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Abstract
Resource management is addressed using infrastructure as a service. On demand,
the resource management module effectively manages available resources. Resource
management in cloud resource provisioning is aided by the prediction of central pro-
cessing unit (CPU) andmemory utilization. Using a hybrid ARIMA–ANNmodel, this
study forecasts future CPU and memory utilization. The range of values discovered is
utilized to make predictions, which is useful for resource management. In the cloud
traces, the ARIMA model detects linear components in the CPU and memory utiliza-
tion patterns. For recognizing and magnifying nonlinear components in the traces,
the artificial neural network (ANN) leverages the residuals derived from the ARIMA
model. The resource utilization patterns are predicted using a combination of linear
and nonlinear components. From the predicted and previous history values, the Sav-
itzky–Golay filter finds a range of forecast values. Point value forecasting may not be
the best method for predicting multi-step resource utilization in a cloud setting. The
forecasting error can be decreased by introducing a range of values, and we employ
as reported by Engelbrecht HA and van Greunen M (in: Network and Service Man-
agement (CNSM), 2015 11th International Conference, 2015) OER (over estimation
rate) and UER (under estimation rate) to cope with the error produced by over or under
estimation of CPU and memory utilization. The prediction accuracy is tested using
statistical-based analysis using Google’s 29-day trail and BitBrain (BB).
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1 Introduction

Cloud computing has risen to prominence as a new form of distributed computing.
It delivers physical resources such as processing, storage, and bandwidth capability
as an on-demand service for customers, with scalability and reliability to meet the
quality of service (QoS) limitations stipulated in the service level agreement, using
the virtualization technique (SLA). The infrastructure in terms of CPU capacity, mem-
ory, and I/O is required for any application to be deployed in the cloud. The IAAS
supplier provides this as a service. Workload prediction in cloud computing forecasts
the physical machine’s future workload based on previous workload traces. Accurate
workload prediction methods would aid the IAAS provider in effectively managing
cloud data centre resources through efficient capacity planning. To maintain SLAs,
most service providers assign more resources than demand; this over-provisioning of
resources reduces physical resource consumption.

The available cloud workload prediction algorithms [1] are based on point value
prediction, which is appropriate for predicting short-term CPU load. Although point
value prediction works well in a centralized computer system, it fails to anticipate
workload in a wide distributed context. So, in a large distributed environment, a pre-
diction model is designed to provide a range of interval values for both short-term
(one step) and long-term (multistep ahead) CPU and memory utilization of the future
workload. Furthermore, existing grid or cloudworkload forecastingmethodologies are
solely dependent on single-model forecasting. This model is a statistics-based hybrid
model for estimating an application’s CPU and memory utilization in the cloud.

One or more tasks make up a job. A separate physical machine is assigned to each
task.When submitting a job to a provider, cloud customers must specify their resource
requirements in terms of CPU,memory, and I/O in order to finish the work. The person
who submits the jobmay be unaware of the resources needed to complete the task. As a
result, forecasting the data center’s futureCPUandmemory utilization is difficult. CPU
and memory utilization have an impact on work and cloud performance, and it is the
most important criteria for a cloud service provider. The workload pattern submitted
to the cloud could be constant, trending, seasonal, bursty, or erratic. All of these things
must be modeled in the prediction model. As a result, a hybrid ARIMA–ANN model
is built to forecast the cloud data center’s future CPU andmemory utilization. The jobs
make considerable use ofCPUandmemory resources. So, using statistical approaches,
the Google traces version 2 [2] task utilization table is evaluated to predict CPU and
RAM usage. A model is a mathematical description of a process that generates a time
series in time series forecasting. Forecasting utilizes historical data as input and finds
a model that fits the data, with forecasts as the model’s output.

This hybrid ARIMAmodel forecasts the linear components, and the ANN forecasts
the nonlinear components both from the original data and the residuals obtained from
the ARIMA model. The error value may emphasize the nonlinear components in the
original data. The outputs from both themodels are considered the final predicted CPU
and memory usage load values. These ARIMA–ANN forecasted CPU and memory
load values are combined with the past history of the CPU and memory load values to
create a new time series. This new time series is passed through the Savitzky–Golay
filter to produce a range of values for future CPU and memory usage prediction. The
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future CPU and memory usage of the cloud workload is predicted to improve the CPU
and memory utilization to control cloud QoS accuracy.

In the next section, the related work is reviewed. The basic concepts of time series
models, linear ARIMA model and the nonlinear ANN model are presented in Sect. 3.
The developed hybrid model is introduced in Sect. 4. Experimental evaluation is
discussed in Sects. 5, and 6 contains the concluding remarks.

2 Highlights of the proposed work

1. Propose a hybrid ARIMA and ANN model for resource prediction in cloud data-
center.

2. Main contribution in the proposed model is implementation of combined linear
and nonlinear prediction method for the cloud environment.

3. The proposed model used for prediction of load in cloud datacenter.
4. Estimation and comparison of the proposed hybrid model with different standard

technique.
5. Extensive experimental evaluation using publicly available google cluster trace

and Bitbrain data sets for different datacenters in cloud environment.

3 Related work

In recent years, cloud service providers address the dual problem of providing QoS
while competing for available resources. Statistical methods address this problem.
Accurate forecasting is needed in sales forecasting, marketing research, financial fore-
casting, and so on. Time series forecasting is very popular in wind speed prediction [3,
4], electric load prediction [5, 6], and crime forecasting [7]. De Gooijer and Hyndman
[8] have presented a review on 25 years of time series forecasting. They have discussed
the effectiveness of ARIMA and the ANN models.

Many of the research groups tried to predict the CPU usage of the cloud. The
cloud workload varies with time and is correlated over time spans. Thus, the CPU
load can be predicted from the history of CPU usage data. Wu et al. [9] developed
an auto regression(AR)–based adaptive hybrid prediction scheme (AH Model) for
predicting the n-step ahead CPU load in the computational grid and they proposed an
adaptive confidence window approach using the Savitzky–Golay filter to achieve good
performance in the grid. They integrated mean and historical interval value adaptive
parameters for predicting the future CPU load. Mean Square Error (MSE) analysis
controls the interval of history used in prediction.

TheCPU andmemory usage of the cloudworkload fluctuates over time; it may have
both linear and non-linear components. Hybrid models are better than the individual
models for forecasting.Many researchgroups developed several hybridARIMA–ANN
models by introducing modifications in the Zhang’s model [10]. The resultant models
were used in stock market prediction, wind speed prediction and electric load pre-
diction. Different mixtures of hybrid techniques have been proposed to overcome the
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difficulties of the single models. Combining models in forecasting exploits the unique
strength of each model to find the uncertainties and the nonlinear patterns in the data.
Hybrid models are homogeneous as in the case of differently configured ANNs or het-
erogeneous as in the case of combining both the linear and the nonlinear forecasting
models.

Zhang proposed a hybrid ARIMA–ANN model [10] for time series forecasting.
This model assumes that the time series data may have both linear and nonlinear
components. First, the ARIMA model is fit to predict the linear components and
the residuals are given as input to the ANN to predict the nonlinear patterns. Both
the outputs are combined to obtain a final forecast. The effectiveness of the model
is demonstrated by evaluating three well-known data sets–the Wolf’s Sunspot data,
the Canadian lynx data, and the British pound/US dollar exchange rate. This model
performed better than the individual ARIMA and ANN models in one-step ahead and
multi-step ahead prediction.

The authors proposed another hybrid ARIMA–ANN [11] model for time series
forecasting. This model also assumes that the time series data are a combination of
linear and nonlinear components. In this hybrid model, the ARIMAmodel is first fit to
the time series data to forecast the linear data point. Then the original data, the value
forecasted, and the residuals from the ARIMA model are given as inputs to the ANN
model. The output from the ANN is the final forecasted value. The ARIMA model
magnifies the linear patterns of the input and is taken as the input for the ANN. Babu
CN et al. [12] proposed the moving average(MA) filter–based hybrid ARIMA–ANN
model for forecasting the time series data. This hybrid method decomposes the given
data into linear and nonlinear components. The ARIMA model is fitted directly to
the linear data and the ANN model to the nonlinear data. The combined output is the
final forecasted value. Kang S et al. [13] proposed a bandwidth prediction scheme
for the variable-bit-rate (VBR) video traffic with the regular group of pictures (GOP)
pattern. Kalman filter was deployed over the GOP pattern and ARIMA was used for
accurate prediction. Liu H et al. [3] constructed a combination of the ARIMA–ANN
and ARIMA–Kalman hybrid models for predicting the wind speed and they compared
the performance of both the models.

AA EI Desouky and MM EIKateb [6] used five different neural network config-
urations depending on the architecture and the number of inputs to the ANN with
an adaptive learning algorithm to predict the monthly electric load for Jeddah city in
Saudi Arabia. The ANN and the hybrid ARIMA–ANN achieved error reduction in
forecasting. Valensula et al. [14], automated the approach to obtain the structure of the
ARIMA model using a fuzzy logic– based expert system and genetic algorithm (GA)
optimizes the weights associated with each fuzzy rule of the expert system. Shukur
OB et al. [4] used the hybrid Kalman Filter (KF) –ANN model based on ARIMA and
improved the accuracy of the wind speed forecasting.

Tran et al. [15] designed an online time series framework to model and predict the
various temporal input/output (I/O) patterns; they used the ARIMA time series model
to predict the temporal patterns of I/O requests. ARIMA predictions were used to vary
the number of pre-fetched blocks adapting to fluctuating demands. Combining the
temporalARIMApredictionswith spatialMarkovpredictions enabled an experimental
parallel file system to achieve performance relative to the standard Linux file systems.
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Yan et al. [16] used the hybrid ARIMA–ANN models for forecasting the resource
consumption of an Internet Information Server (IIS), a web server that is subjected
to software ageing problems. They used the built-in windows counter to obtain the
IIS parameters. They focused on available memory and.NET CLR (common language
run time) memory in all the heaps.

In the IAAS cloud environment, some of the authors have used the ARIMA model
[17] to predict the future application workload behavior to calculate the required VM
configuration in the data center. Hu et al. [18] developed a multi-step ahead CPU
load prediction method based on the support vector regression and Kalman smoothing
technique. Jiang et al. [19] addressed VM types and request timestamps. Two-level
ensemble algorithm was used in predicting the multi-type VM demands based on the
history. They introduced the cloud prediction cost measure to evaluate the quality
of the prediction result. Caron et al. [20] used the Knuth-Morris-Pratt(KMP) string
matching algorithm to predict the CPU usage of the cloud client by finding similar
usage patterns in the previous usage traces.

Mao and Humphrey [21] first estimated the number of VMs needed for each VM
type based on the workload. Subsequently, they determined whether two or more
existing VMs can be consolidated. Earliest Deadline First (EDF) algorithm has been
used for scheduling the tasks on each VM.Many of the research groups tried to predict
the CPU usage of the cloud workload. The cloud workload varies with time and is
correlated over time spans. Thus, the CPU load can be predicted from the history of the
CPU usage data. Predicting the irregular CPU and memory usage pattern of the cloud
workload optimizes the resource allocation and its utilization in the dynamic cloud
environment. Khasei et al. [11, 22] used the predicted present value, the past errors and
the past actual data values as inputs to the ANN. The ANN output is taken as the final
predicted value for one step ahead prediction. Babu et al. [12] analyzed and proved that
Khasei model is not suitable for the multi-step ahead prediction. They have suggested
an idea to use the past predicted value instead of the past actual value. Based on the
suggestion, the past predicted value is used for prediction in our developed work.

Buyuksahin and Ertekin [23] present a newARIMA- ANN hybrid method that uses
the strategies for decomposing the original data and for combining linear and nonlin-
ear models throughout. The hybridization process is a key factor in the forecasting
performance of the methods. Abdulhakim et al. [24] 2019 used a hybrid ARIMA-
ANN model for Short-term forecasting of water levels in the Changhua River that is
important for flood prevention strategies. Hryhorkiv et al. [25] proposed an advanced
hybrid forecasting model based on the combination of ARIMA and ANN. ARIMA’s
statistical properties are used to obtain S&P 500 stock index forecasts. Toga et al. [26]
applied time-series-based models such as ARIMA and ANN to analyse the effect of
Covid-19 prevalence in Turkey.

The authors [27] utilised the hybrid model to use all the potential of the ARIMA,
ANN, andETSmodels in the time series forecasting ofCOVID-19 trends. Utilizing the
most recent daily data for COVID-19 globally for the upcoming days, the forecasting
performance of various models was evaluated based on the residuals. To address a
single model’s shortcoming, the authors [28] combine linear and non-linear models
such the auto-regressive integrated moving average (ARIMA) and artificial neural
network (ANN). The ARIMA-ANN model is referred to in the combined approach.
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We use data on Pakistan’s gold prices from 1/7/2003 to 1/6/2021 for empirical study.
The objective [29] is to develop a comprehensive hybridmodel that integratesARIMA,
MLP, ARIMA-MLP, and MLP-ARIMA to analyse all conceivable combinations of
linear and nonlinear patterns. Tofindmixed linear/nonlinear patterns in time series, two
models were developed: ARIMA-MLP and MLP-ARIMA. The ideal hybrid model
must be able to handle the following four types of patterns: (1) pure linear, (2) pure
nonlinear, (3) linear-nonlinear, and (4) nonlinear-linear. Matoussi and Hamrouni [30]
proposed a new approach to predict the number of requests arriving at a SaaS service
in order to prepare the virtualized resources necessary to respond to user requests. The
prediction will be established based on the temporal locality principle and the dynamic
assignment of weights to different data points in recent history. Yadav and Yadav [31],
presents a predictive analysis of time series forecasting using deep learning method
(LSTM) to predict the future load over servers. Based on that analysis it allocates the
number of containers for running an application to manage the fluctuating workload.
Then this model performs the hybrid vertical and horizontal elasticity. Al-Sayed [32],
proposed workload sequence prediction is treated as a translation problem. Attention
Seq2Seq-based technique is proposed for predicting cloud resources’workloads. Chen
et al. [33] proposed a resource usage prediction method – RPTCN based on a deep
learning method - temporal convolutional networks (TCNs) in cloud systems. In order
to explore the relationship between the usage of different resources in the temporal
dimension, the authors used correlation analysis to screen performance indicators as
multidimensional feature input for prediction. The prediction model presented in this
study [34] predicts the real resource used for a variety of time intervals, including
daily, hourly, and minute usage. The SARIMA model predicts the future resource
with accuracy.

In the literature, there are studies that show the success of linear and nonlinear
methods over each other, [5, 17] states that statistical and linear models give better
results than ANNs. On the other hand, [35] indicates that ANN performs better than
linear models when data has high inter-correlations among two or more independent
variables.Many researchers in time series forecasting show that hybridmodels improve
forecasting performances [3, 4, 14, 22]. By taking the advantage of each individual
method in a combinedmodel, the error risk of using an inappropriatemethod is reduced
and more accurate results are obtained.

4 Time series forecastingmodels

Time series is a sequential set of data points observed over successive time periods
[36] for a set of data y(t), where t represents the time interval and it varies from 0, 1,
2, and so on. It is an indication of how often the observations are recorded. A time
series containing records of a single variable is univariate and if the time series contains
records of more than one variable then it is multivariate. Time series can be continuous
or discrete. When the time series is continuous, the observations are recorded at every
instance of time, and observations are recorded at equally spaced time intervals for
discrete time series. The time series have four components. They are trendy, cyclic,
seasonal, and irregular and can be removed from the observed data. Considering the
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effects of these four components, the multiplicative and the additive models are used
for determining the time series data.

Multiplicative Model Y (t) = T (t) ∗ S(t) ∗ C(t) ∗ I (t) (1)

Additive Model Y (t) = T (t) + S(t) + C(t) + I (t) (2)

Y(t) in Eqs. (1) and (2) is the observation, T(t) is the trend component, S(t) is the
seasonal component, C(t) is the cyclic component, and I(t) is the irregular variations
at time t. In the multiplicative model, all the four components can affect one another,
whereas in the additive model, they are independent of each other.

4.1 The ARIMAmodel

In the past, ARIMAmodel was used for forecasting the time series [10]. In an ARIMA
(p, d, q) model, the future value of a variable is assumed to be a linear function of the
several past observations and random errors. The time series generated takes the form
as in Eq. (3).

yt = θ0 + ϕ1yt−1 + ϕ2yt−2 . . . + ϕp yt−p

+ εt + θ1εt−1 + θ2εt−2 . . . + θqεt−q (3)

yt and εt in Eq. (3) are the actual value and the random error at time period t respec-
tively, ϕi (i = 1, 2 . . . .p) and θi (i = 1, 2 . . . .q) are the model parameters. In the auto
regression AR(p) model, the current value of the time series is expressed as a lin-
ear aggregation of the p previous values and the error term and the moving average
MA(q) model is expressed as the current value of time series as an error at time t and
q previous error terms.

4.2 The ANNmodel

The ANN structure is very similar to the neuron structure of the human brain. ANNs
approximate the various nonlinearities in the data [11]. To model the time series data,
the relationship between the output (yt) and the inputs (yt-1, yt-2…yt-p) is expressed
using Eq. (4).

yt = W0 +
q∑

j=1

w j .g

(
w0 j +

p∑

i=1

wi j · yt−i

)
+ εt (4)

wij (i= 0,1,2,…,p,j= 1,2,…,q) andwj(j= 1,2,..,q) in Eq. (4) are themodel parameters
and called the connection weights; p is the number of input nodes and q is the number
of hidden nodes; g denotes the transfer function of the hidden layer. The logistic
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function is the hidden layer transfer function given by Eq. (5).

g(u) = 1

1 + exp(−u)
(5)

This logistic function is used for modeling time data because they are nonlinear
and continuously differentiable which is a desirable property for network learning.
Hence, the ANN model performs a nonlinear functional mapping between the past
observations and t

by Eq. (6); f in Eq. (6) is a non-linear function, εt is the error term and w is a
weight vector of all the parameters.

yt = f
(
yt−1,yt−2, . . . , yt−p,w

) + εt (6)

The ANN model is equivalent to a nonlinear autoregressive model. This models’
coefficient is obtained by giving the observed data sequence as input to the ANN,
and the ANN is trained with this sample sequence. After training, the performance is
tested and validated.

5 The system architecture

The hybrid ARIMA and ANNmodel’s system architecture for predicting the range of
confidence values for CPU and memory utilization is depicted in Fig. 1. The analysis
relies on the Google cluster data collection [2]. The null values are removed during
data preprocessing, and the data is turned into a time series as a result. The time series
is then sent into the ARIMA model, which predicts CPU and memory utilization for
the next several requests based on the data. To determine whether the original CPU
andmemory consumption time series is stationary, ARIMAemploys theDickey Fuller
test. The nonlinear components that the ARIMAmodel cannot model are referred to as

Fig. 1 The hybrid ARIMA–ANN model
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residues. The residuals are extracted and combined with the original data sequence as
input to the ANNmodel. It generates a collection of CPU andmemory use predictions.
To get the final prediction values, the predicted values from both models are added
together. The new time series is then created by combining these values with the
previous history. Recent past data, in particular, may provide more useful information
than data from the distant past [37]. To eliminate any inaccuracies, this new sequence
of data points is fed into the Savitzky–Golay filter [9]. The range of confidence values
for the n-step ahead CPU and memory use estimate is derived using the smoothed
data.

5.1 The hybrid ARIMA–ANNmodel

The hybrid model integrates ARIMA and ANN within an estimated range of confi-
dence values to yield accurate results in prediction. It forecasts the workload n-step
ahead from the current time. The time series gen as input to the hybrid model in Eq. (7)
is a function of linear and nonlinear components.

yt = f (Lt , Nt ) (7)

Lt in Eq. (7) represents the linear components and Nt denotes the nonlinear compo-
nents. These two components are estimated from the data. ARIMA model finds the
linear component. The residuals from theARIMAmodel are the nonlinear components
of the original data.

Lt(ARI MA) = L̂ t + et (8)

L̂ t in Eq. (8) is the forecast ofCPUandmemory load value at time t and et is the residual
at time t from the linear model [10]. Residuals may still contain the linear correlation
structure. Residual analysis may not find the nonlinear correlation structure and no
standard statistical technique is available to find the nonlinear correlation structure in
the data [11]. ARIMA may not be adequate to handle the nonlinear components. The
ANN in Fig. 1 performs the nonlinear modeling [11]. Multilayer perceptron is used in
modeling the nonlinear components given by Eqs. (9)–(11). Let f 1, f 2, f denote the
nonlinear functions obtained from the neural network which represents the nonlinear
relationship existing among the residuals of linear modeling and the original data:

N 1
t = f 1(et−1, . . . , et−n) (9)

N 2
t = f 2(zt−1, . . . , zt−m) (10)

N̂t(ANN ) = f
(
N 1
t , N 2

t

)
(11)

n and m specify the order of the model. The combined forecast ŷt is given by Eq. (12).

̂ŷt = L̂ t + f
(
N 1
t , N 2

t
) = Lt + f

(
et−1, . . . et−N1 , zt−1, . . . zt−M1

)
(12)
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n1 and m1 in Eq. (12) are determined using the neural network; et that is,
{ei (i = t − 1, . . . .t − N1)} the residual component and

{
z j ( j = t − 1, . . . .t − m1)

}

the portion of original data in Eq. (12) denoted as N 1
t and N 2

t are used in modeling
the nonlinear component. If the data contains only pure linear structure, et may be
missing in the input to the ANN. Function f is a nonlinear function determined by
ANN and it is interpreted as the estimated value of Nt . So the combined forecast is
given by Eq. (13)

ŷt =
(
L̂ t , N̂t(ANN )

)
(13)

�

L and N̂ in Eq. (13) is the output of theARIMAmodel andANNmodel respectively.

Although Zhang’s hybrid ARIMA–ANN model takes advantage of ARIMA and
the ANN model’s unique strengths in determining linear and nonlinear patterns, there
are no assumptions in modeling the linear and nonlinear patterns of data. As a result,
the ANN is trained using the nonlinear components, which are the ARIMA model’s
error values. This ANNmodel captures the nonlinear components as well as the linear
components ignored by ARIMA. As a result, this constructed model better reflects the
linear and nonlinear correlation structures in the data than separate models, and the
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integration of the confidence range values for prediction improves model accuracy.
Algorithm 1 describes a hybrid model for predicting CPU and memory utilization n
steps ahead.

6 Results and analysis

We have conducted our analysis and experiments on workload traces for a compute
cluster of Google trace and BitBrain. This trace contains the task demand and usage
for CPU, memory and disk. The usage of each type of resource is reported at every
five minutes’ interval. We mainly focused on CPU and memory, and our approach can
be extended to consider resources such as disk space.

6.1 Experimental setup

Google released the trace version 2 on November 2011, which represents 29 days of
the computing cell information on single cluster. Google provides schema to describe
the data set [2]. The data set contains different tables [38] as in Table 1.

The data set contains workload traces and its resource demands and actual resource
usage records for a job and task over a time period of 29 days. The workload traces of
Google compute cluster consist of all the different task types [38, 39]. ThisGoogle trace
provides information of each task’s demand and usage of CPU, memory, and I/O disk
time. Every record in the dataset has a timestamp attribute which is in microseconds
and is recorded as a 64bit integer. Every job and the machine are represented by a
unique 64bit identifier.

A time series involving CPU and memory usage data points is constructed from
the Google cloud trace in this work. Sample time series data are shown in Fig. 2.
Time series data points are divided into the training period and the testing period. The
training data points fit the models and the testing data points validate the models.

For ARIMA model forecasting, a suitable model order was found using the R
software package. It predicts the future linear model. MATLAB’s ntstool is used in
modeling the nonlinear time series data. The ANN and the hybrid model are imple-
mented using MATLAB; a total of 100 data points are used in n-step prediction. The

Table 1 Database schema
S.no Table name

1 Machine event

2 Machine attribute

3 Job event

4 Task event

5 Task constraints

6 Task usage
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Fig. 2 Sample Google cloud trace data

forecast horizon is 10. Themulti-step ahead prediction is performed using the different
look ahead spans.

In order to forecast the usage of CPU andmemory, we split the data set into training
data set and testing data set. Training data are transformed to a time series process.
The values of p, d and q of the ARIMA models are obtained using the R software
package [40]. The inputs to the ANN are CPU and memory usage time series and their
respective error values [35]. The number of input nodes and hidden nodes correspond
to the lagged observations used in finding the underlying pattern in a time series. The
optimumANNnetwork configuration is implemented using the Levenberg–Marquardt
algorithm. Different network configurations are evaluated. The network configuration
with best forecasting accuracy is selected as the final model to fit the data. At run
time, the model is constantly updated. Whenever new requests arrive, their CPU and
memory usage values are incorporated into the time series and the fitting process is
repeated, which may lead to changes in the network configuration of the ANN and
the values of p, d and q of the ARIMA model. The predicted CPU and memory usage
data points along with the past history data points are used in creating the time series.
The Savitzky–Golay filter smoothens this series to find a range of predicted workload.
The frame size f is set as 51 and the polynomial degree d is taken as 4 [9].

6.2 Evaluationmetrics

The prediction capability of the developed hybrid model is compared with the AR
(30) [41] using Google cloud trace version 2 data set. The RMSE value measures the
difference between the values predicted by the model and the actual values observed.
RMSE is defined as the square root of the mean square error. In point value prediction,
the error is calculated as the difference between the actual workload and the predicted
point value. For window based prediction [9], Y(t) is the true load value at time t, and
error is zero if it is inside the confidence window. Otherwise, the error is calculated
using Eq. (14).
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Error(t) =
{
0 i f Yl(t) ≤ Y (t) ≤ Yu(t)
min{|Y (t) − Yl(t)|, |Y (t) − Yu(t)|} (14)

Equations (15) and (16) are used to calculate the MSE (Mean Square Error) and
RMSE (Relative Mean Square Error). RMSE, according to Engelbrecht et al. [41],
solely indicates the error distance between the forecasted and true values. As a result,
they developed ES, a new metric for determining if the error distance is overestimated
by 10% more than the genuine value or underestimated by 10% less. Equation (17)
denotes the overestimation rate, which is given by Eq. (18), and UER denotes the
underestimation rate, which is given by Eq. (19).

MSE = 1

t + 1

t∑

1

[Error(i)]2 (15)

RMSE = √
MSE (16)

ES = 1

2
(OER) + 1

2
(UER) (17)

OER = Number of over predicted values

T otal f orecasted values
(18)

UER = Number of under predicted values

T otal f orecasted values
(19)

To measure the accuracy of the work, metrics such as Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE) is also used to evaluate the errors of
forecasting. MAE is a measurement metric where the absolute error is the absolute
value of the difference between the forecasted value y p

i and the actual value ya
i and

is calculated using Eq. (20). MAPE is used in forecasting accuracy of a prediction
model and is calculated using Eq. (21). Lesser MAPE value indicates better prediction
accuracy in terms of percentage. In Eq. (21) y pi is the predicted value, yai is the actual
value and N is the number of the predicted values in the dataset.

MAE = 1

N

N∑

i=1

(
y p
i − yai

)
(20)

MAPE = 1

N

N∑

i=1

(
y p
i − ya

i
ya
i

)
∗ 100 (21)

RMSE tells the how far the distance between actual and predicted observations
of CPU and memory usage. It suggests the user that whether we can go with the
particular prediction model for forecasting the given attribute values. MAPEmeasures
the prediction accuracy forecasting model. So that MAPE metrics are used to find the
forecasting accuracy of the hybrid ARIMA-ANN model.
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6.3 Results and discussion

The use of the CPU and RAM is examined. When the data is highly fluctuating, AR
and ARIMAmay be unable to model the nonlinear components. The subsequent error
will have a significant impact. As a result, AR and ARIMA may not be appropriate
for cloud multi-step ahead load forecasting. Nonlinear patterns are better predicted by
ANN. Prediction, however, necessitates the use of training data. The performance of
ANN may be harmed as a result of this constraint. As a result, the proposed hybrid
model combines the best features of these two models to better capture both linear
and nonlinear components in the data than the other models.

6.3.1 Forecasting the CPU usage

Figure 3a and b depicts the actual observations as well as the expected CPU utilisation
values for different input data points. The best-fitting ARIMA model for the sample
CPU consumption is for the linear data (5, 0, 0). Five input nodes, five hidden nodes,
and one output neuronmake up the fitted ANN for nonlinear data. N is how it is written
(5-5-1). The CPU use series’ future behaviour is predicted by the trained hybridmodel.

The RMSE of CPU consumption for various look-ahead spans is shown in Fig. 4a.
When compared to the hybrid model, ARIMA produces a higher RMSE value. For the
second look ahead span, the ANN model generates the best RMSE values, implying
that ANN has strong predicting accuracy for short horizons. The performance of ANN
is not particularly outstanding when the forecast look-ahead span is increased to three,
four, or five. Figure 4b shows the MAPE values of the CPU usage.

6.3.2 Forecasting the memory usage

Figure 5a and b depicts the actual observations as well as the projected memory
utilisation numbers for different data points. Memory consumption forecasting uses
the same hybrid model configurations as are used to predict CPU utilization. The
new approach is compared to previous research based on ARIMA and ANN, as well
as linear and nonlinear regression methods. The CPU and memory use patterns are
used to evaluate the models. The estimation score (ES), the root mean square error
(RMSE), and the proper estimation rate are all compared. The accurate value is one
that is anticipated to be within a percent of the true value. The RMSE of the suggested
hybrid model is lower than those of ARIMA and ANN.

The RMSE of memory utilization is shown in Fig. 6a. When compared to the other
two models, ARIMA has the lowest RMSE value during the third look-ahead span,
indicating that the testing data is linear, and it has higher RMSE values for the other
look-ahead spans. For the duration of second look-ahead span, the ANN and ARIMA
models have the best RMSE values. The performance of ANN degrades as the look-
ahead span is expanded to three, four, and five. As a result, individual models may
not detect all of the data’s patterns. As a result, integrating the two models may be the
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Fig. 3 a, b The hybrid model prediction of CPU usage

most effective strategy to address this performance degradation. Figure 6a show that
the created hybridmodel outperforms theARIMAandANNmodels in predictingCPU
and memory utilization over various look-ahead spans. In terms of CPU and memory
consumption forecasting, the hybrid model outperforms the other two models in both
the short- and long-term look-ahead periods.5.6 Relationship between RMSE and the
Look-Ahead Span. Figure 6b shows the MAPE values of memory usage data.

Iteratively running one step ahead prediction yields a multi-step ahead prediction.
The assumption that the projected data are the real data for predicting the next step is
based on time series data related to n-step ahead prediction. This assumption, however,
will not always be true because of the accumulation of prediction errors. As a result,
for improvements over longer time horizons, we used the range of expected values.
The projected RMSE and predicted steps are shown in Fig. 7. It means RMSE is
proportional to prediction steps in a linear way.
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Fig. 4 a RMSE of CPU usage. b MAPE of CPU usage

6.4 Comparison with the other models

Figures 8 and 9 show how the hybrid ARIMA–ANN model compares to the other
models in terms of ES and correct prediction values. The generated model’s perfor-
mance gains are compared to those of other models. The linear ARIMA model and
nonlinear ANN model combination found different patterns in the CPU and memory
utilization time series data in our designed hybrid model. In addition, when the predic-
tion horizon is extended, the Savitzky–Golay filter filters the errors in the time series
data to determine the range of forecasting values.

In Support vector regression model, SVR the training phase is the costliest part,
and lots of research are going on to develop better way to do it. Selection of kernel is
important because if we choose a kernel like the Gaussian, which starts giving zero
as the distance between the parameter grows then as we start to move away from the
training data, the machine will start returning the mean value of the training set. The
selection of the kernel determines the estimator’s asymptotic performance. However,
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Fig. 5 a, b The hybrid model prediction of memory usage

in the hybrid prediction model, the prediction modeling is simply fitted and accurate
prediction modeling is obtained.

The Bitbrains fast storage trace [42] contains data from 1250 virtual machines
(VMs) connected to fast Storage Area Network devices. The dataset is available for
30 days, with a 5 min sampling rate and one file per virtual machine. The provisioned
CPU capacity, CPU utilization, provisioned memory capacity, actual memory usage,
network I/O throughput, disc I/O throughput, and the number of cores provisioned are
all contained in each file.

The proposed method was tested using multi-attribute resource workload data
obtained from the BB trace. MSE, MAE, and MAPE metrics are used to assess the
accuracy of the prediction. The accuracy of the SVRT and LRT algorithms on the test
workload data is shown in Figs. 10 and 11. In both one-step and four-steps forward
forecasts, the hybrid ARIMA-ANN model has a lower error ratio than the SVRT and
LRT methods, as shown in Figs. 10 and 11.
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Fig. 7 Relationship between RMSE and predicted steps
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7 Conclusion

Accurate forecasting of future workload is necessary to achieve improved QoS and
increase resource usage in the cloud environment. Based on the hybrid ARIMA–ANN
technique, this research develops a multi-step forward CPU and memory load predic-
tion model. This concept has been found to work well in a dynamic cloud computing
environment through testing. It combines ARIMA and ANN technologies with the
Savitzky–Golay filter. The model’s forecasting accuracy is verified using publicly
available Google trace data and BitBrain data. The hybrid ARIMA–ANN exhibits
better RMSE, ES, and correct prediction values when compared to AR (30), Feed For-
ward NN, MSE, MAE, MAPE, and conventional ARIMA. The service provider will
utilize the prediction results to forecast demand and make the necessary preparations.
If the burden completely shifts to a different pattern, dynamic cloud workloads may
have substantial forecast errors. In that circumstance, a new predictive model must be
built in order to achieve high forecast accuracy. To adapt to such situations, a dynamic
workload must be capable of recognizing previously unnoticed new workload pat-
terns. It can also adaptively retrain its model to deal with such drastic pattern changes.
Cloud providers can use this predictive analysis to avoid different types of losses such
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as services unavailability, maximum energy consumption and customer’s loss and it
prevents excessive or insufficient provisioning of cloud resources. In future dynamiz-
ing the size of the sliding window associated to the recent history to be analyzed and
dynamic assignment of weights to different data points in recent history to improve
the prediction accuracy [43, 44].
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