of
these works are not designed to dynamically adapt the application placement. One of

123



2056 J. L. Herrera et al.

the works that do consider dynamicity is MigCEP [18]. However, MigCEP’s model is
oriented to migrating complex event processing microservices to adapt the application
placement to user mobility. Changes in the infrastructure or the application are not
handled by MigCEP, and therefore, it is not suitable for CA.

Another possibility to consider of dynamicity is proposed by Detour [25]. In the
Detour model, each request is analyzed before being sent, and an ad-hoc decision
is taken on where the request should be executed. This model requires at least one
replica of each microservice to be deployed to every node in order to make this ad-hoc
decision. Furthermore, the ad-hoc decision process takes a certain amount of time,
which delays every request, and may even become inefficient if the delay introduced
by the decision process is higher than the obtained speed-up. Other authors, such as
Maamar et al., propose a coordinationmodel for the Cloud-IoT continuum [26]. In this
model, the data produced by IoT devices are categorized based on multiple attributes.
Depending on these attributes, the model recommends the layer or layers they should
be processed at. This approach is fundamentally different from ConDADO, as itsmodel
is data-centric rather than service-centric, and thus, it does not specify where to place
application services nor how to replicate them.

Another system able to determine QoS-aware application placements is the original
DADO framework. DADO was proposed by Herrera et al. in [7] as an enabler for the
obtention of QoS-optimal application placements. This framework was meant to be
leveraged during the design phase of next-gen IoT applications. DADO supports a
wide array of infrastructures and applications, as well as for the consideration of
multiple decisions that affect QoS, such as network latency. However, DADO was not
designed to adapt its application placements to dynamic environments, and hence, it
is unable to know whether a service is migrated or not, or the cost of such migrations.
Furthermore, its high execution times are also unsuitable for this task. Thus,ConDADO
is an evolution of DADO, adapting its original concepts for this task.

Finally, the use of continuous reasoning to solve the FAPP was initially proposed
by FogBrainX [14], a framework oriented to the obtention of QoS-aware application
placements, as well as their adaptation to dynamic environments. FogBrainX makes
use of continuous reasoning by determining the microservices that are affected by
broken deployments or QoS violations and migrating them to suitable servers. While
ConDADO takes inspiration from FogBrainX on the implementation of continuous
reasoning, there aremultiple differences between the frameworks. Themain difference
is conceptual, as FogBrainX’smodel is based on the interactions betweenmicroservice
replicas, while ConDADO’s model is based on requests for microservice workflows,
allowing ConDADO to replicate and move microservices if required. Furthermore,
FogBrainX does not consider optimization objectives, while ConDADO optimize the
response time QoS. Thus, while FogBrainX can be suitable for CA, its objectives and
model differ from ConDADO’s. We believe that, due to these differences, it is very
complicated to fairly compare FogBrainX and ConDADO, as the problems they solve,
although similar, are fundamentally different.

123



Continuous QoS-aware adaptation of Cloud-IoT application placements 2057

7 Concluding remarks

The next generation of IoT applications brings computerization to critical real-world
processes, and their continuous improvement will be managed using DevOps and
CI/CD pipelines. Nonetheless, the criticality of these processes is reflected in IoT
applications as strict QoS requirements. In this context, the use of the multi-paradigm
Cloud-IoT continuum requires more complex management. Furthermore, the dynam-
icity of the environment can threaten its dependability. Thus, these continuous changes
in QoS motivate the integration of CA as a practice of DevOps, assuring that the QoS
of IoT applications is maintained acceptable by adapting its placement.

In this paper, we presented and motivated the concept of CA as a relevant
practice for next-gen IoT applications, including its integration within DevOps in
CI/CA/CD pipelines. Finally, we presented ConDADO, a framework to perform CA
for microservice-based IoT applications in multi-paradigm infrastructures, such as the
Cloud-IoT continuum. In the evaluation, ConDADO was shown to be able to provide
dependable and valid application placementswith a speed-up of up to 4.2×with regard
to alternative solutions. CA provides benefits to developers and operators, as it is a
framework for automatic optimization of application placement that can be directly
integrated into their DevOps workflow. Moreover, ConDADO’s continuous reasoning
approach allows for the adaptation of the application placement to be highly reactive
due to its speed-up w.r.t. the complete optimization approach, as well as to a reduction
of the migration costs of each adaptation.

As future work, we expect to extend CAwith prototypes able to adapt other aspects
of the application’s deployment, such as adapting the devices powered on and off to
optimize energy efficiency.Moreover,we also intend to create amulti-objective version
of ConDADO, able to consider migration cost as an explicit objective, modeling the
tradeoff with techniques similar to cost-benefit analysis [27] or cost-benefit at runtime
[28]. Furthermore, the costwill be optimized alongwith additionalQoSmetrics such as
energy consumption. We also expect to integrate ConDADOwith existing deployment
orchestrators, i.e., Kubernetes. Moreover, we expect to create even faster solutions for
CA and stack them on ConDADO, allowing CA to react even more quickly to small
changes and easy situations, as well as falling back to ConDADO if a suitable solution
cannot be found. Last, but not least, we consider evaluating ConDADO over real or
emulated network and Cloud-IoT continuum testbeds.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00607-023-01153-1.

Acknowledgements This work was partly funded by Project PID2021-124054OB-C31 (MCI/AEI/
FEDER,UE), by the European Regional Development Fund, by the Department of Economy, Science and
Digital Agenda of the Government of Extremadura (GR21133), by the Valhondo Calaff institution, and by
projectEnergy-awaremanagement of software applications in Cloud-IoT ecosystems (RIC2021PON_A18),
funded with FSEREACT-EU resources by the ItalianMinistry of University and Research through thePON
Ricerca e Innovazione 2014–20.

123

https://doi.org/10.1007/s00607-023-01153-1
https://doi.org/10.1007/s00607-023-01153-1


2058 J. L. Herrera et al.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Greco L, Percannella G, Ritrovato P et al (2020) Trends in IoT based solutions for health care: moving
AI to the edge. Patt Recogn Lett 135:346–353. https://doi.org/10.1016/j.patrec.2020.05.016

2. Xu H, YuW, Griffith D et al (2018) A survey on industrial Internet of Things: a cyber-physical systems
perspective. IEEE Access 6:78238–78259. https://doi.org/10.1109/ACCESS.2018.2884906

3. Wang S, Zafer M, Leung KK (2017) Online placement of multi-component applications in edge com-
puting environments. IEEE Access 5:2514–2533. https://doi.org/10.1109/ACCESS.2017.2665971

4. Bellavista P, Berrocal J, Corradi A et al (2019) A survey on fog computing for the Internet of Things.
Pervas Mobile Comp 52:71–99. https://doi.org/10.1016/j.pmcj.2018.12.007

5. Brogi A, Forti S, Guerrero C et al (2020) How to place your apps in the fog: state of the art and open
challenges. Softw: Pract Exper 50(5):719–740. https://doi.org/10.1002/spe.2766

6. Salaht FA, Desprez F, Lebre A (2020) An overview of service placement problem in fog and edge
computing. ACM Comp Surv (CSUR) 53(3):1–35. https://doi.org/10.1145/3391196

7. Herrera JL, Galán-Jiménez J, Berrocal J et al (2021) Optimizing the response time in SDN-Fog envi-
ronments for time-strict IoT applications. IEEE Intern Things J. https://doi.org/10.1109/JIOT.2021.
3077992

8. Capizzi A, Distefano S, Mazzara M (2019) From devops to devdataops: data management in devops
processes. In: International workshop on software engineering aspects of continuous development and
new paradigms of software production and deployment. Springer, pp 52–62. Available from: https://
doi.org/10.1007/978-3-030-39306-9_4

9. Shahin M, Babar MA, Zhu L (2017) Continuous integration, delivery and deployment: a systematic
review on approaches, tools, challenges and practices. IEEE Access 5:3909–3943. https://doi.org/10.
1109/ACCESS.2017.2685629

10. O’Hearn PW (2018) Continuous reasoning: scaling the impact of formal methods. In: Proceedings of
ACM/IEEE symposium on logic in computer science, pp 13–25. Available from: https://doi.org/10.
1145/3209108

11. Calcagno C, Distefano D, Dubreil J, et al (2015) Moving fast with software verification. In: NASA
Formal methods symposium. Springer, pp 3–11. Available from: https://doi.org/10.1007/978-3-319-
17524-9_1

12. Hayajneh S, Hamada M, Aljawarneh S (2020) Project management knowledge areas and skills for
managing software and cloud projects: overcoming challenges. Recent Adv Comp Sci Communicat
13(3):454–469. https://doi.org/10.2174/2213275912666190429154641

13. López-PeñaMA, Díaz J, Pérez JE et al (2020) DevOps for IoT systems: fast and continuousmonitoring
feedbackof systemavailability. IEEE InternThing J 7(10):10695–10707. https://doi.org/10.1109/JIOT.
2020.3012763

14. Forti S, Bisicchia G, Brogi A (2022) Declarative continuous reasoning in the cloud-IoT continuum. J
Log Comp 32(2):206–232. https://doi.org/10.1093/logcom/exab083

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.patrec.2020.05.016
https://doi.org/10.1109/ACCESS.2018.2884906
https://doi.org/10.1109/ACCESS.2017.2665971
https://doi.org/10.1016/j.pmcj.2018.12.007
https://doi.org/10.1002/spe.2766
https://doi.org/10.1145/3391196
https://doi.org/10.1109/JIOT.2021.3077992
https://doi.org/10.1109/JIOT.2021.3077992
https://doi.org/10.1007/978-3-030-39306-9_4
https://doi.org/10.1007/978-3-030-39306-9_4
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.1145/3209108
https://doi.org/10.1145/3209108
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.2174/2213275912666190429154641
https://doi.org/10.1109/JIOT.2020.3012763
https://doi.org/10.1109/JIOT.2020.3012763
https://doi.org/10.1093/logcom/exab083


Continuous QoS-aware adaptation of Cloud-IoT application placements 2059

15. Forti S, Brogi A (2020) Continuous reasoning formanaging next-gen distributed applications. In: ICLP
2020 Tech. Comm.s. vol. 325 of EPTCS, pp 164–177. Available from: https://doi.org/10.48550/arXiv.
2009.10245

16. Rojo J, Herrera JL,Moguel E, et al (2019)Amicroservice architecture for access control based on long-
distance facial recognition. In: International Workshop on Gerontechnology. Springer, pp 219–229.
Available from: https://doi.org/10.1007/978-3-030-41494-8_22

17. Forti S, Gaglianese M, Brogi A (2021) Lightweight self-organising distributed monitoring of Fog
infrastructures. Fut Generat Comp Syst 114:605–618. https://doi.org/10.1016/j.future.2020.08.011

18. Ottenwälder B, Koldehofe B, Rothermel K, et al (2013)Migcep: operator migration for mobility driven
distributed complex event processing. In: Proceedings of the 7th ACM DEBS, pp 183–194. Available
from: https://doi.org/10.1145/2488222.2488265

19. Angara J, Gutta S, Prasad S (2018) DevOps with continuous testing architecture and its metrics model.
In: Recent findings in intelligent computing techniques. Springer, pp 271–281. Available from: https://
doi.org/10.1007/978-981-10-8633-5_28

20. Kao CH (2017) Continuous evaluation for application development on cloud computing environments.
In: 2017 International conference on applied system innovation (ICASI); pp 1457–1460. Available
from: https://doi.org/10.1109/ICASI.2017.7988191

21. Kumara IP, Ariz M, Chhetri MB et al (2022) FOCloud: feature model guided performance prediction
and explanation for deployment configurable cloud applications. IEEE Trans Serv Comp. https://doi.
org/10.1109/TSC.2022.3142853

22. Truong HL, Klein P (2020) DevOps contract for assuring execution of IoT microservices in the edge.
Intern Things 9:100150. https://doi.org/10.1016/j.iot.2019.100150

23. DiNitto E,GorroñogoitiaCruz J,Kumara I, et al (2022)Deployment and operation of complex software
in heterogeneous execution environments: the SODALITE approach. Springer. Available from: https://
doi.org/10.1007/978-3-031-04961-3

24. Kumara I, Mundt P, Tokmakov K et al (2021) Sodalite@ rt: orchestrating applications on cloud-edge
infrastructures. J Grid Comp 19(3):1–23. https://doi.org/10.1007/s10723-021-09572-0

25. Misra S, Saha N (2019) Detour: dynamic task offloading in software-defined fog for IoT applications.
IEEE J Select Area Commun 37(5):1159–1166. https://doi.org/10.1109/JSAC.2019.2906793

26. Maamar Z, Baker T, Faci N, et al (2019) Towards a seamless coordination of cloud and fog: illustration
through the internet-of-things. In: Proceedings of the 34th ACM/SIGAPP symposium on applied
computing; pp 2008–2015. Available from: https://doi.org/10.1145/3297280.3297477

27. Gerostathopoulos I, Raibulet C,Alberts E (2022)Assessing self-adaptation strategies using cost-benefit
analysis. In: 2022 IEEE 19th International conference on software architecture companion (ICSA-C).
IEEE, pp 92–95. Available from: https://doi.org/10.1109/ICSA-C54293.2022.00023

28. Van Der Donckt MJ, Weyns D, Iftikhar MU, et al (2018) Cost-benefit analysis at runtime for self-
adaptive systems applied to an Internet of Things application. In: ENASE; pp 478–490. Available
from: https://doi.org/10.5220/0006815404780490

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.48550/arXiv.2009.10245
https://doi.org/10.48550/arXiv.2009.10245
https://doi.org/10.1007/978-3-030-41494-8_22
https://doi.org/10.1016/j.future.2020.08.011
https://doi.org/10.1145/2488222.2488265
https://doi.org/10.1007/978-981-10-8633-5_28
https://doi.org/10.1007/978-981-10-8633-5_28
https://doi.org/10.1109/ICASI.2017.7988191
https://doi.org/10.1109/TSC.2022.3142853
https://doi.org/10.1109/TSC.2022.3142853
https://doi.org/10.1016/j.iot.2019.100150
https://doi.org/10.1007/978-3-031-04961-3
https://doi.org/10.1007/978-3-031-04961-3
https://doi.org/10.1007/s10723-021-09572-0
https://doi.org/10.1109/JSAC.2019.2906793
https://doi.org/10.1145/3297280.3297477
https://doi.org/10.1109/ICSA-C54293.2022.00023
https://doi.org/10.5220/0006815404780490

	Continuous QoS-aware adaptation of Cloud-IoT application placements
	Abstract
	1 Introduction
	2 Motivation
	3 Continuous adaptation
	4 The ConDADO framework
	5 Performance evaluation
	5.1 Evaluation setup
	5.2 CA applicability
	5.3 QoS with and without CA
	5.4 Migration cost and speed-ups with and without CA

	6 Related work
	7 Concluding remarks
	Acknowledgements
	References




