Computing (2023) 105:375-416
https://doi.org/10.1007/s00607-022-01128-8

REGULAR PAPER

®

Check for
updates

Microservice compositions based on the choreography of
BPMN fragments: facing evolution issues

Jesus Ortiz! - Victoria Torres' - Pedro Valderas'

Received: 28 April 2022 / Accepted: 18 October 2022 / Published online: 12 November 2022
© The Author(s) 2022

Abstract

Business Processes (BPs) are commonly used by organizations to describe their goals.
However, the existent decentralization found in many organizations forces them to
build such BPs by coordinating distributed and fragmented BPs. Within this context,
microservices arise as a very interesting and convenient way to address the imple-
mentation of such processes due to their low coupling characteristic. In this case,
the coordination of such fragmented BPs is usually achieved by means of event-based
choreographies. One of the main challenges to be faced by choreographies is their evo-
lution due to the complexity that introduces the need of integrating changes among
autonomous and independent partners. We face the challenge of evolving a microser-
vice composition that is globally defined in a BPMN model but executed through a
choreography of BPMN fragments. We introduce a protocol to manage the propa-
gation of a change done by one microservice to be integrated into both the BPMN
fragments of the rest of the microservices and the global BPMN model. This proto-
col also supports the negotiation among participants and the automatic suggestion of
model adaptations to maintain the functional integrity of the composition. These sug-
gestions are supported by a catalogue of adaptation rules that precisely characterize
every possible change and propose actions to be considered by the affected microser-
vices. All the evolution process is done at the modelling level, without managing
hard-coded implementations. We have developed specific tools to facilitate the prac-
tical adoption of this protocol, and we have validated our work in an experiment with
users. We can conclude that the proposed approach is effective to evolve microservice

B Pedro Valderas
pvalderas @pros.upv.es

Jesus Ortiz
jortiz@pros.upv.es

Victoria Torres
vtorres @pros.upv.es

PROS Research Center, Universitat Politécnica de Valeéncia, Camino de Vera, s/n, 46022 Valencia,
Spain

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-022-01128-8&domain=pdf
http://orcid.org/0000-0002-4156-0675

376 J. Ortizetal.

compositions implemented as event-based choreography of BPMN fragments from
the local perspective of one partner.

Keywords Microservices - Composition - Evolution - Protocol - Bottom-up

Mathematics Subject Classification 68U35

1 Introduction

Business Processes (BPs) are the key instrument to organizing and understanding the
interrelationships of the different activities required to produce an outcome for the
market [1]. Such BPs are specified as models which can be described following either
an orchestration or a choreography approach. While orchestrations are governed by a
centralized control flow, choreographies are governed by the interaction that occurs
among the involved parties through the exchange of messages [2]. When BPs activ-
ities are performed in a decentralized way, e.g., by different departments within the
same organization, the choreography approach turns more convenient since it puts
the focus on the collaboration that occurs between the involved partners through the
exchange of messages. Besides, the decoupling characteristic of microservices makes
them a very interesting and convenient way to implement such processes. Microservice
architectures [3] propose the decomposition of applications into small independent
building blocks (the microservices) that focus on single business capabilities. There-
fore, microservices need to be composed to support the BPs of organizations. To this
end, to keep a lower coupling and independence among microservices for deployment
and evolution, these compositions are usually implemented by means of event-based
choreographies [4].

However, choreographies split the control flow of compositions among the dif-
ferent participant microservices, which makes them hard to analyse and understand
when requirements change. Our previous work [S] faces this problem and proposes
an approach based on the choreography of process fragments defined by the Business
Process Model and Notation (BPMN)[6] to address it. According to this approach,
BP engineers create the big picture of the microservice composition through a BPMN
model. Then, this model is split into BPMN fragments which are executed through an
event-based choreography. This composition approach is supported by a microservice
architecture developed to achieve that both descriptions of a microservice composition,
the big picture and the split one, coexist in the same system. This solution introduces
two main benefits regarding the microservice composition. On the one hand, it facili-
tates BP engineers to analyse the control flow if the composition’s requirements need
to be modified. On the other hand, it provides a high level of decoupling in the execu-
tion of microservices, allowing the independent management of the BPMN fragments
by the corresponding development team.

However, this solution introduces a new challenge to be faced: how to evolve a
microservice composition that is globally defined following an orchestration schema
in a BPMN model, but which is executed through the choreography of several process
fragments. Changes in process-based systems have been identified as crucial in most

@ Springer

Microservice compositions based on the choreography... 377

application domains [7-10]. Changes can be needed due to several reasons such as
the advent of new regulations or the emergence of new competitors in the market that
forces the supported requirements to be adapted. In this work, we face the evolution
of microservice compositions that are described in a global model, as it is done when
an orchestration approach is followed, but which is split into model fragments that are
distributed through microservices and executed through an event-based choreography.
In addition, this evolution is faced at the modelling level, allowing changes to be
managed through descriptions of a high level of abstraction such as BPMN models,
instead of having to manage hard-coded implementations of the control flow and the
interchange of messages.

1.1 Previous work: composition of microservices

To properly understand our current work, this section introduces a summary of our
previous work [5] by applying the proposed microservice composition approach to
a representative example, which is used as a motivating example in the rest of the
paper. This approach proposed two main steps to create a microservice composition:
(1) to create the big picture of the composition in a BPMN model and (2) to split it
into BPMN fragments that will be deployed into the corresponding microservices and
executed through an event-based choreography. We consider a scenario based on the e-
commerce domain, which describes the process for placing an order in an online shop.
To support this process, we need to consider different business responsibilities related
to the management of customer information, the control of the inventory of products,
the processing of the payment, and the shipment of products. We propose to create a
microservice to support each of these business responsibilities: Customers, Inventory,
Payment and Shipment. Figure 1 shows the big picture of this process represented in
BPMN, which is created in the first step of the proposed approach. Note that each
microservice is defined by a BPMN pool.

The sequence of steps that the microservices must perform is the following (see
Fig. 1):

1. The Customers microservice checks the customer data and logs the request. If the
customer data is not valid, the process of the order is cancelled. On the contrary,
this microservice transfers the control flow to the Inventory microservice.

2. The Inventory microservice checks the availability of the ordered items. If there
is not enough stock to satisfy the order, the process of the order is cancelled. On
the contrary, this microservice books the requested items and transfers the control
flow to the Payment microservice.

3. The Payment microservice processes the payment with the customer. If the pay-
ment fails, the process of the order is cancelled, and the control flow is transferred to
the Inventory microservice. On the contrary, the control flow is directly transferred
to the same microservice, without cancelling the purchase order.

4. If the payment has not been correctly processed the Inventory microservice releases
the products and the process finishes. If the payment is OK, the Inventory microser-
vice updates the stock of the purchased items and the control flow is transferred
to the Shipment microservice.

@ Springer

378 J. Ortizetal.

@

Check Customer

@

Log Request

Update
Customer

Customers

Check
Availability

Inventory

Release
Products

Payment
Process

@}

Cancel Order

Payment

Create Assign Delivery
Shipment Order Company

Shipment

Fig.1 Big picture of a microservice composition

5. The Shipment microservice creates a shipment order and assigns it to a delivery
company. Then the control flow is transferred to the Customer microservice.

6. Finally, the Customer microservice updates the customer record and informs the
customer about the shipment details. Afterwards, the process finishes.

After creating the big picture of the composition, the second step consists in
splitting it into BPMN fragments that describe the functional responsibility of each
microservice. This is done automatically by a tool we developed [5]. At runtime, each
microservice oversees executing its corresponding BPMN fragment and informing
the other participants about it through publishing asynchronous events in a commu-
nication bus. In this way, the microservice composition was executed by means of an
event-based choreography of BPMN fragments in which microservices wait for an
event to execute its corresponding piece of work. This is shown in Fig. 2. Note how
a microservice does not transfer the control flow to another microservice explicitly.
Instead, a microservice publishes an event in a bus (depicted by solid blue arrows) to

@ Springer

Microservice compositions based on the choreography... 379

SHIPMENT

CUSTOMERS

(2) Customer
| Checked l
Event Bus

—— | (7) Order

PAYMENT

INVENTORY

Execution flow

Fig.2 Event-based choreography of BPMN fragments

indicate that a piece of work is completed, and the microservice that is waiting for this
event (depicted by solid brown arrows) starts the execution of its BPMN fragment.

This composition approach is supported by a microservice architecture developed
to achieve that both descriptions of a microservice composition, the big picture and
the split one, coexist in the same system. In addition to the business microservices that
participate in the composition (i.e. Customers, Inventory, Payment, and Shipment),
this architecture introduces the Global Manager microservice (see Fig. 3) whose
goal is to support the management of the BPMN model with the big picture of the
composition, as well as splitting it into fragments and distributing the fragments among
the microservices that participate in the composition.

1.2 Motivation: evolution of a microservice composition

The architecture proposed in our previous work introduces two approaches to evolve
a microservice composition (see red arrows in Fig. 3): a top-down approach and a
bottom-up approach.

By following a top-down approach the microservice composition is evolved by
BP engineers from the BPMN model that represent the big picture. The evolution is
done from a global perspective and the modifications introduced in the big picture
are propagated to the corresponding BPMN fragments of each microservice. The
propagation process is the same as when a composition is created, split, and distributed.
Thus, this evolution strategy is natively supported by our previous work.

By following a bottom-up approach the microservice composition evolves from
the BPMN fragments of individual microservices. In this case, the evolution is done
from the local perspective of a specific microservice. This means that developers of

@ Springer

380 J. Ortizetal.

Business Process Engineer
H
H
Big Picture
< Global Manager £
o o
o @
14 o
e
g a
® &
€ a
3 3
3 ;
Q
! g
Q
BPMN BPMN BPMN | BPMN
- - - .
- - - .
- - - -
v Shipment Developer Payment Developer Inventory Developer Customer Developer

Fig.3 Microservice architecture in which coexists the big picture of a composition and the split version

a microservice can modify the BPMN fragment under its responsibility as long as
they integrate the changes with the rest of the system, i.e., the BPMN fragments of
the rest of the microservices and the BPMN model with the big picture managed by
the Global Manager microservice. Note that allowing local changes in a microservice
composition reinforces the independence among development teams that is demanded
by this type of architecture, but at the same time may compromise the integrity of the
whole composition. For instance, let us consider that the developers of the Customers
microservice decide to modify its BPMN fragment (see Fig. 2) in such a way that the
event “Customer Checked” is not published anymore. Then, the Inventory microser-
vice, which is waiting for it, will never start and execute its tasks, and then, the
microservice composition will never continue. Thus, a local modification in a BPMN
fragment stops prematurely the global composition, making it impossible to achieve
the objective for which it was initially designed.

Considering that microservice compositions are defined through a BPMN business
process, this problem can be contextualised within the area of flexibility in Business
Process Management (BPM) [1], which has become a centre of attention from both
commercial and research institutions as an understanding of requirements for BPs
[11]. Flexibility also relates to the evolution of BPM, especially because of its ability
to adapt BPs to predicted and unpredicted real-world changing scenarios. Consider,
for instance, unpredictable changes due to altered legal requirements.

Many solutions have been proposed in the literature to support BP flexibility [12].
All of them can be classified into one of the following four categories proposed by
[13]: (1) Variability, which is the ability to derive different variants from the same
BP; (2) Adaptation, which is the ability to temporarily deviate the flow during the
execution of a BP; (3) Looseness, which is the ability to execute a BP with some
decisions that affect the control flow and are not fully defined or undefined; or (4)

@ Springer

Microservice compositions based on the choreography... 381

Evolution, which is the ability to permanently modify a BP affecting all future BP
enactments. Our solution is classified into the last category.

The survey conducted in [12] shows that many of the works that face BP flexibility
focus on variability, adaptation, or looseness. Little attention is paid to the evolution
of BP (only 4 works out of 70 explicitly mention the evolution as a reason to lead
the definition of a solution for flexibility management). Thus, the consideration of BP
evolution is identified as a research direction to be considered

In addition, BP evolution is usually faced from an orchestration perspective, in
which the BP is defined in a centralized description that needs to be globally evolved.
As we discuss further when analysing the related work (Sect. 6), few solutions face the
evolution of choreographed BPs from the specific perspective of one participant, as we
do in this work. This type of evolution has the additional complexity introduced by the
interaction of autonomous and independent partners. In the context of microservices,
despite many solutions support their composition based on BPMN and other well-
known BP modelling languages, their evolution is mostly not faced.

1.3 Problem statement

Considering the motivation presented above, this paper presents a solution to face the
evolution of a microservice composition from the local perspective of a microservice,
which can be stated by the following research question:

How can we evolve a microservice composition based on the choreography of
BPMN fragments from the local perspective of a microservice without compromising
the integrity of the whole composition?

1.4 Main objectives and contributions

The main objective of this work is to answer the above-introduced research question
by providing a solution that supports the evolution of a microservice composition from
the local perspective of one participant. This solution should facilitate the propaga-
tion of local changes through the Global Manager and the rest of the microservices;
should automate, as much as possible, the suggestion of adaptations to the microser-
vices affected by the local change; and should support the manual negotiation of an
adaptation when developers do not consider the proposed adaptation adequate. To
achieve this, the contributions of this paper are the following:

1. A protocol that allows us to propagate and communicate local modifications within
amicroservice composition in order to automate, when possible, the compensation
actions required to maintain the composition integrity.

2. A characterization of the changes that can occur from the local view of a microser-
vice, analysing the impact that each change has on the global composition, and
proposing compensation actions that ensure, when possible, the achievement of
the global composition goal.

3. A BPMN-based tool that supports microservices developers to perform local mod-
ifications according to the proposed protocol.

@ Springer

382 J. Ortizetal.

In previous works, we presented an initial attempt to categorize local changes at
the microservice level [14] and introduced a preliminary version of the protocol [15].
Based on these first efforts, in this paper, we take a step forward and present a more
precise characterization of local changes. While the previous works only consider
delete actions, this paper considers also update and create actions. In addition, it also
introduces a redefined version of the protocol in which we clearly specify both human
and software participants, redefine the Global Manager microservice’s involvement to
have greater responsibility for analysing local changes, and add a new phase to allow
the negotiation of the suggested adaptations. In addition, we present the tool we have
developed to support the bottom-up approach and the evaluation we have carried out
through a practical experiment to assess both, the protocol and the supporting tool.

1.5 Research methodology and paper structure

A methodology in line with the precepts of Design Science Research (DSR) [16, 17]
is used for this research project. DSR aims at developing practical solutions that can
be used by professionals in their field. More concretely, solutions - or design artefacts
- can take the form of constructs, models, methods, or instantiations [16]. Considering
the contributions presented in Sect. 1.4, the artefact we have developed is a protocol
to support a bottom-up evolution of a microservice composition that facilitates the
propagation of changes, the suggestion of adaptations, and their negotiation. According
to [16], this artefact can be classified as a method since it defines a set of actionable
instructions that are conceptual and not algorithmic.

We applied the DSR methodology to develop this artefact and performed the six
activities proposed in [17] by following a problem-centred approach. These six activ-
ities are: (1) Problem identification and motivation; (2) Define the objectives for a
solution; (3) Design and development; (4) Demonstration; (5) Evaluation; and (6)
Communication. Thus, we first identified the specific research problem and motivated
it, which was presented in Sects. 1.1, 1.2 and 1.3. This motivation is complemented
by the study of the state of the art that is presented in Sect. 6, which compares the
improvements introduced by our solution with pre-existing ones. Next, we defined the
objectives of the solution, which have been presented in Sect. 1.4. The next activity in
the DSR methodology consists of the design and development of the artefact required
to support the proposed objectives. This is explained in Sects. 2 and 3, which intro-
duce the protocol proposed to evolve a microservice composition when a participant
introduces a local change, and a catalogue of adaptation rules to be used within the
protocol to automatically suggest adaptations to the affected microservices. To do so,
we followed an action-research development [18] in such a way we iteratively study
the problem to solve, apply some actions, and analyse if the obtained results satisfy
our purposes.

The fourth activity to be performed is the demonstration, in which the developed
artefact must be used to solve one or more instances of the considered problem. To
do so, we extended the architecture that supports the composition of microservices
with the required tool support and developed a proof-of-concept prototype to test the
feasibility of the proposed protocol with the running example. This is explained in

@ Springer

Microservice compositions based on the choreography... 383

Sect. 4. The implementation of the required tools was done by following an iterative
and incremental process [19] in such a way the tools were progressively developed
and tested with examples, refining previous implementations when some errors were
detected.

The next activity proposed by the DSR methodology is the evaluation, in which we
must observe and measure how well the artefact supports a solution to the problem. To
do so, we arranged a controlled subject-based experiment [16] in order to evaluate the
effectiveness of the developed artefact to allow users to solve an instance of the problem
considered in this work. The experiment was conducted by applying the guidelines
proposed in [20]. It is presented in Sect. 5. To complete the DSR methodology we
are communicating our results to the research community through this paper, whose
last section presents some conclusions and provides insights into directions for future
work.

2 The proposed evolution protocol

In general, when a process of a system is changed, it must be ensured that structural
and behavioural soundness is not violated after the change [9]. When the process
is supported by a choreography, additional aspects must be guaranteed due to the
complexity introduced by the interaction of autonomous and independent partners. As
exemplified above, when a participant introduces some change in its part of the process,
it must be determined whether this change affects other partners in the choreography
as well. If so, the change must be propagated to the rest of the partners which may
involve performing adaptations to maintain the consistency and compatibility of the
choreography. The decision of whether to adopt these adaptations must be left to
partners and may be subject to negotiations, which can be costly and time-consuming.

This section proposes an evolution protocol to facilitate the propagation of changes,
the suggestion of adaptations, and their negotiation in the context of our microservice
composition approach that is based on the choreography of BPMN fragments. The
main goal of this protocol is to achieve maximum automation in these activities in order
to synchronize the changes done in the BPMN fragment of a microservice with both
the BPMN fragments of the rest of the microservices and the big picture managed by
the Global Composition microservice. To do so, this protocol uses the adaptation rules
presented in Sect. 3 which are implemented in the supporting web tools introduced in
Sect. 4.

Broadly speaking, to define a protocol we need to describe the participants, the
actions each participant does within the protocol, and the messages they exchange
[21]. The participants involved in the protocol that we propose can be either software
participants, represented by microservices which perform actions automatically (i.e.,
the locally modified microservice, the rest of the microservices that participate in the
process composition, and the Global Manager microservice), or human participants,
represented by process stakeholders who participate in the design and the decision-
making process required to apply the proposed evolution protocol (i.e., the developers
of the above microservices, and the BP engineers responsible for the Global Manager
microservice). Regarding the actions and the interchange of messages considered by

@ Springer

384 J. Ortizetal.

the protocol, they are grouped into four main phases: (1) classification of the local
change; (2) propagation of a coordination change; (3) suggestion and realization of an
adaptation; and (4) negotiation.

Note that the impact of change propagation on running instances is not addressed
by the proposed protocol. The changes generated by the protocol application only
affect the new instances created after. This decision is technologically supported by
the default behaviour of the BPMN engine that is used to execute microservices com-
positions (Camunda, further details are given in Sect. 4.1), which provides a versioning
strategy to evolve process definitions without affecting running instances. However,
we plan to consider the evolution of running instances in further works. This will
imply both adapting the technological solution implemented to support the evolution
of microservice compositions and revising the proposed protocol in order to analyse
the implications of this issue and adapt (if needed) the proposed steps accordingly.

Next, we introduce the four phases of the protocol in detail.

2.1 Phase 1: classification of the local change

A BPMN fragment describes two types of requirements:

e Functional requirements, which are represented by the BPMN tasks that are
defined in the fragment of each microservice. They define the actions that each
microservice does in the context of acomposition but independently from the rest of
the microservices. These represent the internal business logic of the microservice.
Changes in these requirements imply isolated changes in the functional responsi-
bilities of the microservice. This type of local change can be applied without any
synchronization action with the rest of the microservices since they do not have
any impact on them. Therefore, they just need to be integrated into the big picture
of the composition.

e Coordination requirements, which define how microservices communicate with
each other to achieve the goal of the composition they participate in. Note that,
at runtime, this communication is done by means of an asynchronous event bus
(see Fig. 2). Thus, these requirements are represented by the BPMN elements that
define an event-based communication, i.e., by throw and catching events as well
as the flows used to connect them. The modification of coordination requirements
may produce inconsistencies in the composition since some events required by
other microservices to start may not be produced.

The first phase in the proposed protocol includes several steps to classify the local
change done by a microservice developer into any of these two types of requirements
(see Fig. 4).

If the local change only affects functional requirements, it can be confirmed by
the modified microservice without any synchronization action with the rest of the
microservices. The locally modified microservice just needs to send the functional
changes to the Global Manager microservice to be integrated into the big picture.
Then, the application of the protocol finishes. If the local change affects coordination
requirements, they are also sent to the Global Manager, but additional efforts may be

@ Springer

Microservice compositions based on the choreography... 385

& ¥ #Lx
Modified Global
Developer Microservice Manager

Does a change

Analyse affected

: requirement

[Functional Requirement]

Send functChange Integrate Change

confirm)
: Confirm change

[Coordination Requirement]

ALT

Send coordChange

REF Phase 2

Fig.4 Phase 1 of the evolution protocol

required to synchronize it with the rest of the participants, which are managed in the
following phases of the proposed protocol.

2.2 Phase 2: propagation of a coordination change

If a local modification is classified as a change that affects coordination requirements
(i.e., the communication defined between BPMN fragments), the Global Manager
must initially identify the type of local modification performed (see Fig. 5). This
modification can be of three types: (1) add, (2) delete, and (3) update an event-based
communication element in a BPMN fragment. Note that we consider that a local
modification of an event-based communication element can affect either the name of
the event that is being sent/received or the data that optionally can be attached to this
event (which we internally represent as a set of tuples key-value). In this sense, we
consider the actions of adding and deleting an event-based communication element
with and without data; and the action of updating the name of the event, the attached
data, or both. Depending on the action and whether the event has attached data a
different adaptation is proposed (which is based on the catalogue of adaptation rules
introduced in Sect. 3).

Regarding the inconsistencies produced by the modification of an event-based com-
munication element, note that adding a new BPMN throwing event does not produce
any inconsistency in the global composition since coordination requirements are not
changed but extended. In fact, this type of change introduces new coordination pos-

@ Springer

386 J. Ortizetal.
#{x s *$x
Modified Global Rest of
Microservice Manager Microservices
Analyse change
) action
[ADD throwing event]

Integrate Change
confirm >
)Confirm

change

ALT

Send addCoordChange

[else]
REF Phase 3

Fig.5 Phase 2 of the evolution protocol

sibilities among microservices. Thus, (1) the Global Manager integrate the changes
in the big picture; then, (2) the modified microservice can confirm the change in its
BPMN fragment; and finally (3) the Global Manager sends the change to the rest of
the participants in order to inform them about the new coordination possibilities. In
this case, the protocol finishes at this point.

On the contrary, deleting or updating an event-based communication element, or
creating a new catching event-based communication element may produce inconsis-
tencies in the composition since some events required by other microservices may not
be produced. In these situations, inspired by the two-phase commit protocol used in
distributed database transactions [22], the microservice that performs the local change
in its BPMN fragment cannot confirm it until the affected participants and the Global
Manager reacts (either positively or negatively) to it. This is managed in Phase 3.

2.3 Phase 3: suggestion and realization of an adaptation

When a delete or update coordination change is sent to the Global Manager, this
microservice automatically analyses the change and generates an adaptation for those
other microservices that are affected by the change. To do so, the Global Manager
microservice uses a catalogue of rules based on the characterization of changes (see
Sect. 3). This change characterization (1) identifies the inconsistencies that a local
change in a microservice produces in the rest of the participants, and (2) defines a
process adaptation through the set of compensation actions that are required to maintain

@ Springer

Microservice compositions based on the choreography... 387

L =L #3k & &
Microservice Manager Microservices Engineer Developers
Generate
Adaptation

ALT
[Automatic Adaptation] Send adaptation Apply

Adaptation
Confirm oK D

\Conﬁrm change

BusEngDecision

(A ptation with Accep]
I [Reject | Accept]

ALT

[BusEngDecision Reject] Reject

Rollback change
[BusEngDecision=Accept] Send adaptation MicDevDecision
K . [Accept|| Reject | Adaptation
o MicDevbecsion, |

ALT
[All MicDevDecision=Accept]

Confirm Confirm Apply

Adaptation
DConfrm change > Integrate Change D

[Some MicDevDecision=Reject]

Rollback change

[Some MicDevDecision=Adaptation]

Phase 4

T
[Global Adaptation]

Rollback change

Fig.6 Phase 3 of the evolution protocol

the integrity of the choreography. In addition, this characterization also classifies each
adaptation as Automatic adaptation, Automatic adaptation with acceptance, or Global
adaptation. Depending on this classification, the protocol proposes different actions
(see Fig. 6).

An adaptation is classified as Automatic adaptation when compensation actions to
maintain the integrity of the choreography can be automatically applied in the BPMN
fragment of an affected microservice since functional and coordination requirements
are both maintained. No human participation is required. For instance, if a microservice
developer just updates the name of a published event (e.g., the event “Payment Ok”
is replaced by “Available Credit”), the microservices that were waiting for this event
can automatically adapt its BPMN fragment to update it to the new name. Thus,

@ Springer

388 J. Ortizetal.

affected microservices can automatically adapt their corresponding BPMN fragment
and accept the change. Then the locally modified microservice can confirm the change
and the protocol finishes.

An adaptation is classified as Automatic adaptation with acceptance when com-
pensation actions can be automatically applied in the BPMN fragment of an affected
microservice in order to support the functional requirements. However, the coordi-
nation among some microservices may change. For instance, a compensation action
may imply changing the execution order of two microservices from sequential to par-
allel. In this case, functional requirements are kept (i.e., all the tasks remain after
the change), but the flow of these tasks changes and some data may be missed for
some microservices. Thus, human participation is needed. A manual acceptance by
the business engineer and the developers of the affected microservices is required to
confirm the proposed evolution. If all of them accept the suggested adaptation then
the modified microservice can confirm the change and integrate it into the big picture.
If some of them reject the suggested adaptation, the change done by the modified
microservice must be rollbacked. Note that business engineers can manually modify
the suggested adaptation before accepting it. A microservice developer can also pro-
pose an alternative adaptation for the BPMN fragment of its microservice. In this case,
the protocol continues with Phase 4.

Finally, an adaptation is classified as Global adaptation when compensation actions
to maintain the integrity of the choreography imply important modifications in both
coordination and functional requirements. In this case, further analysis of the whole
composition must be done by business engineers from a global perspective of the
composition. In this case, the change is rejected and the microservice composition
needs to be redefined from scratch [5].

2.4 Phase 4: negotiation

The last phase of the proposed evolution protocol is applied when the Global Manager
suggests an adaptation classified as Automatic adaptation with acceptance and the
microservice developer of an affected microservice does not accept it but proposes a
new one. This is graphically represented in Fig. 7.

The new proposal of adaptation is sent to the Global Manager and the business
engineer can accept or reject it. S/he can also finish the negotiation activity. Each time
the business engineer rejects a new adaptation proposal, the microservice developer
can propose a new one, accept the one initially sent by the business engineer, or reject
it. If the microservice developer does not propose a new adaptation and rejects the one
proposed by the business engineer, the change proposed by the modified microservice
is rejected. It is also rejected if the business engineer finishes the negotiation activity.
If the business engineer accepts a proposal of the microservice developer, or the latter
accepts the proposal of the business engineer, then the adaptation is applied by the
affected microservice, and the change is integrated into the big picture and confirmed
by the modified microservice.

Finally, note that the developer of an affected microservice could send a proposal
of adaptation that has an impact on other microservices that do not participate in the

@ Springer

Microservice compositions based on the choreography... 389

Engineer Developer
BusEngDecision

[Accept | Reject | Finish]

ko o3 o
i 3%
i
Microservice Manager Microservice
Loor

[While
BusEngDecision=Reject BusEngDecision

oR @ =i -
MicDevDecision=Adaptation]

MicDevDecision
[Accept|| Reject | Adaptation

ALT

[BusEngDecision=Accept OR MicDevDecision=Accept]

— Eofﬂ_m_‘ _ Integrate
: Change
Confirm 8
change oK by

: Adaptation

Rollback
change

Fig.7 Phase 4 of the evolution protocol

negotiation process. This is a complex scenario that needs multiple negotiations among
the business engineer and the developers of several affected microservices (the one
affected by the initial change and the others affected by the proposed adaptations). To
face this challenge additional investigation is needed and it will be treated as further
work. In the current version of the protocol, the business engineer should reject the
proposed adaptation.

3 Adaptation rules to support local changes in coordination
requirements

According to the protocol presented above, the Global Manager microservice auto-
matically suggests an adaptation when it is informed about a local change that affects
the coordination requirements of the process composition (in particular, when any
event-based communication BPMN element is deleted or updated, or when a cathing
event is added). This automatic behaviour has been implemented in the web tools
that support the protocol (further presented in Sect. 4). To do so, we defined a cata-
logue of adaptation rules that exhaustively analyze the different scenarios in which an
event-based communication BPMN element could be added, deleted or updated, and
identified both, the impact of this change in the global choreography and the adap-
tation (in terms of compensation actions) that must be performed to maintain, when
possible, the integrity of the choreography. Depending on the required compensation

@ Springer

390 J. Ortizetal.

actions, we also classified each adaptation rule into the types introduced above, i.e.,
Automatic adaptation, Automatic adaptation with acceptance, and Global adaptation.

As aresult, a total amount of 19 rules have been defined. As representative examples
here we just present some of the proposed adaptation rules which refer to the deletion
(rules #1 to #4) and update (rule #9) of end and intermediate events under different
conditions. However, the complete catalogue of rules has been defined in a research
report accessible in [23]. Note that these rules differentiate between actions that modify
an event-based communication BPMN element that either attaches some data or not.
Those that do not attach data are used by microservices to notify the success or the
failure of a piece of work. They allow defining the flow in which microservices must
be choreographed to perform their actions. Those that attach data are also used to
define the flow of the choreographed microservice composition, but they also carry
data that some microservice generate to be processed by others.

3.1 Deleting a throwing event without attached data

This change implies the removal of a BPMN element that sends an event (a throwing
event) to inform that a piece of work has been done, without data interchange. To
support this change two adaptation rules are proposed. The affected microservices are
those that have a catching event waiting for the message sent by the deleted element.
Rule #1 adapts these microservices to start listening to the event triggered just before
the deleted one during the choreography execution. However, note that one of the
affected microservices could be also the one that triggers this event. Therefore, Rule
#1 cannot be applied since a microservice should not listen to an event that is sent by
itself. This affected microservice needs to be adapted in a different way and this is
the reason why we need Rule #2, which is defined to be applied when the event just
before the deleted one is triggered by a microservice affected by the delete action.

RULE #1

o Affected element: End Message Event or Intermediate Throwing Event.
e Change: Delete the affected element.
e Conditions:

— The deleted event does not include data (Rule #3 or #4 are applied instead).
— The event triggered before the deleted one is not generated by the affected microservice (Rule #2
is applied instead).

o Affected microservice(s): Those that have a catching event waiting for the message sent by the deleted
element.

e Generated inconsistency: Affected microservices will never start or continue (creating a deadlock)
since their execution depends on the triggering of the event that is just deleted.

e Compensation actions: Modify the affected microservices to wait for the event triggered before the
deleted one.

o Impact of the application: Functional requirements are maintained. Coordination requirements are
altered (the flow of some tasks changes from sequential to parallel).

e Adaptation type: Automatic adaptation with acceptance.

A representative example of the change supported by Rule #1 is removing the BPMN
Intermediate Throwing Event “Stock Updated” in the BPMN Fragment of the Inven-

@ Springer

Microservice compositions based on the choreography... 391

(A) RULE EXPLANATION

& «--3. Compensation Action
g -
v ! U,’ \\ E‘ Create| [® Assign
z 2 C i Delivery
® /\i stock Order Shipfhent
S elease o - Updated Managed,
vent Products Canicel EventBus

folled Ordier 2. Generated Inconsistency

(B)RESULT

Cancel
N Order
@) ancel (=) | [(a) Payment
Order oK =
= ® Create [® Assign
& Shipment] Delivery
Update . yment Order
Stock

- ompany] ShiPTfent
=4 Managed
oK

SHIPMENT

Pa
0K

ayn

Event Bus

INVENTORY

®
Release
Products Cance!

Order

Fig.8 Example of Adaptation Rule #1

tory microservice (see Fig. 8A).If this event is removed (see Fig. 8A), the Shipment
microservice, which is waiting for it, will never start the execution of its BPMN frag-
ment, and therefore, the microservice composition will never finish.

In order to allow the Shipment microservice to complete its tasks, it can be modified
to wait for the event previously caught in the modified fragment, i.e., to wait for the
“Payment OK” event. However, two microservices that initially performed some of
their tasks in a sequential way (e.g., first Inventory updates the stock and then Shipment
creates a shipment order) now are performed in parallel (e.g., after the local change,
both the update of the stock and the creation of the shipment order are executed when
the “Payment OK” event is triggered, see Fig. 8B). Thus, a manual confirmation by
the business engineer and the Shipment developer is needed.

RULE #2

o Affected element: End Message Event or Intermediate Throwing Event.
e Change: Delete the affected element.
e Conditions:

— The deleted event does not include data (Rule #3 or #4 are applied instead).
— The event triggered before the deleted one is generated by the affected microservice (Rule #1 is
applied otherwise).

o Affected microservice(s): Those that have a catching event waiting for the message sent by the deleted
element.

o Generated inconsistency: Affected microservices will never start or continue (creating a deadlock)
since their execution depends on the triggering of the event that is just deleted.

o Compensation actions: Delete the catching event that is waiting for the removed event in the affected
microservices.

e Impact of the application: Functional requirements are maintained. Coordination requirements are
altered (the flow of some tasks changes from sequential to parallel).

e Adaptation type: Automatic adaptation with acceptance.

@ Springer

392 J. Ortizetal.

2.G6 ted 1. Local
(A) RULE EXPLANATION 3. compensation Action ke g 0
mconslstenclesl ch;nge

- D
3)—F ayment Payment
Process, oK
Enough 2y

Stock [@&
Cancel o
Order Jpayment|

Failed

Cancel
Drder

® (@check r Orde: \/ﬂ <
- Availability (/) ancel O\
> Al 3

A
Warsicd
Plyment Stock Stock { (3) Enough Stock
A A oK Updated
C . Event Bus

Cancel

5 Order
Availability (/) Cancel
—fet-© T
i ®
:
Stock Seack ’ (3) Enough Stock

Updated

PN
@
S - &)
Enough Release @ Y Event Bus
A A
S‘i’c“ Payment roducty cancel

failed Order

PAYMENT

INVENTORY

(B)REesuLt

iCustomer
Checked

N [Payment
—/ | Process
Enough)

. O
Cancel
Order Jpayment]

Failed

PAYMENT

INVENTORY

Fig.9 Example of Adaptation Rule #2

A representative example of the change supported by Rule #2 is removing the BPMN
Message End Throwing Event “Payment OK” of the Payment microservice (see
Fig. 9A). In this case, the Inventory microservice, which is waiting for it, will never
continue its tasks (i.e., update the stock), and therefore, the microservice composi-
tion will never continue. Note that, in this case, the event that was triggered before
the deleted one (“Enough Stock™) was generated by the affected microservice (Inven-
tory). Thus, Rule #1 cannot be applied. To face this change, the Inventory microservice
can be modified by deleting the Intermediate Catching Event that receives the event
“Payment OK” in such a way it can update the stock at the same time the payment is
processed. As happens with the previous rule, the application of Rule #2 produces that
two microservices that initially performed some of their tasks in a sequential way (e.g.
first Inventory update stock and then the payment is processed) result in performing
these tasks in a parallel way (e.g., after the local change, both the update of the stock
and the order payment are executed when the “Payment OK” event is triggered, see
Fig. 9B). Thus, a manual confirmation by the business engineer and the Shipment
developer is needed.

3.2 Deleting a throwing event with attached data

This change implies the removal of a BPMN element that sends an event with attached
data, which is required by other microservices. Two adaptation rules are proposed to
support this change. Rule #3 considers that the data was produced previously by
another microservice and just propagated by the modified microservice. Rule #4 con-
siders the data is newly introduced by the modified microservice, and it does not exist
in previous events of the composition.

A representative example of the change supported by Rule #3 is removing the
BPMN Message Intermediate Throwing Event “Customer Checked” of the Customers
microservice (see Fig. 10A). Note that we consider that this event carries the data of the
purchase thatis required by the Inventory microservice and that was initially introduced

@ Springer

Microservice compositions based on the choreography... 393

3. Compensation Action
(A) RULE EXPLANATION pens e T—
Purchase Order
Rancel ® Cancel - Customer data. @ Update
Order - Purchase data. |

INVENTORY

Customer|
- Payment Record

method.

CUSTOMERS

(B) ResuLT

Event Bus
2. Generated inconsistencies

INVENTORY

(1) Process @
Purchase Order
- Customer data.
- Purchase data. _|
- Payment
method.

Process
Purchase
Order

CUSTOMERS

Event Bus

Fig. 10 Example of Adaptation Rule #3

in the composition by the client application. To allow the Inventory microservice to
perform its tasks and maintain its participation in the composition, it can be modified to

wait
data

for an event that is triggered previously in the composition, and that contains the
that the Inventory microservice needs. In particular, the Inventory microservice

can be modified to wait for the previous “Process Purchase Order” that also contains
the required data. In this case, Customers and Inventory were initially executed in a
sequential way, but after the modification (see Fig. 10B), they are executed in a parallel
way because both are executed when the “Process Purchase Order” event is triggered.
Thus, a manual confirmation by the business engineer and the Shipment developer is
needed.

RULE #3

o Affected element: End Message Event or Intermediate Throwing Event.
e Change: Delete the affected element.
e Conditions:

— The deleted event attaches some data (Rule #1 or #2 are applied otherwise).

— The data is propagated and it is not introduced by the modified microservice (Rule #4 is applied
otherwise).

Affected microservice(s): Those that have a catching event waiting for the message sent by the deleted
element.

Generated inconsistency: Affected microservices will never start since their execution depends on
the data attached to the event that is just deleted.

Compensation actions: Modify the affected microservices to obtain the required data from a previous
event.

Impact of the application: Functional requirements are maintained. Coordination requirements are
altered (the tasks of some microservices are performed in a different order as they were initially defined).

Adaptation type: Automatic adaptation with acceptance.

@ Springer

394 J. Ortizetal.

(A) RULE EXPLANATION 3. Compensation Action - + None
1. Local ghange

£ . ' (6) Shipifient ar
g “Create 'Assign - M 2|, |
g e 'Shipment Deﬁvery—c@ i ‘fedd H 4
&| stock Order ompanykhipmen 1= lipment order. g

Updated ’ =1

S — Event Bus d

2. Generated inconsistencies

(the data is not contained in
previous events)

(B) RESULT
The microservice composition should be redesigned from a global perspective

Fig. 11 Example of Adaptation Rule #4

RULE #4

o Affected element: End Message Event or Intermediate Throwing Event.
e Change: Delete the affected element.
e Conditions:

— The deleted event attaches some data (Rule #1 or #2 are applied instead).
— The data is newly created by the modified microservice (Rule #3 is applied otherwise).

o Affected microservice(s): Those that have a catching event waiting for the message sent by the deleted
element.

e Generated inconsistency: Affected microservices will never start since their execution depends on
the data attached to the event that is just deleted.

e Compensation actions: No compensation actions can be made in the affected microservices to obtain
the required data.

e Impact of the application: Functional and coordination requirements cannot be maintained.

Adaptation type: Global adaptation.

A representative example of the change supported by Rule #4 is removing the
BPMN End Throwing Event “Shipment Managed” of the Shipment microservice (see
Fig. 11A). Note that we consider that this event provides data about the shipment order
(i.e., shipment company, delivery date, etc.), which the Customers microservice uses to
update the customer record. If this event is not sent, the Customers microservice cannot
continue its execution. In this case, there are no other events that provide specifically
this data. Thus, to allow the Customers microservice to perform its tasks and maintain
its participation in the composition, it is required to re-design the composition from a
global perspective.

3.3 Updating a catching event with attached data

This change implies updating a BPMN element that defines the event that a microser-
vice must listen at to execute some tasks. The event contains data that the microservice
needs to complete its tasks.

Two scenarios are identified in this type of modification:

e Scenario A: The modified microservice is updated to catch an event that is not
triggered in the context of the composition. Thus, the updated microservice will

@ Springer

Microservice compositions based on the choreography... 395

no longer participate in the composition. The new event contains the data that the
modified microservice requires to complete its process.

e Scenario B: The modified microservice is updated to catch another event that is
already triggered within the composition. In this scenario, it is considered that
developers update the catch element to expressly receive a new event that contains
the data the modified microservice needs. Thus, the participation of the modified
microservice will continue without generating any inconsistencies. Consequently,
it is not necessary to apply any rule. Although, in this scenario, coordination
requirements may change.

We propose Rule #15 to support scenario A.

RULE #15

o Affected element: Start Message Event or Intermediate Catching Event.
e Change: Update the data of the affected element.
e Conditions:

— The updated event attaches some data (Rule #13 or #14 is applied otherwise!)

— The updated event contains at least the data required by the modified microservice.

— There is at least one microservice in the composition that can send the updated event (Rule #16 is
applied otherwise).

o Affected microservice(s): The modified microservice that has a catching event waiting for an event
that is not being sent in the context of the composition.

e Generated inconsistency: The modified microservice will never start since its execution depends on
the triggering of the new version of the updated event.

o Compensation actions: Search for one microservice that can send the updated event with the required
data by the modified microservice and modify it to send the updated event.

e Impact of the application: Functional requirements are maintained but coordination requirements
may change depending on the microservice modified to send the updated event.

Adaptation type: Automatic adaptation with acceptance.

A representative example of the change supported by Rule #15 in scenario A is updat-
ing the BPMN Message Start Catching Event “Customer Checked” of the Inventory
microservice. In this example, the Inventory microservice is modified to listen to a
new event called “VIP Customer”, and this new event should contain the purchase
data, the payment method used by the customer, and the VIP discount of the customer
(see Fig. 12). This new event does not exist in the composition since it is not triggered
by any microservice. Therefore, the Inventory microservice will never start and the
microservice composition is stopped. To solve this situation, we can modify the Cus-
tomer microservice to send this new event instead of the “Customer Checked” event.
Note that the Customers microservice can include the purchase data and the payment
method in the new event “VIP Customer” since this data was already included in the
old “Customer Checked” event. Regarding the VIP discount, the Customers microser-
vice also has this data available since it is included in the customer data received in its
starting event (see the Process Purchase Order event in Fig. 10). In this example, the
coordination between microservices does not change, but depending on the affected
microservice that is updated to send the new event, the coordination can change. There-
fore, a manual confirmation by the business engineer and the Customers microservice

! These rules are not presented in this paper but can be found in [23].

@ Springer

396 J. Ortizetal.

(A) RULE EXPLANATION 2. Generated inconsistencies ([————]
rary (2) Customer |

N Checked
© el | @ Cancel - Customer data.
Cggmer (Vailability(:) eancel Order - Purchase data.
x Order
C 4 - Payment

INVENTORY
CUSTOMERS

- Payment
method.
- VIP discount

Event Bus /

3 3 s
: Update O, kmethod. | e =] I »
! payment |_Stock soek | oo —©
: : oK Updated (2) VIP Customer viP Sk
: - @ B - Purchase data. ' Customer
i ougk = R §
Payment P Cancel ancel Order
2

I Stock
1} Local change

(B) ResuLt

(2) VIP Customer

Cancel ® Cancel - Purchase data.
Order Order - Payment
method.
U - VIP discount
ay

I

aymen ance
siled rder Event Bus

CUSTOMERS

INVENTORY

Fig. 12 Example of Adaptation Rule #15

developer is needed. Note also that another microservice could be waiting for the
“Customer Checked” event that has been replaced by the “VIP Customer” event. In
this case, the rule that faces the modification of an intermediate throwing event with
data (Rule 11 or 12, see [23]) would be applied.

3.4 Further analysis of adaptation automation

This work faces the challenge of evolving microservice composition when a change
is introduced from the local perspective of one partner. Microservice compositions
are implemented as an event-based choreography of BPMN fragments, and they are
deployed into an architecture in which they coexist with the big picture of the compo-
sition that is defined in a global BPMN model.

This section has introduced a catalogue of adaptation rules to automate, as much
as possible, the adaptation of a microservice composition when a partner introduces
a local change in its BPMN fragment. These rules focus on managing local changes
that impact the coordination requirements of the composition since they need to be
integrated with both the big picture of the composition and the rest of the microservices
that participate in the choreography. Note thatlocal changes that only impact functional
requirements can be integrated into the big picture without integration with the rest of
the partners. Also, note that: (1) a change that impacts the coordination requirements of
an event-based choreography of BPMN fragments implies modifications to the events
that the fragments either receive through BPMN catching events or send through
BPMN throwing events; and (2) modification to these events can affect either the
name of the event that is being sent/received or the data that optionally can be attached
to it.

We have defined 19 adaptation rules that face 19 different local changes. They
are classified into one of the following three categories depending on the degree of
automation that each rule is able to achieve: Automatic adaptation, Automatic adap-

@ Springer

Microservice compositions based on the choreography... 397

tation with acceptance, and Global adaptation. 3 out of these 19 rules were classified
as Automatic adaptation in such a way they can adapt a composition to face a local
change fully automatically. These rules face local changes that only affect the name
of the interchanged events. Thus, when a microservice developer changes the name of
an event of its BPMN fragment the whole microservice composition can be automat-
ically adapted to face this change. 11 out of the 19 rules are classified as Automatic
with acceptance in such a way they can automatically find a solution to adapt the
event-based choreography and maintain the functional integrity of the microservice
composition (i.e., all the functional requirements are satisfied). However, this solution
implies some alteration in the choreography’s flow (e.g., some microservices that were
initially defined in a sequential way are executed in parallel after the application of the
adaptation rule). Thus, a manual acceptance by the business engineer and the affected
microservice developers is needed. These rules face changes that affect some data
included in the events interchanged by the microservices. However, the affected data
is available in other events triggered in the context of the choreography. Finally, 5 out
of the 19 adaptation rules are classified as Global adaptation in such a way the impact
of the local change on the event-based choreography is so significant that a solution
to adapt the microservice composition cannot be automatically suggested. In these
cases, the local changes identified by the adaptation rules imply the modification of
events to include new data that cannot be found in other events of the choreography.

Thus, the proposed catalogue of adaptation rules can automatically suggest an
adaptation in 14 out of the 19 identified local changes, where 11 of them require manual
acceptance. In this sense, although a high degree of automation has been achieved, there
is still space for improvement. We plan to study the integration of machine learning
techniques into the proposed protocol in such a way we can reduce the adaptations that
require manual acceptance or even those that have been classified as Global adaptation.
To do so, the analysis of execution logs in addition to the characterization of the local
change is being considered.

Finally, it is worth remarking that the 19 adaptation rules have been defined and
validated with the development of different case studies. However, there is still the need
to formally validate its completeness and correctness in such a way we can guarantee
both (1) that all the local changes that can be done in an event-based choreography of
BPMN fragments are supported by the adaptation rules; and (2) that every change is
correctly faced by the proposed adaptation rules.

4 Proof-of-concept prototype

The evolution protocol for microservice composition that is presented in this paper has
been implemented in the context of the microservice architecture? introduced in Sect.
1.1, which is presented in detail in [5]. We have extended the software infrastructure
that supports this architecture with the following components (see Fig. 13):

2 Specific tool support is available at: https:/github.com/pvalderas/microservices-composition-
infrastructure.

@ Springer

https://github.com/pvalderas/microservices-composition-infrastructure
https://github.com/pvalderas/microservices-composition-infrastructure

398 J. Ortizetal.

Business Process Engineer

Global Manager Protocol
Coordinator
Adaptation
Applier

Adaptation
Rule Provider

Big Picture

Protocol
Coordinator

BPMN
Fragment

Protocol
Coordinator

BPMN
Fragment

Web Tool

Shipment Customers
Adaptation

Applier

Adaptation
Applier

Shipment Developer Customers Developer

Fig. 13 Architecture extensions to support the evolution protocol

1. Protocol coordination: Both the Global Manger microservice and the business
microservices have been extended with a software module that oversees the appli-
cation of the different steps of the protocol depending on the change done and
the required adaptation. This module also manages the interchange of messages
among microservices required to synchronize the changes done in the composition.

2. Adaptation Rule Provider: The Global Manager microservice has been extended
with a software module that contains the catalogue of adaptation rules and proposes
the required rule to support a specific change.

3. Adaptation Applier: Both the Global Manager microservice and the business
microservices have been extended with a software module that is in charge of
applying adaptation rules in the big picture or the BPMN fragments either auto-
matically, when possible, or after the manual acceptance by the business manager
and microservice developers.

4. Web Tool: Both the Global Manager microservice and the business microser-
vices have been extended with a web tool that provides business engineers and
microservice developers with an interface that helps them analyse the modification
scenario in order to take decisions when needed.

@ Springer

Microservice compositions based on the choreography... 399

4.1 Realization details

This section presents some details of a realization of the architectural solution pre-
sented above as a prototype involving mapping technology choices into the solution
concepts.

Microservices implementation and composition execution

1. Microservices have been implemented by using Java/Spring technology.

2. Inorderto allow each business microservice (e.g., Shipment, Customers) to execute
BPMN fragments we have chosen the option of including a lightweight version of
the Camunda BPMN engine? in each of them.

3. The web tool incorporated into both, the Global Manager microservice and the
business microservices, is based on the bpmn.io4 open-source tool, which is also
supported by the Camunda project.

4. A RabbitMQ’ message broker is used to implement the event bus. Topic-based
queues are used to publish messages of one composition. Messages are imple-
mented in JSON format and include a client ID to inform about the process instance
they belong to.

Protocol communication issues

1. Eachinteraction among software participants during the application of the protocol
(see Sect. 2) results in an interchange of a JSON message. The following is a
representative example of a coordChange message sent to the Global Manager in
the first phase of the protocol by a modified microservice (see Fig. 4):

{
"modificationId": "284gf04y8359",

"changeType": "coordination",
"composition": "purchaseProcess",
"microservice": "customers",
"actions": [{
"action":"deleteElement",
"elementType": "IntermediateCatchEvent",

"elementId":"IntermediateCatchEvent_06f6rdx",
"name" : "Customer Checked"
1]
}

2. Messages are managed in an asynchronous way by a RabbitMQ message broker.
Topic-based queues are used to coordinate the interchange of messages among
software participants. For instance, there is a localChanges topic to which the
Global Manager microservice is subscribed to receive the messages that any mod-
ified microservices publish with this topic.

3 https://github.com/camunda/camunda- bpm-platform.
4 https://github.com/bpmn-io.
5 https://www.rabbitmgq.com/.

@ Springer

https://github.com/camunda/camunda-bpm-platform
https://github.com/bpmn-io
https://www.rabbitmq.com/

400 J. Ortizetal.

Local adaptation issues

1. The local adaptation of a BPMN fragment can be considered as an endogenous
model transformation [24], i.e., a transformation between two models (the original
BPMN fragment and the adapted one) expressed in the same language. Currently,
there are several solutions to implement model transformations[25]. In this work,
we have used a direct manipulation approach based on the Java parser provided
by the Camunda platform®. We have selected this option since it can be supported
with other Java tools that facilitate the integration of the adaptation rules with the
microservice architecture.

2. When BPMN fragments are adapted and deployed into the Camunda engine of
business microservices, existing instances that run on previous versions are not
affected. By default, Camunda implements a versioning strategy through which
the engine checks if the version has changed when a process (in our case a BPMN
fragment) with an existing ID is deployed. If it has, it will register that deployment
as a new version of the process. Running instances will continue to run on the
basis of the version they started with, new instances will be created based on
the latest version of that process. However, Camunda provides a process instance
migration API that can be employed to evolve running instances of a process when
it is evolved. We plan to use this API in further work to support the evolution of
running BPMN fragments instances.

4.2 Example of protocol application

As a representative example’, we present some snapshots that illustrate how the pro-
tocol is supported by the developed tools in order to apply Rule #1 to face the deletion
of a throwing event that sends a message without attached data (see Sect. 3.1).

As we can see in the representative application example presented below (see
Figs. 14, 15, and 16), the web tool provides business process engineers and devel-
opers with a BPMN editor that graphically shows, in the same model, the change done
to the microservice composition as well as the result of applying the proposed adap-
tation rules. To do so, a codification based on colours is used. In particular, deleted
elements by a change done by a professional or as a result of the application of an
adaptation rule are shown in red; elements that have been added are shown in green;
and elements that have been modified are shown in orange. The main goal of this
solution is to help professionals to take more informed decisions about the modifica-
tion scenario with a graphical representation that include the key factors of it, i.e., the
change done, and, if possible, the adaptation required and proposed by the system.

4.2.1 Phase 1: classification of the local change

During the first step the developer of the Customers microservice deletes the throwing
event that sends the Customer Checked event in its BPMN fragment.

6 https://github.com/camunda/camunda-bpm- platform/tree/master/model-api/bpmn-model.

7 A video demo of this change can be found at: https://media.upv.es/#/portal/video/b051ddb0-9fcd- 1 lec-
91a8-9b64e45e71c9.

@ Springer

https://github.com/camunda/camunda-bpm-platform/tree/master/model-api/bpmn-model
https://media.upv.es/#/portal/video/b051ddb0-9fcd-11ec-91a8-9b64e45e71c9
https://media.upv.es/#/portal/video/b051ddb0-9fcd-11ec-91a8-9b64e45e71c9

Microservice compositions based on the choreography... 401

File™ + -
{4!7 Customer Shipment
% Checked Managed
wlany
"
- logRequest — ’;
o
a\
&

o (& @&)

|
|
|
-— O cancelOrder processVIP —O !
|
|
|

l
|
|
|
|
|
v 5

<& L p
=)
-@ —
This is a dirty copy of the BPMN fragment. Accepted by the Global Accepted by 0 of 1 affected
Changes must be accepted by the Global Manager Manager? No participants.

and the other composition participants.

Fig. 14 The locally modified BPMN fragment is marked as dirty

As the change deletes a BPMN element that affects the coordination requirements,
the web tool of the Customers microservice classifies it as a coordination change and
sent it to the Global Manager. At this point, the Customers microservice needs to
receive acceptance by the Global Manager and the affected microservices, which,
in this case, is the Inventory microservice. In the meantime, the web tool marks the
BPMN fragment as dirty, meaning that it cannot be modified. In addition, the web
tool shows the dirty copy of a BPMN fragment and highlights the changes done in the
corresponding colours (see Fig. 14) as follows, the elements deleted in the change are
shown in red while those added are shown in green. Note also how the bottom side of
the web tool informs the user that the BPMN fragment shown corresponds to a dirty
copy of the fragment as well as whether or not it has been accepted by the Global
Manager and the affected participants.

4.2.2 Phase 2: propagation of a coordination change

The Global Manager microservice receives the coordination change done by the Cus-
tomers microservice. In this case, it detects that the change implies the deletion of an
event-based communication element. Thus, it continues with the actions of Phase 3.

4.2.3 Phase 3: suggestion and realization of an adaptation

Considering the catalogue of adaptation rules, The Global Manager analyses the big
picture of the microservice composition and identifies that the change affects the
BPMN fragment of the Inventory microservice. Then, the Global Manager applies
Rule #1 to adapt the Inventory BPMN Fragment. This adaptation is classified as an
Automatic adaptation with acceptance.

@ Springer

402 J. Ortizetal.

File ¥ + -
Process Customer s

@ Purchase Order (ﬁ’—] C%—\ Checked M
: S
5 . 4
| g 9,
,H, [ModlhedMlcroservlce §
é ©]
cancalorderJ »
]

>

4
= s —

Showing composition adapted to changes done by a
participant

Fig. 15 Web tool of the Global Manager showing a local change and a suggested adaptation

At this point, the suggested adaptation must be manually accepted by the business
engineer. To do so, the web tool of the Global Manager shows the big picture of the
microservice composition with the change done by the developer of the Customers
microservice and the adaptation proposed for the Inventory microservice (see Fig. 15).
To do so, the web tool shows the involved changes in different colours. In particular,
the red colour is used to mark the deleted elements, the green colour is used for those
elements added in the change or the adaptation, and orange is used to highlight the
updated ones. In addition, the web tool also includes some labels in order to mark
the pool of the modified microservice (Customers) and the pool of the affected ones
(Inventory). The web tool provides two buttons to allow the business engineer to
either accept or reject the suggested adaptation. In this step, the business engineer
could manually modify the suggested adaptation previously to accept it.

In this example, we consider that the BP engineer accepts the suggested adaptation.
Then, the changes proposed for the Inventory microservice need to be accepted by its
corresponding developer. The web tool of this microservice shows the adaption as it
is illustrated in Fig. 16. As happened with the previous cases, changes are highlighted
following the proposed codification of colours. In this case, we can see that the update
of a catching event is depicted in orange.

In order to not overload this section we suppose that the microservice developer
accepts the suggested adaptation. Then, it is not needed to start the negotiation phase
(whose supporting web interfaces are the same as the ones shown above). Thus, the
Global Manager is informed about the acceptance of the adaptation, and the change
is integrated into the big picture. Afterwards, the Customers microservice can confirm
the change and the Inventory microservice can confirm the adaptation.

@ Springer

Microservice compositions based on the choreography... 403

Filev + -
)
o %
—~
—\ =
O (checkAvailabilit {@)} @
O \\K @ cancelOrder informCustomer
] ade O
I
D E | Payment OK
O
= =
g]
z | @} nough Stock
I bookProducts
|

Showing fragment adapted to changes done by a

participant

Fig. 16 Web tool of the Inventory microservice showing a suggested adaptation

5 Evaluation

In this section, we evaluate the proposed protocol and the supporting tools to evolve
a microservice composition. Considering the research question stated in Sect. 1.3, the
hypothesis that we wanted to validate was the following:

The evolution protocol and the supporting web tools are effective to evolve a
microservice composition based on the choreography of BPMN fragments from
the local perspective of a microservice.

To do so, we arranged a controlled subject-based experiment in which participants
played two roles: (1) microservice developers, which were asked to update or adapt
BPMN fragments; and (2) business process engineers, which were asked to manage
a local change from the big picture perspective. All of them had to use the web tools
presented in the previous section. We set up the microservice architecture and deployed
the microservice composition of the running example in such a way the big picture
was available from the Global Manager microservices and each business microservice
had its corresponding fragment.

This experiment was done by following the research methodology practices pro-
vided by [20]. Next, we introduce the experiment by describing its participants, design,
execution, analysis of the results, and threats of validity.

5.1 Participants
A total of 12 subjects between 24 and 45 years old participated in the experiment

(five female and seven male). Two participants worked for external computer science
companies; five of them belonged to our research institute; and the remaining five

@ Springer

404 J. Ortizetal.

participants were doctoral students of the Universitat Politecnica de Valencia. All
participants had some experience in the modelling of BP with BPMN and only three
participants had expertise in microservices.

5.2 Design

We arranged an experiment in which participants were grouped into four groups of
three people each one and proposed several scenarios of microservice local modifi-
cation. For each scenario, each member of a group must play a different role in such
a way all the participants played the role of business engineer, developer of a modi-
fied microservice, and developer of an affected microservice. Note that we propose to
participants a type of change to be done but we do not indicate to them which change
exactly must be done. In the same way, the rest of the decisions were freely taken
by participants in such a way changes were rejected or accepted according to their
criteria. This allows us to evaluate if the developed tools provide the proper support
to take these decisions. The instruments that were used to carry out the experiment
were:

e A demographic questionnaire: it was used to know the level of the users’ expe-
rience in process modelling, BPMN, and microservices.

e Work description: the description of the work that the subjects should carry out
in the experiment. Each group oversaw performing these three local changes:

— Perform a modification in functional requirements, i.e., add, delete, or update
some BPMN task

— Perform the following modifications in coordination requirements: (1) Add a
Catch or Throwing Event to a microservice’s fragment; (2) Update a Catch or
Throwing Event in a microservice’s fragment; (3) Delete a Catch or Throwing
Event in a microservice’s fragment.

e A NASA-TLX questionnaire: it was used to evaluate the perceived men-
tal/physical/temporal demand, performance, effort, and frustration on a 100-point
scale with 5-point steps. This questionnaire was extended with additional ques-
tions to ask some questions about the performed tasks and allow participants to
introduce additional comments.

5.3 Execution

To perform the experiment, we organized a workshop with two sessions of three and
four hours. In the first session, participants were asked to fill in the demographic
questionnaire to capture their background and were trained in our microservice com-
position approach. In the second session, participants were distributed in groups and
each of them was initially assigned a role (i.e., BP engineer, developer of the modified
microservice, or developer of an affected microservice). We presented the motivat-
ing example and participants were invited to perform the local changes introduced
above. Note that different changes were proposed in such a way we could evaluate
the application of the protocol in different scenarios. After participants completed the

@ Springer

Microservice compositions based on the choreography... 405

Table 1 Summary of the changes done in the experiment

Modify a functional Add an Update an Delete an
requirement event event event
Applied automatically 12 12 4 -
Manual acceptance - - 5 7
Global redesign - - 3 5

proposed changes, each participant had to fill in the NASA-TLX questionnaire, indi-
cating the role they played. Afterwards, they performed again the changes included
in the task by changing their roles. In total, each change was performed 3 times per
group. Throughout the second session, we observed participants and took notes on
their behaviour.

5.4 Analysis of the results

Considering that each change was done three times per group, a summary of the
changes done is shown in Table 1. As we can see, all the modifications to functional
requirements and the creation of new coordination possibilities (i.e., the creation of
new BPMN events) were automatically managed by the tool-supported protocol. This
means that these changes were automatically synchronized with the big picture and
the BPMN fragments of the other participants. Regarding the changes that imply
updating a BPMN event, four of them were automatically managed since participants
only update the events’ names. The other eight changes introduced updates in the data
published by the events. Five of them could be applied after a manual acceptance by
the BP engineer and the microservice developers while two of them required a global
redesign since changes in data were too significant. Finally, seven of the changes in
which an event was deleted could be managed after a manual acceptance by the BP
engineer and the microservice developers. In these cases, the event deleted did not have
attached data or the attached data could be extracted from a previous event. In two of
them, a negotiation between both professionals was performed. In the rest, developers
of the affected microservices directly accept or reject the adaptation suggested by the
BP engineer. The other five cases in which an event was deleted were classified to
be globally redesigned since they significantly impact that data interchanged among
microservices.

All the changes performed by participants could be successfully managed by the
defined protocol and the supporting tools. The changes were properly identified by
the new software components and the proposed adaptation rules were appropriate
according to the analysis done in our catalogue [23]. The results obtained from the
NASA-TLX questionnaires (average (Avg), median (Med), standard deviation (SD),
best result (Best), and worst result (Worst) columns) as presented in Table 2. Fig-
ure 17 shows three box-and-whisker graphics of these results. As introduced above,
the NASA-TLX questionnaire evaluates the perceived mental load (ML), physical
demand (PD) temporal demand (TD), performance (P), effort (E), and frustration (F)

@ Springer

406 J. Ortizetal.

Table 2 NASA-TLX results

Avg Med SD Best Worst
ML 29,2/14,2/24,2 30,0/15,0/25,0 6,7/3,6/5,1 15,0/10,0/15,0 40,0/20,0/35,0
PD 3,3/2,5/2,5 5,0/2,5/2,5 2,5/2,6/2,6 0,0/0,0/0,0 5,0/5,0/5,0
TD 26,3/17,1/14,2 22,5/17,5/15,0 8,0/6,2/3,6 20,0/10,0/10,0 45,0/25,0/20,0
P 18,3/17,9/24,2 15,0/17,5/25,0 4,9/3,3/4,7 15,0/15,0/20,0 30,0/25,0/35,0.
E 19,2/18,3/13,3 20,0/20,0/12,5 6,0/5,4/3,9 10,0/10,0/10,0 30,0/25,0/20,0.
F 32,1/15,0/41,3 35,0/15,0/37,5 10,1/6,0/11,5 15,0/5,0/25,0 45,0/25,0/60,0

These values correspond to the BP Engineer/Developer of Modified Microservices/Developer of Affected
Microservices

Business Process Engineer Developer of Modified Microservice Developer of Affected Microservice

X
P 2 }
e X
2% — . .
. 15 ° .
20 l = T T
15 o - 5 . ™

B Mental Load [llPhysical Demand Temporal Demand [l Performance [l Effort Frustration

Fig. 17 Box-and-whisker graphics of the NASA-TLX results

on a 100-point scale, where the highest scores represent the worst results. Thus, men-
tal/physical/temporal demand, effort and frustration are rated between very low (value
0) and very high (value 100); while performance is rated between very good (value
0) and very bad (value 100). We present the value obtained for the tasks that partic-
ipants did by playing each role: business process manager, developer of a modified
microservice, and developer of an affected microservice.

The tasks that the participants did playing the role of a BP engineer were the
ones with the highest mental load and temporal demand. This is an expected result
since BP engineers are those that must analyse the big picture of the composition
to accept or reject the adaptation rules when manual acceptance is needed. Despite
this, the obtained values are quite good. The performance has been evaluated with
a good mark, which is reinforced by the comments of participants that felt the tools
helped them to analyse the changes done and the impact on the global composition.
They also found useful the automatic proposition of a possible adaptation when the
change cannot be managed automatically. Another aspect to be highlighted is that
frustration is higher than the other measures. The main reasons given by participants
for this evaluation were two. On the one hand, the web tool depicted some elements
overlapped when showing the proposed adaptation in the BPMN model with the big

@ Springer

Microservice compositions based on the choreography... 407

picture. For instance, if a BPMN element was replaced by another one, the tool showed
the deleted element in red overlapped by the new element in green (an example of
this issue can be seen in Fig. 15). In these cases, participants had to move elements to
properly see them. This is a graphical visualization problem that we plan to improve in
further versions of the developed tools. On the other hand, it was also difficult for them
to identify the adaptation proposed for each change when two or more changes were
done at the same time. For instance, some participants deleted more than one element
when we asked them to delete a BPMN event. In these cases, the tool showed all the
changes performed (i.e., the deleted events) and the proposed adaptations for each of
them. However, the tool did not inform about which adaptation corresponded to each
change. This was a little confusing for participants. To improve this problem, we want
to include additional annotations in the BPMN model of the big picture that provides
additional information about the applied rules and the change they are supporting.

As for the tasks of the developer of a modified microservice, they obtained the
best values in this evaluation and there are few aspects to highlight. Participants just
need to do a change and wait for the acceptance or rejection of the BP engineer
and the developers of the affected microservices. Participants found the tool and the
supported protocol easy to use and intuitive. One improvement that we identified from
their comments was the inclusion of an explanation of why a change is rejected. In
the current version of the tools, developers of a modified microservice are informed
about the rejection of a change, and it is rollbacked in its BPMN fragment. However, a
reason for this rejection is not given. A change can be automatically rejected because
the proposed adaptation rule is classified as a Global adaptation. But a change can also
be manually rejected by the BP engineer or the developer of an affected microservice
after analysing its impact. We are studying to include a textual description that informs
about how a change has been rejected (i.e., automatically or manually) as well as to
extend the web tools in order to allow the BP engineer and the developers of the
affected microservice to introduce a reason for the rejection.

Although not directly related to the proposed protocol, we detected a problem when
participants changed their BPMN fragments: some of them introduced syntactical
mistakes in the model (e.g., a missed flow sequence that left an unconnected element)
that were propagated to the big picture. A solution to this problem could be adapting
the tools in order to allow modifying models only through the applications of change
patterns [26], guaranteeing that models are syntactically correct by construction.

Finally, as for the tasks of the developer of an affected microservice, participants
found the tool-supported protocol useful and effective to manage local changes. How-
ever, they felt a little confused in some modification scenarios, which is the reason for
being the task with the highest frustration. In scenarios such as the one presented in
Sect. 4.1, the proposed adaptation implies changing the event that triggers the BPMN
fragment of a microservice by another event (e.g., in the Inventory microservice, the
Customer Checked event is changed by the Process Purchase Order, see Fig. 16). This
adaptation was classified as automatic with acceptance because some tasks changed
from a sequential execution to a parallel one. Thus, the developer of the affected
microservice was requested to accept this change and was informed about the change
of event but they were not informed about the reason. Some participants suggested
changing how to address these scenarios by being manually accepted by the BP engi-

@ Springer

408 J. Ortizetal.

neer and automatically accepted by the affected microservices. We want to study the
problem in detail in order to decide on applying the suggested solution or introduce
additional information for the developers of the affected participants and maintain the
two-steps manual acceptance.

5.5 Conclusions

In all the modification scenarios faced during the experiment, participants could
achieve a resolution in order to either accept and integrate the local change or reject
it. In addition, comments given by participants and the results obtained in the NASA-
TLX questionnaire reinforce the potential usefulness of the approach. In this sense,
we can accept the validation hypothesis and conclude that the proposed evolution
protocol and the supporting tools are effective enough to evolve a microservice com-
position based on the choreography of BPMN fragments from the local perspective
of a microservice.

Of course, the experiment has also allowed us to detect some usability problems
in the proposed tools, which should be solved to facilitate the adoption of the whole
approach in order to create microservice compositions and manage further evolutions.
These problems have been precisely identified and delimited. Solutions to improve
them have been stated and will be considered in future work.

5.6 Threats to validity

According to the classification of threats to validity presented in [27], the threats that
are applicable to our evaluation are the following:

Conclusion validity. This experiment was threatened by the random heterogeneity
of subjects, which was minimized with: (1) the demographic questionnaire that allowed
us to evaluate the knowledge and experience of each participant beforehand; and (2)
the training sessions in which all subjects participated to have a similar background
in our proposed microservice composition approach.

Construct validity. This experiment was threatened by the threat of hypothesis
guessing (people might try to figure out what the purpose and intended result of the
experiment are), which was minimized by hiding the goal of the experiment (i.e.,
which was the validation hypothesis).

Internal validity. This experiment was threatened by the diffusion or imitation of
treatment, which occurs when some participant learns from the experience of others.
We reduced this treatment by making all the groups perform the experiment at the
same time and physically separating them to avoid interactions. We also observe the
behaviour of each participant in order to guarantee isolated work as much as possible.

External validity. This type of validity concern is related to conditions that may limit
our ability to generalize the results of the experiment. Just one case study was used
in the experiment, which can threaten the generalizability of this experiment. Also,
most of the participants were from the academic environment, which could threaten
the generalization to another population. Thus, usability experiments with additional
case studies and different participant profiles are needed.

@ Springer

Microservice compositions based on the choreography... 409

6 Related work

There are several works that face the problem of defining a composition of microser-
vices at a high level of abstraction [28-32], or from an architectural point of view
[33-35]. However, none of these works considers the evolution of microservice com-
positions once they are deployed into a system. Similarly, in web service compositions,
[36] proposes an abstract model defined in UML that can be used to build a chore-
ography of services from two perspectives as we do in our approach: top-down and
bottom-up. However, this solution does not include mechanisms to support the evolu-
tion of the proposed model either.

In the literature we find many works addressing the problems and challenges that
involve the evolution of compositions in the context of services, microservices and
web services either at design time or at runtime. However, the objectives sought, and
the techniques used vary from one proposal to another as it is explained next.

Regarding the works that face the evolution at design time, i.e., focusing on the
propagation of changes over the composition model without considering runtime
adaptations for the affected participants, we find, within the context of microser-
vice compositions, [37] which proposes a UML model that is based on dividing the
architecture of an application into three layers: the architecture layer, the instance
layer, and the infrastructure layer. The model is built using information from sys-
tem logs, infrastructure data, messages, and inter-service operations. Based on this
model, this work focuses on evolving the system in terms of the required number
of microservices, by proposing the creation of new ones or the removal of existing
ones. However, it does not address how to propagate the changes that occur in a
microservice to the global composition. Cornax et al. [38] proposes the use of a UML
sequence diagram to represent a choreography and a refinement process to obtain a
definition of this choreography based on the open-source choreography programming
language AIOCJ. This work allows the evolution of the microservice composition
from a top-down perspective. However, a bottom-up evolution that allows changes
from the local perspective of a microservice is not supported. Giallorenzo et al. [39]
presents a model that extends BPEL4WS to automate the dynamic linking of web
services in the context of a composition. The work proposes the creation of a ser-
vice that integrates new services into the composition, following a bottom-up strategy.
This solution allows the evolution of the composition from a bottom-up perspective.
However, a composition is implemented as a centralized orchestration. We implement
microservices composition through distributed choreographies, which reinforce the
independence among services that is demanded in microservice architectures. Fdhila
et al. [40, 41] propose models to describe web service orchestrations and fragment
them into distributed choreographies. Then, the evolution is faced from the orches-
tration model and propagated to the model fragments. However, the integration of a
change directly introduced in a fragment is not considered. With regards solutions that
propagate changes in a choreography, [42] presents an approach to propagate changes
among partners but adaptations to the affected partners are not provided. Fdhila et al.
[43] also faces the challenge of propagating changes in decentralized choreographies.
However, they only consider changes in the public interface of participants. We go
a step further trying to adapt the internal model of participants. Weidlich et al. [44]

@ Springer

410 J. Ortizetal.

proposes a solution to synchronize aligned models when one of them changes; [45]
allows choreography evolution by postponing decisions later in the lifecycle through
abstract model constructions; [46] allows reconfiguring the choreography but saving
the results already obtained in the execution. This is achieved by defining an algorithm
and a system for execution and monitoring of choreography instances. Wombacher
[47] considers two different visions of BPEL processes, one defined as a choreography
and another one as an orchestration, and presents an approach to propagate changes
from the choreography level to the orchestration level. However, compared to our
proposal, none of these works supports the introduction of local changes in one of the
participants of the choreography and the propagation of the changes to the rest of the
members.

Regarding the works that face the evolution at runtime, i.e., focusing on adapt-
ing the participants of the choreography to the introduction of changes, we find [48],
which proposes a self-adaptive model that can evolve in runtime to solve the problem
of the optimal size of granularity of microservices. The model is based on a MAPE-K
loop to create a systematic solution that improves the lifecycle of a microservice by
accumulating knowledge and establishing parameters to know when a microservice
needs to be divided or merged. This work focuses on the decomposition of a system
into microservices but pays little attention to their composition. Florio [49] proposes
an infrastructure called GRU, which uses self-adaptive techniques based on agents to
manage large-scale distributed systems. These works focus on the automatic adapta-
tion of microservices to manage resource consumption, in such a way aspects such
as scalability, fault tolerance and performance can be improved. Again, this work
does not consider the composition of microservices. Kolb et al. [50] and Mafazi et
al. [51] present two approaches to update process models from the changes done to
personalized views on them. In these cases, evolution is faced from centralized mod-
els instead of a split and distributed model as we do in this work. Andrikopoulos et
al. [52] applies evolution to handle errors and to refine activities using Al planning
techniques. Képes et al. [53] optimizes the system by adapting it to the current con-
text captured by IoT sensors, and automatically transforming independent workflows
models into situation-aware workflow models that cope with dynamic contextual sit-
uations. Mahfouz et al. [54] agrees on customization alternatives to fulfil the business
needs describing constraints that govern the behaviour of participants. In [55], the
authors address flexibility in business processes within the context of batch process-
ing. To this end, they introduce flexible batch activities by specifying three different
strategies (modelling, deployment, and execution strategies) which allow adapting
business processes during the respective phases of the process lifecycle. Compared to
our proposal, none of these works supports the introduction of changes in one of the
participants of the choreography and the adaptation of the rest of the participants if
the integrity of the choreography is affected by the introduced change. Additionally,
there are other areas of interest where adaptation processes are also proposed. In the
area of swarm intelligence, in [56] and [57] the entities that compose complex systems
are able to adapt their behaviour using simulators. In the area of configurable work-
flows, [58] proposes an adaptation process to change the appearance of applications
without changing the underlying implementation by proposing a framework with a
set of services to isolate the different components of the application. In the area of

@ Springer

Microservice compositions based on the choreography... 411

Quality of System (QoS) optimization, [59] combines a set of techniques and algo-
rithms to transform and optimize a composition in terms of QoS. Finally, in the area
of collaborative BPs, we find [60] which presents a model for dynamic binding where
process participants can collectively agree on how to steer a BP; [61] which exposes
the problem of runtime adaptation under the assumption that unexpected situations can
be characterized by contextual elements; and [62] which automates the construction of
exclusive choices considering multiple paths under a set of specific variable conditions
to reconfigure BPs at runtime. Our work differs from all these proposals in that we
propose a protocol to integrate local modifications that can change the functionality
and the communication of a participant in the composition process, and additionally,
we also support the negotiations between different participants if the communication
among microservices has changed to agree on the new workflow of the composition.

7 Conclusions and further work

This work has presented an approach to manage the evolution of microservice compo-
sitions from the local perspective of one participant. These compositions are supported
by a microservice architecture in which coexists two descriptions of it: (1) a global
BPMN model that maintains the big picture of a composition; and (2) a split version
that distributes the microservice responsibilities through BPMN fragments that are
used to implement the composition as an event-based choreography. Thus, the evolu-
tion of a microservice composition when a participant in the choreography introduces
a local change implies the integration of the change, when possible, in the affected
BPMN fragments as well as the big picture.

To support this type of evolution we have proposed a protocol to manage the prop-
agation of a change to the affected participants, the proposal of an adaptation to its
BPMN fragments in order to maintain the functional integrity of the choreography,
and the possible negotiation of this adaptation. This protocol also considered the par-
ticipation of the business process engineer to synchronize all the changes with the
big picture. To automatically propose adaptations for the affected BPMN fragments, a
catalogue of 19 adaptation rules has been proposed. These rules precisely characterize
different types of changes in a BPMN fragment, determines the affected participants,
and propose an adaptation to their respective fragments. Both the automatic sugges-
tion of adaptation rules and the application of the protocol have been supported by
specific tool support, which has been integrated into the microservice architecture that
supported the composition of microservices by means of a choreography of BPMN
fragments. The protocol and the supporting tool have been successfully validated in
an experiment with users.

The approach proposed in our previous work to compose microservices through a
choreography of BPMN fragments introduced two main benefits: (1) it facilitated busi-
ness process engineers to analyse the control flow if the composition’s requirements
need to be modified; and (2) it provided a high level of decoupling in the execution
of microservices making it easy that the development team of each microservice can
manage its BPMN fragment independently from the others. In this work, we reinforce
these two benefits by improving the evolution of these compositions. On the one hand,

@ Springer

412 J. Ortizetal.

a top-down evolution (i.e., from the big picture to the BPMN fragments) was natively
supported by our previous work. On the other hand, our current proposal introduces
the possibility of a bottom-up evolution of composition (i.e., from the local perspec-
tive of a microservice). In addition, note that developers can manage the evolution
of a microservice composition through models of a high-level abstraction defined in
BPMN instead of having to handle hard-coded implementations or complex formal
specifications.

As ongoing work, we are currently working on improving the supporting tool
presented in Sect. 4 by considering the problems detected in the experiment as well
as the comments and suggestions did by the participants. In addition, as further work,
we want to improve the case study presented in this work to encourage participants
to make changes that lead to negotiations so that we can validate this phase of the
protocol more precisely. In addition, we also plan to integrate the proposed protocol
with machine learning techniques that improve the suggestion of adaptation rules
to face the local change of microservices. To do so, we are validating the approach
with additional case studies in order to prepare a dataset that can be used to train a
machine-learning algorithm. As a first step, we want to train classification models such
as Nearest Neighbours, Decision Trees or Naive Bayes that do not need big datasets
to work properly.

Another important issue to be faced as further work is the definition of deadlock-
free and fault-tolerant compositions. To face this challenge we plan to support each
microservice with multiple instances supported by brokers such as Kafka or Rab-
bitMQ, which can guarantee that each event is only processed by one instance. Also,
we plan to study works such as [63] to extend our approach with the possibility of defin-
ing timeouts so business microservices have the capability to cancel a composition if
a specific timeout is reach.

Finally, we also need to consider the implementation of behavioural consistency
mechanisms to (1) ensure that an implemented microservice is compatible with the
rest of the participants of the composition when a modification is introduced, and
(2) avoid deadlocks and guarantee a proper termination of the composition process
[64]. Also, local enforceability should be studied [65], since the global model, which
represents the whole composition, may capture behavioural constraints that cannot be
enforced locally and therefore, may not be translatable into the local fragments.

Acknowledgements This work is part of the R&D&I project PID2020-114480RB-100 funded by
MCIN/AEI/10.13039/501100011033. It is also supported by the Research and Development Aid Program
(PAID-01-21) of the UPV.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer

http://creativecommons.org/licenses/by/4.0/

Microservice compositions based on the choreography... 413

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Weske M (2019) Business process management - concepts, languages, architectures, third edition.
Springer, Berlin Heidelberg, pp 1-417 . https://doi.org/10.1007/978-3-662-59432-2

Barros A, Hettel T, Flender C (2010) Process choreography modeling. Handbook on Business Process
Management 1. Springer, Berlin Heidelberg, pp 257-277 https://doi.org/10.1007/978-3-642-00416-
212

Lewis J, Fowler M (2014) Microservices. Last accessed 4 April 2022 . https://martinfowler.com/
articles/microservices.html

Ciancia V, Ferrari G, Guanciale R, Strollo D (2010) Event based choreography. Sci Comput Program
75(10):848-878. https://doi.org/10.1016/j.scico.2010.02.009

. Valderas P, Torres V, Pelechano V (2020) A microservice composition approach based on the chore-

ography of bpmn fragments. Inf Softw Technol 127:106370. https://doi.org/10.1016/j.infsof.2020.
106370

OMG: Business Process Model and Notation (BPMN), Version 2.0. Object Management Group. http://
www.omg.org/spec/BPMN/2.0

van der Aalst WMP (2012) A decade of business process management conferences: Personal on a
developing discipline. In: 10th international conference on business process management, Tallinn,
Estonia, pp. 1-16. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-32885-5_1

Casati F, Ceri S, Pernici B, Pozzi G (1998) Workflow evolution. Data Knowl Eng 24(3):211-238.
https://doi.org/10.1016/S0169-023X(97)00033-5

Rinderle S, Reichert M, Dadam P (2004) Correctness criteria for dynamic changes in workflow systems
- a survey. Data Knowl Eng 50(1):9-34. https://doi.org/10.1016/j.datak.2004.01.002

Lenz R, Reichert M (2007) IT support for healthcare processes - premises, challenges, perspectives.
Data Knowl Eng 61(1):39-58. https://doi.org/10.1016/j.datak.2006.04.007

Mulyar N, van der Aalst WM, Russell N (2008) Process flexibility patterns. Technische Universiteit
Eindhoven

Cognini R, Corradini F, Gnesi S, Polini A, Re B (2018) Business process flexibility-a systematic
literature review with a software systems perspective. Inf Syst Front 20(2):343-371. https://doi.org/
10.1007/s10796-016-9678-2

Reichert M, Weber B (2012) Flexibility issues in process-aware information systems. In: Enabling
Flexibility in Process-Aware Information Systems. Springer, Berlin Heidelberg, pp 43-55
Ortiz-Amaya J, Torres Bosch MV, Valderas P (2020) Characterization of bottom-up microservice
composition evolution. an approach based on the choreography of bpmn fragments. In: Conceptual
modeling. 39th international conference, ER 2020, Vienna, Austria, November 3-6, 2020, Proceedings,
pp. 101-114 . Springer Nature

Ortiz J, Torres V, Valderas P (2022) Supporting a bottom-up evolution of microservice compositions
based on the choreography of bpmn fragments. In: Advances in information systems development.
Springer, Berlin Heidelberg, pp 219-236

Hevner AR, March ST, Park J, Ram S (2004) Design science in information systems research. MIS Q
28(1):75-105

Peffers K, Tuunanen T, Rothenberger MA, Chatterjee S (2008) A design science research methodology
for information systems research. J] Manag Inf Syst 24(3):45-77

Avison DE, Lau FY, Myers MD, Nielsen PA (1999) Action research. Commun ACM 42(1):94-97.
https://doi.org/10.1145/291469.291479

Larman C, Basili VR (2003) Iterative and incremental development: a brief history. Computer 36(6):47—
56. https://doi.org/10.1109/MC.2003.1204375

Runeson P, Host M (2009) Guidelines for conducting and reporting case study research in software
engineering. Empir Softw Eng 14(2):131-164. https://doi.org/10.1007/s10664-008-9102-8

Butler D, Aspinall D, Gascén A (2019) On the formalisation of) _-protocols and commitment schemes.
In: Principles of security and trust. Springer, Cham, pp 175-196. https://doi.org/10.1007/978-3-030-
17138-4_8

Skeen D (1981) Nonblocking commit protocols. In: Proceedings of the 1981 ACM SIGMOD interna-
tional conference on management of data, Ann Arbor, Michigan, USA. ACM Press, USA, pp 133-142
. https://doi.org/10.1145/582318.582339

@ Springer

https://doi.org/10.1007/978-3-662-59432-2
https://doi.org/10.1007/978-3-642-00416-212
https://doi.org/10.1007/978-3-642-00416-212
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1016/j.scico.2010.02.009
https://doi.org/10.1016/j.infsof.2020.106370
https://doi.org/10.1016/j.infsof.2020.106370
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
https://doi.org/10.1007/978-3-642-32885-5_1
https://doi.org/10.1016/S0169-023X(97)00033-5
https://doi.org/10.1016/j.datak.2004.01.002
https://doi.org/10.1016/j.datak.2006.04.007
https://doi.org/10.1007/s10796-016-9678-2
https://doi.org/10.1007/s10796-016-9678-2
https://doi.org/10.1145/291469.291479
https://doi.org/10.1109/MC.2003.1204375
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/978-3-030-17138-4_8
https://doi.org/10.1007/978-3-030-17138-4_8
https://doi.org/10.1145/582318.582339

414

J. Ortizetal.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Ortiz Amaya J, Torres Bosch MV, Valderas Aranda PJ (2022) A catalogue of adaptation rules to sup-
port local changes in microservice compositions implemented as choreographies of bpmn fragments.
Technical report, Universitat Politecnica de Valéncia . http://hdl.handle.net/10251/181551

Mens T, Van Gorp P (2006) A taxonomy of model transformation. Electron Notes Theor Comput Sci
152:125-142. https://doi.org/10.1016/j.entcs.2005.10.021

Czarnecki K, Helsen S (2003) Classification of model transformation approaches. In: Proceedings of
the 2nd OOPSLA workshop on generative techniques in the context of the model driven architecture,
vol. 45, pp. 1-17 . USA

Weber B, Reichert M, Rinderle-Ma S (2008) Change patterns and change support features - enhancing
flexibility in process-aware information systems. Data Knowl Eng 66(3):438-466. https://doi.org/10.
1016/j.datak.2008.05.001

Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B (2012) Experimentation in software engineering.
Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-29044-2

Gutiérrez-Fernandez AM, Resinas M, Cortés AR (2016) Redefining a process engine as a microservice
platform. In: Business process management workshops - BPM 2016 international workshops, Rio de
Janeiro, Brazil, September 19, 2016, Revised Papers. Lecture notes in business information processing.
vol 281, pp 252-263. https://doi.org/10.1007/978-3-319-58457-7_19

Petrasch R (2017) Model-based engineering for microservice architectures using enterprise integration
patterns for inter-service communication. In: 14th International joint conference on computer science
and software engineering (JCSSE), NakhonSiThammarat, Thailand, pp 1-4. IEEE, USA . https://doi.
org/10.1109/JCSSE.2017.8025912

Guidi C, Lanese I, Mazzara M, Montesi F (2017) Microservices: a language-based approach. CoRR
abs/1704.08073. https://doi.org/10.48550/arXiv.1704.08073

Briiggemann ME, Vallon R, Parlak A, Grechenig T (2014) Modelling microservices in email-
marketing - concepts, implementation and experiences. In: 9th international conference on software
paradigm trends (ICSOFT-PT), Vienna, Austria. SciTePress, USA, pp 67-71. https://doi.org/10.5220/
0005000800670071

Safina L, Mazzara M, Montesi F, Rivera V (2016) Data-driven workflows for microservices: Genericity
in jolie. In: 30th IEEE international conference on advanced information networking and applications
(AINA) 2016, Crans-Montana, Switzerland. IEEE Computer Society, USA, pp 430-437. https://doi.
org/10.1109/AINA.2016.95

Oberhauser R (2016) Microflows: Lightweight Automated Planning and Enactment of Workflows
Comprising Semantically-Annotated Microservices. In: Proceedings of the sixth international sym-
posium on business modeling and software design - BMSD, pp 134-143. https://doi.org/10.5220/
0006223001340143. INSTICC

Ben Hadj Yahia E, Réveillere L, Bromberg Y, Chevalier R, Cadot A (2016) Medley: An event-driven
lightweight platform for service composition. In: 16th international conference on web engineering
(ICWE), Lugano, Switzerland. Lecture notes in computer science, vol 9671. Springer, Berlin, pp 3-20.
https://doi.org/10.1007/978-3-319-38791-8_1

Monteiro D, Gadelha R, Maia PHM, Rocha LS, Mendonga NC (2018) Beethoven: an event-driven
lightweight platform for microservice orchestration. In: 12th European conference on software archi-
tecture (ECSA), Madrid, Spain. Springer, Berlin, pp 191-199. https://doi.org/10.1007/978-3-030-
00761-4_13

Mandell DJ, Mcllraith SA (2003) Adapting BPEL4WS for the semantic web: the bottom-up approach
to web service interoperation. In: Second international semantic web conference (ISWC), Sanibel
Island, FL, USA. Lecture notes in computer science, vol 2870. Springer, Berlin, pp 227-241. https://
doi.org/10.1007/978-3-540-39718-2_15

Sampaio AR, Kadiyala H, Hu B, Steinbacher J, Erwin T, Rosa NS, Beschastnikh I, Rubin J (2017)
Supporting microservice evolution. In: International conference on software maintenance and evolu-
tion (ICSME), Shanghai, China. IEEE Computer Society, USA, pp 539-543. https://doi.org/10.1109/
ICSME.2017.63

Cornax MC, Dupuy-Chessa S, Rieu D (2011) Bridging the gap between business processes and service
composition through service choreographies. In: Engineering methods in the service-oriented context
- IFIP WG 8.1 working conference on method engineering, ME, Paris, France. Springer, Berlin, pp
190-203. https://doi.org/10.1007/978-3-642-19997-4_18

@ Springer

http://hdl.handle.net/10251/181551
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.datak.2008.05.001
https://doi.org/10.1016/j.datak.2008.05.001
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-319-58457-7_19
https://doi.org/10.1109/JCSSE.2017.8025912
https://doi.org/10.1109/JCSSE.2017.8025912
https://doi.org/10.48550/arXiv.1704.08073
https://doi.org/10.5220/0005000800670071
https://doi.org/10.5220/0005000800670071
https://doi.org/10.1109/AINA.2016.95
https://doi.org/10.1109/AINA.2016.95
https://doi.org/10.5220/0006223001340143
https://doi.org/10.5220/0006223001340143
https://doi.org/10.1007/978-3-319-38791-8_1
https://doi.org/10.1007/978-3-030-00761-4_13
https://doi.org/10.1007/978-3-030-00761-4_13
https://doi.org/10.1007/978-3-540-39718-2_15
https://doi.org/10.1007/978-3-540-39718-2_15
https://doi.org/10.1109/ICSME.2017.63
https://doi.org/10.1109/ICSME.2017.63
https://doi.org/10.1007/978-3-642-19997-4_18

Microservice compositions based on the choreography... 415

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

Giallorenzo S, Lanese I, Russo D (2018) Chip: A choreographic integration process. In: Confederated
international conferences: CooplS, C&TC, and ODBASE 2018, Valletta, Malta. Springer, Berlin, pp
22-40. https://doi.org/10.1007/978-3-030-02671-4_2

Fdhila W, Rinderle-Ma S, Baouab A, Perrin O, Godart C (2012) On evolving partitioned web ervice
orchestrations. In: 2012 Fifth IEEE international conference on service-oriented computing and appli-
cations (SOCA), Taipei, Taiwan, December 17-19, 2012. IEEE Computer Society, USA, pp 1-6. https://
doi.org/10.1109/SOCA.2012.6449446

Fdhila W, Baouab A, Dahman K, Godart C, Perrin O, Charoy F (2011) Change propagation in decentral-
ized composite web services. In: 7th International conference on collaborative computing: networking,
applications and worksharing, CollaborateCom, Orlando, FL, USA, pp 508-511. ICST / IEEE, USA
. https://doi.org/10.4108/icst.collaboratecom.2011.247097

Rinderle S, Wombacher A, Reichert M (2006) Evolution of process choreographies in DYCHOR. In:
Confederated international conferences, CooplS, DOA, GADA, and ODBASE, Montpellier, France.
Springer, Berlin, pp 273-290. https://doi.org/10.1007/11914853_17

Fdhila W, Indiono C, Rinderle-Ma S, Reichert M (2015) Dealing with change in process choreogra-
phies: Design and implementation of propagation algorithms. Inf Syst 49:1-24. https://doi.org/10.
1016/].i5.2014.10.004

Weidlich M, Mendling J, Weske M (2012) Propagating changes between aligned process models. J
Syst Software 85(8):1885-1898. https://doi.org/10.1016/j.jss.2012.02.044

Weil} A, Sdez SG, Hahn M, Karastoyanova D (2014) Approach and refinement strategies for flexible
choreography enactment. In: OTM Confederated International conferences "On the move to meaningful
internet systems". vol 8841, pp 93—111. https://doi.org/10.1007/978-3-662-45563-0_6

Weill A, Andrikopoulos V, Hahn M, Karastoyanova D (2020) Model-as-you-go for choreographies:
rewinding and repeating scientific choreographies. IEEE Trans Serv Comput 13(5):901-914. https://
doi.org/10.1109/TSC.2017.2732988

Wombacher A (2009) Alignment of choreography changes in bpel processes. In: 2009 IEEE inter-
national conference on services computing. IEEE, New York, pp 1-8 . https://doi.org/10.1109/SCC.
2009.11

Hassan S, Bahsoon R (2016) Microservices and their design trade-offs: A self-adaptive roadmap. In:
International conference on services computing, (SCC), San Francisco, CA, USA. IEEE Computer
Society, USA, pp 813-818. https://doi.org/10.1109/SCC.2016.113

Florio L (2015) Decentralized self-adaptation in large-scale distributed systems. In: 10th joint meeting
on foundations of software engineering (ESEC/FSE), Bergamo, Italy, pp. 1022-1025. ACM, USA .
https://doi.org/10.1145/2786805.2803192

Kolb J, Kammerer K, Reichert M (2012) Updatable process views for user-centered adaption of large
process models. In: 10th international conference (ICSOC), Shanghai, China. Springer, Berlin, pp
484-498. https://doi.org/10.1007/978-3-642-34321-6_32

Mafazi S, Grossmann G, Mayer W, Stumptner M (2013) On-the-fly change propagation for the co-
evolution of business processes. In: Confederated international conferences: CooplS, DOA-trusted
cloud, and ODBASE, Graz, Austria. Springer, Berlin, pp 75-93. https://doi.org/10.1007/978-3-642-
41030-7_6

Andrikopoulos V, Bucchiarone A, Saez SG, Karastoyanova D, Mezzina CA (2013) Towards modeling
and execution of collective adaptive systems. In: Lomuscio A, Nepal S, Patrizi F, Benatallah B, Brandic
I. (eds.) Service-oriented computing - ICSOC 2013 workshops - CCSA, CSB, PASCEB, SWESE,
WESOA, and PhD Symposium, Berlin, Germany, December 2-5, 2013. Revised Selected Papers.
Lecture notes in computer science, vol 8377. Springer, Berlin Heidelberg, pp 69-81. https://doi.org/
10.1007/978-3-319-06859-6_7

Képes K, Breitenbiicher U, Sdez SG, Guth J, Leymann F, Wieland M (2016) Situation-aware execution
and dynamic adaptation of traditional workflow models. In: Lecture notes in computer science, vol.
9846. Springer, Berlin Heidelberg, pp 69-83. https://doi.org/10.1007/978-3-319-44482-6_5
Mahfouz A, Barroca L, Laney R, Nuseibeh B (2009) Requirements-driven collaborative choreography
customization. In: Service-oriented computing, vol 5900, pp 144—158. https://doi.org/10.1007/978-3-
642-10383-4_10

Pufahl L, Karastoyanova D (2018) Enhancing Business Process Flexibility by Flexible Batch Process-
ing. In: OTM confederated international conferences "On the move to meaningful internet systems",
vol 11229, pp 426-444. https://doi.org/10.1007/978-3-030-02610-3_24

@ Springer

https://doi.org/10.1007/978-3-030-02671-4_2
https://doi.org/10.1109/SOCA.2012.6449446
https://doi.org/10.1109/SOCA.2012.6449446
https://doi.org/10.4108/icst.collaboratecom.2011.247097
https://doi.org/10.1007/11914853_17
https://doi.org/10.1016/j.is.2014.10.004
https://doi.org/10.1016/j.is.2014.10.004
https://doi.org/10.1016/j.jss.2012.02.044
https://doi.org/10.1007/978-3-662-45563-0_6
https://doi.org/10.1109/TSC.2017.2732988
https://doi.org/10.1109/TSC.2017.2732988
https://doi.org/10.1109/SCC.2009.11
https://doi.org/10.1109/SCC.2009.11
https://doi.org/10.1109/SCC.2016.113
https://doi.org/10.1145/2786805.2803192
https://doi.org/10.1007/978-3-642-34321-6_32
https://doi.org/10.1007/978-3-642-41030-7_6
https://doi.org/10.1007/978-3-642-41030-7_6
https://doi.org/10.1007/978-3-319-06859-6_7
https://doi.org/10.1007/978-3-319-06859-6_7
https://doi.org/10.1007/978-3-319-44482-6_5
https://doi.org/10.1007/978-3-642-10383-4_10
https://doi.org/10.1007/978-3-642-10383-4_10
https://doi.org/10.1007/978-3-030-02610-3_24

416

J. Ortizetal.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Pinciroli C, Trianni V, O’Grady R, Pini G, Brutschy A, Brambilla M, Mathews N, Ferrante E, Di
Caro G, Ducatelle F, Birattari M, Gambardella LM, Dorigo M (2012) Argos: a modular, parallel,
multi-engine simulator for multi-robot systems. Swarm Intell 6(4):271-295. https://doi.org/10.1007/
s11721-012-0072-5

Levi P, Kernbach S (2010) Symbiotic multi-robot organisms: reliability, adaptability, evolution, Ist ed.
2010. edn. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-642-11692-6

Chang JG, Sun W, Huang Y, Zhi HW, Gao B (2007) A framework for native multi-tenancy appli-
cation development and management. In: Proceedings - the 9th IEEE international conference on
E-commerce technology; the 4th IEEE international conference on enterprise computing, E-commerce
and E-services, CEC/EEE 2007, pp 551-558. https://doi.org/10.1109/CEC-EEE.2007.4

Rosenberg F, Celikovic P, Michlmayr A, Leitner P, Dustdar S (2009) An end-to-end approach for
qos-aware service composition. In: 2009 IEEE international enterprise distributed object computing
conference, pp 151-160. IEEE, New York, NY, USA . https://doi.org/10.1109/EDOC.2009.14
Lépez-Pintado O, Dumas M, Garcia-Baiiuelos L, Weber I (2022) Controlled flexibility in blockchain-
based collaborative business processes. Inf Syst 104:101622. https://doi.org/10.1016/.i5.2020.101622
Nunes VT, Santoro FM, Werner CML, Ralha CG (2018) Real-time process adaptation: a context-aware
replanning approach. IEEE transactions on systems, man, and cybernetics. Systems 48(1):99-118.
https://doi.org/10.1109/TSMC.2016.2591538

Heinrich B, Klier M, Zimmermann S (2015) Automated planning of process models: design of a novel
approach to construct exclusive choices. Decis Support Syst 78:1-14. https://doi.org/10.1016/j.dss.
2015.07.005

Guermouche N, DalZilio S (2011) Formal requirement verification for timed choreographies. Int J
Web Service Res 8:1-28. https://doi.org/10.4018/jwsr.2011040101

Decker G, Weske M (2007) Behavioral consistency for b2b process integration. In: International
conference on advanced information systems engineering. Springer, Berlin, pp 81-95. https://doi.org/
10.1007/978-3-540-72988-4_7

ZahaJM, Dumas M, Ter Hofstede A, Barros A, Decker G (2006) Service interaction modeling: bridging
global and local views. In: 2006 10th IEEE international enterprise distributed object computing
conference (EDOC’06), pp 45-55. https://doi.org/10.1109/EDOC.2006.50

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/978-3-642-11692-6
https://doi.org/10.1109/CEC-EEE.2007.4
https://doi.org/10.1109/EDOC.2009.14
https://doi.org/10.1016/j.is.2020.101622
https://doi.org/10.1109/TSMC.2016.2591538
https://doi.org/10.1016/j.dss.2015.07.005
https://doi.org/10.1016/j.dss.2015.07.005
https://doi.org/10.4018/jwsr.2011040101
https://doi.org/10.1007/978-3-540-72988-4_7
https://doi.org/10.1007/978-3-540-72988-4_7
https://doi.org/10.1109/EDOC.2006.50

	Microservice compositions based on the choreography of BPMN fragments: facing evolution issues
	Abstract
	1 Introduction
	1.1 Previous work: composition of microservices
	1.2 Motivation: evolution of a microservice composition
	1.3 Problem statement
	1.4 Main objectives and contributions
	1.5 Research methodology and paper structure

	2 The proposed evolution protocol
	2.1 Phase 1: classification of the local change
	2.2 Phase 2: propagation of a coordination change
	2.3 Phase 3: suggestion and realization of an adaptation
	2.4 Phase 4: negotiation

	3 Adaptation rules to support local changes in coordination requirements
	3.1 Deleting a throwing event without attached data
	3.2 Deleting a throwing event with attached data
	3.3 Updating a catching event with attached data
	3.4 Further analysis of adaptation automation

	4 Proof-of-concept prototype
	4.1 Realization details
	4.2 Example of protocol application
	4.2.1 Phase 1: classification of the local change
	4.2.2 Phase 2: propagation of a coordination change
	4.2.3 Phase 3: suggestion and realization of an adaptation

	5 Evaluation
	5.1 Participants
	5.2 Design
	5.3 Execution
	5.4 Analysis of the results
	5.5 Conclusions
	5.6 Threats to validity

	6 Related work
	7 Conclusions and further work
	Acknowledgements
	References

