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Abstract
This paper presents a hybrid approach basedBinaryArtificial BeeColony (BABC) and
ParetoDominance strategy for schedulingworkflow applications considering different
Quality of Services (QoS) requirements in cloud computing. The main purpose is to
schedule a given application onto the available machines in the cloud environment
with minimummakespan (i.e. schedule length) and processing cost while maximizing
resource utilization without violating Service Level Agreement (SLA) among users
and cloud providers. The proposed approach is called Enhanced Binary Artificial Bee
Colony based Pareto Front (EBABC-PF). Our proposed approach starts by listing the
tasks according to priority defined by Heterogeneous Earliest Finish Time (HEFT)
algorithm, then gets an initial solution by applying Greedy Randomized Adaptive
Search Procedure (GRASP) and finally schedules tasks onto machines by applying
Enhanced Binary Artificial Bee Colony (BABC). Further, several modifications are
considered with BABC to improve the local searching process by applying circular
shift operator thenmutation operator on the food sources of the population considering
the improvement rate. The proposed approach is simulated and implemented in the
WorkflowSim which extends the existing CloudSim tool. The performance of the
proposed approach is compared with Heterogeneous Earliest Finish Time (HEFT)
algorithm, Deadline Heterogeneous Earliest Finish Time (DHEFT), Non-dominated
SortGeneticAlgorithm (NSGA-II) and standardBinaryArtificial BeeColony (BABC)
algorithm using different sizes of tasks and various benchmark workflows. The results
clearly demonstrate the efficiency of the proposed approach in terms of makespan,
processing cost and resources utilization.
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1 Introduction

Cloud computing is a distributed heterogeneous computing model providing many
services through the Internet without the violation of Service level agreement (SLA).
The cloud services are provided as Infrastructure as a Service (IaaS), Platform as
a Service (PaaS) and Software as a Service (SaaS). The cloud computing power is
supplied by a collection of data centers (DCs) that are typically installed with massive
hosts (physical servers). These hosts are transparently managed by the virtualization
services that allow sharing their capacities among virtual instances of servers (VMS)
[1].

Generally, scientific workflows in domains such as astronomy and biology can
be modeled as composed of large number of smaller subprocesses (i.e., tasks) to be
processed or managed. Processing such large amounts of data requires the use of a
distributed collection of computation and storage facilities as in the cloud. There is
no single solution for such problems but a set of alternatives with different trade-
offs among objectives [2]. In cloud environment, the data centers have unlimited
resources therefore there is a need to schedule workflow applications for execution
based on certain criteria such as makespan (i.e., overall execution time of all the tasks),
cost, budget, reliability, deadline, and resource utilization [3]. A workflow scheduling
problem is a multi-objective optimization problem that has trade-off objectives which
means that none of the objective functions can be improved in value without degrading
some of the other objective values [4].

Recently, several meta-heuristic algorithms are the most common methods to solve
multi-objective task scheduling problem. The common feature among such algo-
rithms is the way of their search that depends on the exploration as the process
of visiting a new search space and the exploitation as making use of these search
space regions. These algorithms can be divided into two categories a single-based
and a population-based meta-heuristics [5]. A Greedy Randomized Adaptive Search
Procedure (GRASP) is an example of single-based meta-heuristic technique include
local search [6]. Population-based meta-heuristic techniques include genetic algo-
rithm (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO),
and Artificial Bee Colony Optimization (ABC) [7].

Artificial bee colony (ABC) is proposed by Karaboga in [8] as one of the swarm
intelligence-based algorithms that simulates the foraging behavior of bees. ABC has
several advantages which include easy to implement, flexible and robust. It is imple-
mented with only three control parameters which are colony size, limit, and the
maximum number of cycles. Due to these advantages, it has been successfully tai-
lored for the different optimization problems such as workflow scheduling problem
[9].

This paper tackles the multi-objective workflow scheduling problem in cloud com-
puting using a new efficient hybrid approach called EBABC-PF. The purpose is to
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minimize the makespan and the processing cost of a given application while maxi-
mize the resource utilization based on the workload. The proposed hybrid approach
presents a new efficient multi-phase hybrid approach by combining the advantages of
several meta-heuristic techniques. It starts by listing the given tasks of an application
according to their priorities using Heterogeneous Earliest Finish Time (HEFT) [10,
11] algorithm. It then gets an initial population by applying greedy randomized search
algorithm (GRASP) to overcome the random initialization of the food sources (feasi-
ble solutions) in the population during searching process and so achieving acceptable
convergence and diversity among food sources (feasible solutions) in the search space.
Further, the tasks are scheduled onto virtual machines by applying binary artificial bee
colony algorithm (ABC) [12, 13] with some improvements within the local searching
process by applying the circular shift then the mutation operators among the virtual
machines of maximum completion time and minimum completion time on the food
sources of the population. Our proposed approach can achieve minimum makespan
and total processing cost with load balancing among the virtual machines and so the
resource utilization can also be maximized. Finally, as a set of solutions with trade-off
among objectives are generated, the non-dominance concept is applied for ranking
the feasible solutions to get the best near-optimal solution for workflow scheduling in
cloud.

Our main research contributions in this paper are as follows:

1. This paper suggests the task scheduling in cloudwith anEnhancedBinaryArtificial
Bee Colony based Pareto Front (EBABC-PF) to solve the workflow scheduling as
a multi-objective optimization problem.

2. The proposed hybrid approach EBABC-PF regards the performance metrics: the
makespan, the processing cost and the resource utilization to solve task scheduling
problem in cloud.

3. To demonstrate the efficiency of EBABC-PF algorithm, it is coded in Java and
embedded into WorkflowSim simulator based Cloudsim simulator [14, 15] that
simulates large scale cloud computing infrastructure with five groups of practi-
cal workflows benchmarks, i.e., Montage, CyberShake, Epigenomics, LIGO, and
SIPHT.

The remainder of this paper is organized as follows: Sect. 2 presents a survey of
relatedwork. Section 3 describes the scheduling process and formulates the scheduling
problem as a multi-objective optimization problem. Section 4 presents the proposed
hybrid approach in details and its complexity analysis while Sect. 5 presents the
experimental results and discussion. Finally, Sect. 6 presents the concluding remarks
and future work of this research paper.

2 Related work

Several meta-heuristic scheduling algorithms for task scheduling in cloud computing
have been proposed. They gained huge popularity due to its effectiveness to solve com-
plex problems. An Improved Ant Colony Multi-Objective Optimization algorithm in
[16] is suggested for optimizing makespan, cost, deadline violation rate, and resource
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utilization. In [17], the authors suggest task scheduling algorithm called HABC based
on Artificial Bee Colony Algorithm (ABC) to minimize makespan considering load
balancing.

Currently, many scheduling algorithms are suggested for energy efficiency issue.
An Improved Grouping Genetic Algorithm (IGGA) based on a greedy heuristic and
a swap operation is introduced in [18] for maximal saved power by optimizing the
consolidation score function based on a migration cost function and an upper bound
estimation function. Multi-objective algorithms for task scheduling based on Non-
dominated Sorting Genetic Algorithm (NSGA-II) [19] are suggested. The authors
in [20] incorporate Dynamic Voltage Frequency Scaling System with NSGA-II for
minimizing energy consumption and makespan. The authors in [21] propose a new
hybrid multi-objective algorithm for task scheduling based on NSGA-II and Gravi-
tational Search Algorithm (GSA) for minimizing response time, and execution cost
while maximizing resource utilization.

Recently, multi-objective scheduling algorithms for scheduling scientific workflow
applications are proposed based on meta-heuristic scheduling algorithms. The authors
propose a hybrid algorithm combining Genetic Algorithm (GA) with Artificial Bee
Colony Optimization (ABCO) Algorithm in [22] for workflow scheduling optimiza-
tion to optimize makespan and cost simultaneously. In [23], the authors suggest an
energy-efficient dynamic scheduling scheme (EDS) of real-time tasks in cloud. The
suggested algorithm classifies the heterogeneous tasks and virtualmachines based on a
historical scheduling record. Then, merging the similar type of tasks to schedule them
to maximally utilize the hosts considering energy efficiencies and optimal operating
frequencies of physical hosts.

Further, task scheduling algorithms considering load balancing are proposed. In
[24], task scheduling based on Artificial Bee Colony (ABC) is suggested. In [25],
HABC_LJF algorithm is suggested based on Artificial Bee Colony and largest job
first for minimizing makespan. The experimental results prove that the suggested
algorithm outperforms those with ACO, PSO, and IPSO. Amulti-objective scheduling
algorithms based on particle swarmoptimization (PSO) integratedwith Fuzzy resource
utilization (FR-MOS) is proposed in [26] for minimizing cost and makespan while
considering reliability constraint, task execution location and data transportation order.
In [27], a task scheduling considering deadlines, data locality and resource utilization
is proposed to save energy costs and optimize resource utilization using fuzzy logic to
get the available number of slots from their rack-local servers, cluster-local servers, and
remote servers. In [28], a simulated-annealing-based bi-objective differential evolution
(SBDE) algorithm is designed to obtain a pareto optimal set for distributed green data
centers (DGDCs) tomaximize the profit of the providers andminimize the average task
loss possibility. In [29], the authors suggest a Non-Dominated Sorting-Based Hybrid
Particle-Swarm Optimization (HPSO) algorithm to optimize both execution time and
cost under deadline and budget constraints. A scheduling algorithm called energy-
makespanmulti-objective optimization (EM-MOO) is proposed in [30] to find a trade-
off between the reducing energy consumption and makespan. The researchers in [31]
design resource prediction-based scheduling (RPS) approach which maps the tasks
of scientific application with the optimal virtual machines by combining the features
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of swarm intelligence and multi-criteria decision-making approach. The proposed
approach tries to minimize the execution time, cost.

Although several meta-heuristics strategies are presented, Artificial Bee Colony
(ABC) algorithm proposed by Karaboga [32] is used in our proposed hybrid approach.
ABC algorithm is an optimization algorithm based on a particular intelligent behavior
of honeybee swarms. The main advantages of ABC algorithm over other optimization
algorithms are exploration, exploitation, robustness, simplicity, few control parame-
ters, fast convergence, high flexibility [33, 34].

In our proposedhybrid approach for scheduling theworkflowapplications,Artificial
Bee Colony (ABC) algorithm as a meta-heuristics algorithm is integrated with Greedy
Randomized Adaptive Search Procedure (GRASP) to overcome the random initializa-
tion of the population food sources and so achieving convergence and diversity in the
search space. Then, some improvements are implemented in the local search process
within each available food source by considering the load of every virtual machine.
After that, the tasks are swapped between the virtual machine of the maximum com-
pletion time and the virtual machine of the minimum completion time. Our proposed
approach can overcome various challenges related to multi-objective optimization of
scheduling workflow applications.

3 Problem formulation andmodeling

This section formulates a complete scheduling model for our proposed architecture
by defining the system model, the workflow model, the proposed scheduling problem
with the constraints.

3.1 Systemmodel

Workflows have been frequently used to model large scale scientific applications
that demand a high-performance computing environment in order to be executed
in a reasonable amount of time. These workflows are commonly modeled as a
set of tasks interconnected via data or computing dependencies. The execution of
workflow applications in cloud is done via a cloud workflow management system
(CWfMS). Workflow management systems are responsible for managing and exe-
cuting these workflows. Workflow Management System schedules workflow tasks to
remote resources based on user-specified QoS requirements and SLA_based negotia-
tion with remote resources capable of meeting those demands. The data management
component of the workflow engine handles the movement and storage of data as
required. There are two main stages when planning the execution of a workflow in a
cloud environment. The first one is the resource provisioning phase; during this stage,
the computing resources that will be used to run the tasks are selected and provi-
sioned. In the second stage, a schedule is generated, and each task is mapped onto the
best-suited resource [35].

Our proposed architecture in Fig. 1 presents a high-level architectural view of
a Workflow Management System (WFMS) utilizing cloud resources to drive the
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Fig. 1 The proposed model using EBABC-PF algorithm for workflow scheduling

execution of a scientific workflow application. It consists of three major parts: Work-
flow Planner, Workflow Engine, Clustering Engine, and Workflow Scheduler. In our
proposed architecture, our proposed algorithm (EBABC-PF) is implemented in the
workflow Planner for identifying suitable cloud service providers to the users then
keeping track of the load on the data centers for allocation of resources that meets the
Quality of Service (QoS) needs. The performance evaluation of the workflow opti-
mization algorithms in real infrastructure is complex and time consuming. Therefore,
we useWorkflowSim toolkit in our simulation-based study to evaluate these workflow
systems [15].

Our proposed approach considers fundamental features of Infrastructure as a Ser-
vice (IaaS) providers such as the dynamic provisioning and heterogeneity of unlimited
computing resources. TheWorkflow Management System architecture allows end
users to work with workflow composition, workflow execution planning, submission,
and monitoring. These features are delivered through aWeb portal or through a stand-
alone application that is installed at the user’s end. Scheduling dependent tasks in the
workflow application is usually called static scheduling algorithm or planning algo-
rithm because you set the mapping relation between VMs and tasks in the Workflow
Planner and should not change in Workflow Scheduler.

3.2 Workflowmodel

This section has introduced different scientific workflows such as Montage, Cyber-
Shake, Epigenomics, LIGO Inspiral, and SIPHT. The full description of these
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Fig. 2 Structure of the four different workflows used in the experiments. (A) Montage. (B) CyberShake. (B)
Epigenomics. (D) LIGO. (E) SIPHT

workflows is presented by Juve et al. [36, 37]. Each of these workflows has dif-
ferent structures as seen in Fig. 2 and different data and computational characteristics.
Montage workflow is an astronomy application used to generate custom mosaics of
the sky based on a set of input images. Most of its tasks are characterized by being
I/O intensive while not requiring much CPU processing capacity. CyberShake is used
to characterize earthquake hazards by generating synthetic seismograms and may be
classified as a data intensive workflow with large memory and CPU requirements.
Epigenomics workflow is used in bioinformatics essentially in a data processing to
automate the execution of various genome sequencing operations or tasks. LIGO
Inspiral workflow is used in the physics field with the aim of detecting gravitational
waves. This workflow is characterized by having CPU intensive tasks that consume
large memory. Finally, SIPHT is used in bioinformatics to automate the process of
searching for sRNA encoding-genes for all bacterial replicons in the National Center
for Biotechnology Information database. Most of the tasks in this workflow have a
high CPU and low I/O utilization.

3.3 Definitions

Cloud computing providers have several data centers at different geographical loca-
tions providing many services through the Internet without violation Service level
agreement (SLA). All the computational resources are in the form of virtual machines
(VMS) with different types and characteristics deployed in the data centers. They
have different numbers of CPUs of different cycle times (Millions of Instructions Per
Second (MIPS)), processing cores (single-core and multi-core), memory capacity and
network bandwidths. Service level agreement (SLA) must be ideally set up between
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customers and cloud computing providers to act as warranty. Service level agreement
(SLA) specifies the details of the service to be provided and the QoS parameters such
as availability, reliability, and throughput and ensures that they are delivered to the
applications. Metrics must be agreed upon by all parties, and there are penalties for
violating the expectations. The factor number one of whether the multi-tasks appli-
cations will run smoothly on the virtual machines is the number of cores of CPU the
users need for running. Clock speed of your cores is the other factor. The elasticity
of the application should be contracted and formalized as part of SLA capacity avail-
ability between the cloud provider and service owner. For example, if you want to run
multiple applications at once or more resource intensive programs, the machine needs
multiple CPU cores. In many cases, resources allocation decisions are application-
specific and are being driven by the application-level metrics. In our experiments use
WorkflowSim simulatorwhich is based onCloudSim simulator that supportsmodeling
of the aforementioned SLA violation scenarios. Moreover, it is possible to define par-
ticular SLA-aware policies describing how the available capacity is distributed among
VMs. The number of resources that was requested but not allocated can be accounted
for by CloudSim [38, 39].

We assume there is a collection of interdependent tasks of a workflow application
which need to be executed in the correct sequential order on a number of heteroge-
neous virtual machines (VMS). A workflow application is modelled by a Directed
Acyclic Graph (DAG), defined by a tuple G (T, E), where T is the set of n tasks
T = {t1, t2, . . . . . . .tn} and E is a set of e edges, represent the precedence constraints.
There is a list of available m virtual machines V MS = {vm1, vm2, . . . . . . .vmm}.
Definition 1 (Tasks) The task can be represented as a tuple t j = { j,M,Pe}, where j
represents the identifier of t j ,M represents the length of t j in million instructions (MI)
and Pe represents the number of processors for running a task on the virtual machine
(vm).

Definition 2 (Virtual Machines) The virtual machine can be described as vmi =
{i, Mp, Pe}where i represents identifier of vmi , Mp is the processing speedmeasured
in Million Instructions per Second (MIPS) per processing element at vmi ,and Pe
represents the number of processing elements in a vmj.

Definition 3 (Multi-objective optimization) The concept of dominance and Pareto
optimality [5] is used to get Pareto optimal solutions. Briefly, a general formulation
for a multi-objective optimization problem that has number of objective functions z (z
≥ 2) with set S of feasible decision variables, is thus as Eq. (1):

PF∗(y) =
⎧
⎨

⎩

min F(y) = ( f1(y), f2(y), . . . fz(y))
s.t .

y ∈ S∀S = {y1, y2, y3, . . . yd}

⎫
⎬

⎭
(1)

If an objective function is intended to be maximized, it is equivalent to minimize
the negative of the function.

A solution is called nondominated, Pareto optimal, or Pareto efficient if none of
the objective functions can be improved in value without degrading some of the other
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objective values.When there aremultiple objectives (F(y)), a feasible solution y1 ∈ S
is said to Pareto dominate another solution y2 ∈ S if y1is not worse than y2in all
objectives and better than y2in at least one objective. Forminimization problem,Eq. (2)
and Eq. (3) should be satisfied for Pareto dominate:

1. fβ(y1) ≤ fβ(y2) for all indices β ∈ {1, 2, . . . z} (2)

2. fη
(
y1

)
< fη

(
y2

)
for at least one index η ∈ {1, 2, . . . z} (3)

3.4 Task scheduling problemmodeling

In our proposed approach, both resource provisioning and scheduling are merged
and modeled as an optimization problem. Our proposed task scheduling problem
may be formulated as a mathematical model consists of trade-off objective functions
representing themain goal(s) of the scheduling and a set of constraints representing the
tasks requirements and resources availability. For simplicity, consider the following
assumptions:

1. The task execution is a non-preemptive, i.e., the assigned task will occupy the
virtual machine until finishing.

2. A task should not start unless all predecessor (parents) tasks are completed.
3. Each task has different execution time on different virtual machines (VMS) due to

the cloud heterogeneity.

We assume that task executionmatrix (T Am×n) is constructed ofm×nET
(
vmi , t j

)

using m of virtual machines VMS and n of tasks T using Eq. (4):

T Am×n =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ET1,1ET1,2 . . . ET1, j . . . ET1,n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

ETi,1ETi,2 . . . ETi, j . . . ET2,n
. . . . . . . . . . . . . . . .... . . .

ETm×1ETm×2 . . . ETm× j . . . ETm×n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4)

In the above matrix T Am×n , each row represents the execution time of different
tasks processed on a targeted vm, and each column represents the execution time
of a task on different virtual machines. Let ETi j be the execution time for task t j
corresponding to vmi . ETi j is calculated using Eq. (5):

ETi j = Mj

Mpi × Pei
(5)

where:Mj is the size of tasktj Mpi is the speed of vmi. Pei is the number of processing
elements.

The data Dout
k j represents the amount of transmitted data from the virtual machine

vm(tk) that executes the task tk to the virtual machine vm(tj) that executes the task t j .
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Let �k j be the bandwidth between the virtual machine vmk and the virtual machine
vm j measured in Bits per Second (B/S). The transfer time TTk j between two virtual
machines executing different tasks

(
tk, t j

)
is determined using Eq. (6):

T Ti j
(
tk, t j

) = Dout [k, j]

�
[
k, j

] (6)

Note that the transfer time between two tasks running on the same vm equals 0.
The Earliest Start Time EST

(
t j

)
of task tj is calculated using Eq. (7):

ESTj = max
tk∈pred(t j)

(
EFTk + T T

(
tk, t j

))
(7)

Where pred (tj) is the set of predecessors of task tj.
The Earliest Finish Time EFTj

(
t j

)
of task t j is calculated as in Eq. (8):

EFTj = ESTj + min
vmi

{
ETi j

(
vmi , t j

)}
(8)

Note that ESTj
(
tentery

) = 0 and EFTj
(
tentery

) = ETj
(
vmi , tentery

)
.

It is necessary to define decision variable (xi j ) before presenting the objective
functions. let xi j be a binary variable given by Eq. (9):

xi j =
{
1 if taskt j assigned to vmi

0 otherwies
(9)

The completion time (CT) of tasks that assigned onto a virtual machine (vmi ) is
calculated as Eq. (10):

CTi =
n∑

j=1

EFTj xi j f or j = 1, 2, 3 . . . n (10)

Themakespan (MS) is themaximumcompletion timeof the overall virtualmachines
in the schedule as shown in Eq. (11):

MS = max
i∈{1...m}(CTi ) f ori = 1, 2, 3 . . .m (11)

The average cloud execution time (ACT ) is calculated using Eq. (12):

ACT =
∑m

i=1 CTi
m

(12)

The resource utilization (Aû) is calculated using Eq. (13):

Aû = ACT

MS
(13)
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For each vmi , Cexe
i is the data processing cost per hour. For each cloud provider,

the total processing cost (TCexe) can be calculated using Eq. (14):

TCexe =
m∑

i=1

Cexe
i × CTi (14)

To solve the proposed scheduling problem based on the concept of dominance, the
multi-objective function (F(y)) can be formulated to minimize makespan (MS) and
total processing cost (TCexe)while maximizing resource utilization (Aû) as Eq. (15).
The multi-objective function (F) satisfying the constraints in Eqs. (16–18) can be
modeled as:

min(F) = min
(
MS , TCexe, (−Aû)

)

s.t.
(15)

m∑

k=1

xik = 1∀tasktk (16)

n∑

i=1

aik xik ≤ bi∀vmi (17)

TCexe ≤ Budget(Application) (18)

The constraints are formulated to meet tasks requirements and cloud resources
availability. The first constraint, Eq. (16), assures that each task (ti ) is submitted to
only one of the virtual machines (VMS). The second constraint, Eq. (17), guarantees
that the required resources for all tasks assigned to virtual machine (vmk) doesn’t
exceed the processing power of that vmk . The third constraint, Eq. (18), ensures that
the total processing cost must be less or equal to the budget dedicated to that workflow
application.

4 Enhanced binary artificial bee colony based pareto front approach

This section presents a new hybrid approach EBABC-PF for solving multi-objective
task scheduling of workflow application. Figure 3 presents the flowchart of the pro-
posed hybrid approach (EBABC-PF). The proposed hybrid approach composed of
multi-phases: priority list phase, initialization phase and allocation phase.

In the priority list phase, the Heterogeneous Earliest Finish Time (HEFT ) algorithm
[10, 11] is used to build a priority list of the submitted tasks to be scheduling. In the
initialization phase, a greedy randomized adaptive search procedure (GRASP) [40, 41]
is used to satisfy the convergence and to get feasible solutions for population. In the
allocation phase, the Binary Artificial Bee Colony algorithm (BABC) [12, 13] is used
to schedule tasks onto virtual machines.

In the proposed approach, several modifications are considered with the BABC
where Right Circular Shift [42] and Mutation Operator [43] are used for producing

123



228 Zeedan, Attiya, and El-Fishawy

Fig. 3 Flowchart of the proposed hybrid approach EBABC-PF

the new food source (solution) to satisfy the diversity in the proposed solution space.
Further, a non-dominated sorting algorithm as in [20] is used for sorting onlooker
population (final solutions) based on the dominance approach and the pareto-based
strategy.

4.1 Priority list phase

In this phase, Heterogeneous Earliest Finish Time (HEFT) algorithm [10, 11] is used
to build a priority list of tasks. Algorithm 1 shows the pseudo-code of the HEFT
ranking algorithm for task sorting phase. In this stage, tasks are sorted in descending
order based on their rank value. The rank value of a task (rank(ti )) is calculated using
Eq. (19):

rank
(
t j

) = AVG
(
ETjk

) + MAX
i∈succ(t j)

(
T Ti j + rank(ti )

)∀k ∈ vms (19)

where:
AVG

(
ETjk

)
: is the average execution time of the task j on all virtual machines.

T Ti j : is the transfer time between tasks ti and t j .
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succ
(
t j

)
: is the immediate successors of task t j .

rank(ti ) : is the rank of the immediate successors of task t j

Note that the transfer time T Ti j between two tasks running on the same vm equals
0.

4.2 Initialization phase

For generating initial populations (feasible solutions) in the proposed hybrid approach
EBABC-PF, Greedy Randomized Adaptive Search Procedure (GRASP) [40, 41] is
used. In GRASP, each cycle consists of two stages: construction and local search.
The construction stage builds a feasible solution whose neighborhood is investigated
until a local minimum is found during the local search stage. Algorithm 2 shows the
pseudo-code of the GRASP.
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4.3 Allocation phase

The Binary Artificial Bee Colony (BABC) algorithm [12, 13] used in the proposed
hybrid approach is designed based on the foraging behavior of honeybees (popula-
tions). It assumes number of food sources (or solutions) represent a trade-off among the
objectives andworks through optimizing them.The nectar amount of a food source cor-
responds to the quality (fitness) of the associated solution. There are three types of bees:
employed, onlooker and scout bees. These food sources have been found by employee
bees in the population (PuE ). Onlooker bees choose food sources probabilistically
using the fitness (the multi-objective function)Fk in Eq. (15). The probability assigned
to the K th food source, Pk is calculated as Eq. (20):

Pk = Fk
∑PuE

i=1 Fi
(20)

When food sources (solutions) being found by employee bees could not get opti-
mized in a predefined cycle (Limit), the employee bees will be abandoned and turn
into the scout bees. A scout bee will search for a new food source (solution) using
Algorithm 2 of GRASP. The main steps of BABC algorithm are given in Algorithm 3
and repeats until a predetermined termination criterion is met.

4.4 Enhancing local search of the foragers

In the proposed hybrid approach, the employee bees in BABC algorithm use Right
Circular Shift Neighborhood [42] for enhancing local search of the foragers. Right
Circular Shift Neighborhood is obtaining by moving virtual machine assignments in
the original food source (solution) one step in right direction then changing the virtual
machine assignment of one task that got shifted out at one end and inserts it back at the
other end. Further, the onlooker bees in BABC algorithm use Bit Inversion Mutation
Operator [43] for maintaining sustainable diversity in a population. The mutation
(swap) operator is applied in the food source (solution) among the tasks assigned to
the virtual machine of the maximum completion time and the tasks assigned to the
virtual machine that gives minimum completion time to generate the neighborhood
solutions (food sources) of the bees. The food source (solution) is evaluated according
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to fitness function in Eq. (15). Then the improvement rate (ImR) is calculated as in
Eq. (21):

Improvemet Rate(ImR) = New(F) − Old(F)

New(F)
100% (21)

If ImR is over 25% then the bee updates its food source (solution) to the new one
and the trial count variable for the existing food source (solution) is setting to “0”.
Otherwise, if the bee does not change its food source, the trial count is incremented
by 1. if ImR is less than 25% and the trial count exceeds the limit then there is no
improvement in the solution and this solution will be abandoned.

4.5 Producing pareto front based dominance approach

In the proposed approach, the solutions in the population are sorted after the termina-
tion criteria is met using a fast non-dominated sorting algorithm in [19]. Algorithm 4
presents the pseudo-code of the fast non-dominated sorting algorithm. The domination
ranks (Rank) of the solution p (SolP ) and the solution q (Solq) in the Bees population
(PB) are calculated based on two entities: The number of solutions which dominate
the solution p (n p), and the set of solutions that the solution p dominates

(
Sp

)
.
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4.6 The proposed algorithm EBABC-PF

Algorithm 5 presents the pseudo-code of the proposed hybrid algorithm.

4.7 The complexity analysis of the proposed hybrid algorithm

This section illustrates the time complexity of the proposed hybrid algorithm. Accord-
ing to Algorithm 5, the time complexity is the summation of the time complexities
of Algorithms 1, 2, 3 and 4. Let n be the number of tasks, m is the number of nodes
in the clouds, PuE is the number of the food sources (feasible solutions) in the pop-
ulation, and ϕ is the number of objectives to be optimized. In Algorithm 1, task
priority list is built by HEFT algorithm hence, the time complexity is O(n). In Algo-
rithm 2, the feasible solutions in the population are initialized using the GRASP
therefore this algorithm require sO(PuEmn). In Algorithm 3, the allocation phase
uses BABC algorithm modified with Right Circular Shift method at employee bees
phase while Bit Mutation Operators is used in onlooker bees phase. Third, send the
scouts search the area using the GRASP. This allocation step requires time complexity
O

(
2PuEmn2 + PuEmn

) ∼= O
(
PuEmn2

)
. Finally, apply fast non-dominated sorting

algorithm requires O
(
ϕPu2E

)
.

In our experiment, the overall complexity of the proposed hybrid algorithm is
O

(
n + PuEmn + PuEmn2 + ϕPu2E

) ∼= O
(
PuEmn2 + Pu2E

)
assuming the three

objectives (ϕ = 3): makespan (MS), cost (TCexe) and utilization (Aû). During our
experiment,we assume that the number of the food sources in the population PuE = 40
and it is fixed then the overall complexity is simplified to be O

(
PuEmn2 + Pu2E

) ∼=
O

(
mn2

)
.
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5 Experiments

This section describes the overall experimental setup, performancemetrics, results, and
analysis to evaluate the proposedhybrid approach (EBABC-PF).Wecompared theper-
formance of the proposed approach with Heterogeneous Earliest Finish Time (HEFT)
[10, 11], Deadline Heterogeneous Earliest Finish Time (DHEFT) algorithm [44], Fast
and Elitist Multi-objective Genetic Algorithm (NSGA-II) [19, 43] and Binary Artifi-
cial Bee Colony (BABC) algorithm [12, 13].

5.1 Performancemetrics

Based on our simulation setup, we have four performance metrics computed by for-
mulas (12–15):

1. The makespan (MS): The overall completion time needed to execute all the tasks
by the available clouds.

2. The resource utilization (Aû): The ratio of the average completion time of the
virtual machine and the overall makespan.

3. The processing cost (TCexe): The total processing cost needed to execute submit-
ted application using the available clouds.

5.2 Environment setup

The experiments were carried out using NetBeans IDE Version 8.0.2, CloudSim
version-3.0 and WorkflowSim Version-1.1.0. Experimental environment includes
Intel(R)-Core(TM)i7-7500U-2.70 GHz processor and 16.0 GB RAM running on
Microsoft Windows 10. Our proposed simulation carried out the scheduling process
coded in Java and evaluated through simulation run forMontage, CyberShake, EpiGe-
nomics, LIGO Inspiral, and SIPHT workflows, respectively.

5.3 Parameters settings

In these experiments, we have determined the population parameters and various
conditions according to the implemented experiment which influence the proposed
algorithm EBABC-PF. Using Amazon EC2 instance pricing list and Amazon charges
proposed in [45] for on-demand reserved virtualmachines instances on an hourly basis,
we calculate the cost accordingly. The suggested parameter settings for the proposed
approach EBABC-PF are provided in Tables [1–3]. We assume the cloud data centers
setting with the host specifications which are presented in Tables 1 and 2, respectively.
The suggested configuration for the proposed approach EBABC-PF is provided in
Table 3.
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Table 1 Data center
configuration Paramater name Paramater values

Number of data center 3

Number of virtual machines {20, 80}

Operating system (OS) LINUX

Virtual machine hypervisor (VMM) Xen

Cost per vm($/Hr) 2.224

Table 2 Simulated host specification

Host type CPU(MIPS) Storage-RAM-BW

A dual-core machine 1000–1500 Storage(1 GB)
RAM(2048 MB)
BW(103 b/s)

A quad-core machine 1000–1500-2000–2500 Storage(1 GB)
RAM(2096 MB)
BW(104 b/s)

Table 3 Final configuration of
the proposed algorithm Population size 40

Employee bee 20

Onlooker bees 20

Scout bees The best solutions replace the worst
ones

The maximum iteration 100

The Limit 5

5.4 Experimental results with different scientific workflows

The workflows used in our experiment are synthesized based on the benchmark work-
flows available in theWorkflowSimsimulation tool. Five groups of practicalworkflows
benchmarks are chosen, i.e., Montage, CyberShake, Epigenomics, LIGO, and SIPHT
[36, 37]. In our experiment, two different sizes of these workflows around the tasks
number in [100,1000] are utilized while the available virtual machines number are in
[20, 80].

To measure the effectiveness of our proposed algorithm EBABC-PF, the perfor-
mance of the proposed approach is comparedwithHeterogeneous Earliest Finish Time
(HEFT) [10, 11] algorithm, Deadline Heterogeneous Earliest Finish Time (DHEFT)
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[44] algorithm,Non-dominated SortGeneticAlgorithm (NSGA-II) [19, 43] aswe have
taken binary tournament selection, one-point crossover with the mutation process, and
Standard Binary Artificial Bee Colony (BABC) [12, 13] algorithm.

These algorithms are implemented inWorkflowSim simulator using the benchmark
workflows. Tables 4, 5 and 6 show the experimental results with different scien-
tific workflows in terms of makespan (MS), resource utilization (Aû) and processing
cost (TCexe). A comparison of the makespan (MS) generated among the algorithms:
HEFT, DHEFT, NSGA-II, BABC, and EBABC-PF using the benchmark workflows
is shown in Table 4. The resource utilization (Aû) comparison generated among the
algorithms: HEFT, DHEFT, NSGA-II, BABC, and EBABC-PF is shown in Table
5. The processing cost (TCexe) comparison among the algorithms: HEFT, DHEFT,
NSGA-II, BABC, and the proposed algorithm EBABC-PF is shown in Table 6 using
the benchmark workflows. It is obvious that the proposed hybrid algorithm EBABC-
PF gives the best results in terms ofmakespan (MS), utilization (Aû) and cost (TCexe)

compared to HEFT, DHEFT, NSGA-II, and BABC for all instances.

Table 4 The minimum makespan(sec.) obtained by the number of virtual machines with HEFT, DHEFT,
NSGA-II, BABC and the proposed approach EBABC-PF

Applications Tasks
No

Virtual
machines
No

HEFT DHEFT NSGA-II BABC EBABC-PF

Montage 100 20 256.500 214.500 182.570 150.278 106.009

100 80 117.150 97.968 83.384 68.636 48.417

1000 20 989.568 863.200 762.345 632.100 521.260

1000 80 896.390 781.921 690.562 572.581 472.178

CyberShake 100 20 326.700 276.400 216.980 176.100 136.400

100 80 227.560 192.524 151.136 122.661 95.008

1000 20 665.452 373.567 303.342 253.762 215.672

1000 80 497.869 279.490 226.950 189.856 161.359

Epigenomics 100 20 465.023 378.428 303.340 253.764 198.852

100 80 196.552 159.951 128.213 107.259 84.049

1000 20 856.540 632.789 458.972 352.546 252.276

1000 80 479.489 354.234 256.931 197.354 141.223

LIGO
Inspiral

100 20 389.879 318.907 289.190 209.880 196.280

100 80 174.964 143.114 129.778 94.187 88.084

1000 20 689.568 563.345 492.742 402.198 372.260

1000 80 397.667 324.875 284.159 231.944 214.679

SIPHT 100 20 296.860 183.410 104.320 86.472 65.280

100 80 141.387 87.354 49.685 41.184 31.091

1000 20 529.568 453.345 362.345 265.100 210.289

1000 80 290.385 248.589 198.689 145.366 115.311
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Table 5 The utilization (%) obtained by the number of virtual machines with HEFT, DHEFT, NSGA-II,
BABC and the proposed approach EBABC-PF

Applications Tasks
No

Virtual
machines
No

HEFT DHEFT NSGA-II BABC EBABC-PF

Montage 100 20 49.67 52.89 58.89 67.56 78.76

100 80 38.46 40.95 45.60 52.31 60.99

1000 20 61.67 67.89 72.89 78.56 81.76

1000 80 54.62 60.12 64.55 69.57 72.41

CyberShake 100 20 53.89 60.26 67.34 72.67 85.45

100 80 49.21 55.03 61.49 66.36 78.03

1000 20 70.89 76.26 80.34 83.67 89.45

1000 80 68.98 74.21 78.18 81.42 87.04

Epigenomics 100 20 52.67 61.85 69.67 78.34 87.45

100 80 48.34 56.77 63.94 71.90 80.26

1000 20 69.67 73.67 80.67 87.34 93.45

1000 80 67.41 71.27 78.05 84.50 90.41

LIGO
Inspiral

100 20 38.89 48.26 52.34 59.67 62.45

100 80 22.69 28.16 30.54 34.81 36.44

1000 20 48.89 54.26 59.34 65.67 69.45

1000 80 32.82 36.42 39.84 44.08 46.62

5.5 The performance evaluation using benchmark workflows

In our experiments, we consider three conflicting objectives, minimizing makespan
and processing cost along with maximizing the resource utilization. Our proposed
algorithm EBABC-PF schedules the workflows onto the available virtual machines
taking into account the load balance among the available virtualmachines by swapping
the tasks allocated to the virtual machine with the minimum completion time and the
tasks allocated to the virtual machine with the maximum completion time within the
search process. After predefined cycles for running search process in our experiment
and based on the dominance approach, the final population (feasible solutions) is
sorted. The best near-optimal solution is selected from the final sorted population
according to the value of the multi-objective function Fk formulated as Eq. (15).

A statistical analysis of the outputs when scheduling the benchmark workflows
(Montage, CyberShake, Epigenomics, LIGO, and SIPHT) applications is shown in
Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18 considering different sizes of
theseworkflowsaround the interval [100,1000] tasks and the available virtualmachines
are in the interval [20,80]. The makespan results of the benchmark workflows used
in our experiment are depicted in Figs. 4, 5, 6, 7 and 8. When applying our proposed
algorithm EBABC-PF, the decreasing rate in makespan(MS) ranges from –78.01% to
–6.48%. The resource utilization results of the benchmark workflows are shown in
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Table 6 The processing cost ($) obtained by HEFT, DHEFT, NSGA-II, BABC and the proposed approach
(processing cost per vm = 2.224$)

Applications Tasks
No

Virtual
machines
No

HEFT DHEFT NSGA-II BABC EBABC-PF

Montage 100 20 1809.36 1273.19 953.62 734.23 653.11

100 80 4227.22 2974.56 2227.95 1715.39 1525.87

1000 20 2682.75 2484.07 2093.07 1868.77 1649.30

1000 80 5359.06 4962.18 4181.12 3733.06 3294.64

CyberShake 100 20 2274.31 1825.67 1507.78 1247.82 959.89

100 80 4726.11 3793.82 3133.23 2593.02 1994.69

1000 20 3588.99 2996.98 2758.04 2443.63 2205.16

1000 80 5610.87 4685.35 4311.79 3820.26 3447.45

100 20 2851.31 2315.67 2123.78 1847.82 1459.89

Epigenomics 100 80 5136.07 4171.22 3825.57 3328.48 2629.70

1000 20 4484.09 3928.46 3372.90 2867.33 2539.53

1000 80 5831.06 5108.53 4386.09 3728.65 3302.38

LIGO
Inspiral

100 20 2176.78 1850.59 1229.37 989.72 686.88

100 80 4763.76 4049.91 2690.41 2165.95 1503.20

1000 20 3685.81 3274.63 2887.37 2260.72 1971.81

1000 80 5163.76 4587.70 4045.16 3167.23 2762.47

SIPHT 100 20 1751.78 1423.63 1298.21 979.47 657.44

100 80 4284.46 3481.88 3175.13 2395.56 1607.95

1000 20 3171.72 2871.66 2570.74 2116.08 1790.49

1000 80 4807.16 4352.37 3896.29 3207.19 2713.72
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Fig. 4 Theminimummakespan(sec.) forMontageworkflowapplication obtained byHEFT,DHEFT,NSGA-
II, BABC and EBABC-PF with number of tasks = {100, 1000} and number of virtual machines = {20,
80}

123



238 Zeedan, Attiya, and El-Fishawy

0
100
200
300
400
500
600
700
800
900

1000

No.of virtual
machines

=20

No.of virtual
machines

=80

No.of virtual
machines

=20

No.of virtual
machines

=80

No. of
tasks=100

No. of
tasks=100

No. of
tasks=1000

No. of
tasks=1000

HEFT
DHEFT
NSGA-II
BABC
EBABC-PF

M
ak

es
pa

n

Fig. 5 The minimum makespan(sec.) for CyberShake workflow application obtained by HEFT, DHEFT,
NSGA-II, BABC and EBABC-PF with number of tasks = {100, 1000} and number of virtual machines =
{20, 80}
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Fig. 6 The minimum makespan(sec.) for Epigenomics workflow application obtained by HEFT, DHEFT,
NSGA-II, BABC and EBABC-PF with number of tasks = {100, 1000} and number of virtual machines =
{20, 80}

Figs. 9, 10, 11, 12 and 13. The increasing rate in utilization (Au

˘

) ranges from 4.07%
to 66.03%. We plot monetary cost in Figs. 14, 15, 16, 17 and 18. The processing cost
(TCexe) decreasing rate ranges from −68.45% to −9.76%.

For example, comparable with BABC algorithm when scheduling the benchmark
workflows using our proposed algorithm EBABC-PF, there are different decreasing
rates in makespan(MS) according to the different number of the tasks summited.
When scheduling Montage workflow using EBABC-PF, the decreasing rate in
makespan(MS) is −29.46%. Although when the number of tasks equal to 1000,
the decreasing rate in makespan(MS) is −17.54%. If scheduling CyberShake work-
flow using EBABC-PF comparable with BABC algorithm, the decreasing rate in
makespan(MS) is −22.54% with number of tasks equal to 100, while it is −15.01%
with number of tasks equal to 1000. SchedulingEpigenomicsworkflowusingEBABC-
PF achieves decreasing rate in makespan(MS) about −21.64% comparable with
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Fig. 7 The minimum makespan(sec.) for LIGO Inspiral workflow application obtained by HEFT, DHEFT,
NSGA-II, BABC and EBABC-PF with number of tasks = {100, 1000} and number of virtual machines =
{20, 80}
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Fig. 8 The minimum makespan(sec.) for SIPHT workflow application obtained by HEFT, DHEFT, NSGA-
II, BABC and EBABC-PF with number of tasks = {100, 1000} and number of virtual machines = {20,
80}
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Fig. 9 The average resource utilization(%) for Montage workflow application obtained by HEFT, DHEFT,
NSGA-II, BABC and EBABC-PF with number of tasks = {100, 1000} and number of virtual machines =
{20, 80}
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Fig. 10 The average resource utilization(%) for CyberShake workflow application obtained by HEFT,
DHEFT, NSGA-II, BABC and EBABC-PF with number of tasks = {100, 1000} and number of virtual
machines = {20, 80}
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Fig. 11 The average resource utilization(%) for Epigenomics workflow application obtained by HEFT,
DHEFT, NSGA-II, BABC and EBABC-PF with number of tasks = {100, 1000} and number of virtual
machines = {20, 80}
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Fig. 12 The average resource utilization(%) for LIGO Inspiral workflow application obtained by HEFT,
DHEFT, NSGA-II, BABC and EBABC-PF with number of tasks = {100, 1000} and number of virtual
machines = {20, 80}
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Fig. 13 The average resource utilization(%) for SIPHT workflow application obtained by HEFT, DHEFT,
NSGA-II, BABC and EBABC-PF with number of tasks = {100, 1000} and number of virtual machines =
{20, 80}
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Fig. 14 Processing cost forMontageworkflowapplication obtained byHEFT,DHEFT,NSGA-II, BABCand
EBABC-PF with number of tasks = {100, 1000} and number of virtual machines = {20, 80}. (processing
cost per vm = 2.224$/hr)

BABC. The decreasing rate is−28.44%with number of tasks equal to 1000. Schedul-
ing LIGOworkflowusingEBABC-PF algorithmhas decreasing rate inmakespan(MS)
is about −6.48% comparable with BABC, while it is −7.44% if number of tasks is
1000. When scheduling SIPHT workflow using EBABC-PF algorithm with number
of tasks equal to 100, the decreasing rate in makespan(MS) is −24.51% comparable
with BABC algorithm while the decreasing rate is −20.68% with number of tasks
equal to 1000.

Overall, comparable with BABC algorithm when scheduling the benchmark work-
flows (Montage, CyberShake, Epigenomics, LIGO, and SIPHT), the decreasing rate
in makespan(MS) of EBABC-PF algorithm is decreasing with the number of tasks
is increasing in the case of Montage, CyberShake, and SIPHT applications while the
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Fig. 15 Processing cost for CyberShake workflow application obtained byHEFT, DHEFT, NSGA-II, BABC
andEBABC-PFwith number of tasks= {100,1000} and number of virtualmachines= {20,80}. (processing
cost per vm = 2.224$/hr)
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Fig. 16 Processing cost forEpigenomicsworkflowapplication obtained byHEFT,DHEFT,NSGA-II, BABC
andEBABC-PFwith number of tasks= {100,1000} and number of virtualmachines= {20,80}. (processing
cost per vm = 2.224$/hr)
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Fig. 17 Processing cost for LIGO Inspiral workflow application obtained by HEFT, DHEFT, NSGA-II,
BABC and EBABC-PF with number of tasks = {100, 1000} and number of virtual machines = {20, 80}.
(processing cost per vm = 2.224$/hr)
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Fig. 18 Processing cost for SIPHT workflow application obtained by HEFT, DHEFT, NSGA-II, BABC and
EBABC-PF with number of tasks = {100,1000} and number of virtual machines = {20,80}. (processing
cost per vm = 2.224$/hr)

decreasing rate is increasing with the number of tasks increase in the case of Epige-
nomics workflow and LIGO workflow.

Likewise, there are different increasing rates in utilization (Au

˘

) according to the
different number of the tasks summited when scheduling the benchmark workflows
(Montage, CyberShake, Epigenomics, LIGO, and SIPHT) applications using our pro-
posed algorithm EBABC-PF comparable with BABC algorithm. When scheduling
Montage workflow using our proposed algorithm EBABC-PF, the increasing rate in

utilization (Au

˘

) is 16.58% comparable with BABC algorithm if the number of tasks is
equal to 100 while the increasing rate is 4.07% if the number of tasks is 1000. When
scheduling CyberShake workflow with EBABC-PF, the increasing rate in utilization

(Au

˘

) is 17.59% comparable with BABC algorithm if the number of tasks is 100 while
the increasing rate is 6.91% with the number of tasks equal to 1000. If scheduling
Epigenomics workflow using EBABC-PF, it achieves increasing rate in utilization

(Au

˘

) about 11.63% while the increasing rate is 7.00% with number of tasks equal to
1000 comparable with BABC algorithm. Scheduling LIGO workflow using EBABC-

PF achieves increasing rate in utilization (Au

˘

) about 4.66% comparable with BABC if
the number of tasks is 100, while it is 5.76% with the number of tasks equal to 1000.
When scheduling SIPHT workflow using EBABC-PF algorithm with number of tasks

equal to 100, the increasing rate in utilization (Au

˘

) comparable with BABC algorithm
is 4.66% while it is 5.76% with the number of tasks equal to 1000.

We note that when scheduling such workflows, the increasing rate in utilization

(Au

˘

) of our proposed algorithm EBABC-PF is decreasing with the number of tasks
increase in the case of Montage, CyberShake, and Epigenomics while the increasing

rate of utilization (Au

˘

) is increasing with the number of tasks increase in the case of
SIPHT workflow and LIGO workflow.

Furthermore, there are different decreasing rates in the processing cost (TCexe)

according to the different number of the tasks summited when scheduling the
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benchmark workflows (Montage, CyberShake, Epigenomics, LIGO, and SIPHT)
applications using our proposed algorithm EBABC-PF comparable with BABC algo-
rithm. When scheduling Montage workflow with number of tasks equal to 100 using
EBABC-PF algorithm, the decreasing rate in the processing cost (TCexe) is−11.05%
while the decreasing rate in the processing cost (TCexe) is−11.74%when the number
of tasks equal to 1000. When scheduling CyberShake workflow using EBABC−PF
algorithm, the decreasing rate in cost (TCexe) is −23.07% with the number of tasks
equal to 100 while the decreasing rate is −9.76% with the number of tasks equal to
1000. If scheduling Epigenomics workflow, the decreasing rate is about −20.99%
with the number of tasks equal to 100 while the decreasing rate is −11.43% with the
number of tasks equal to 1000. While scheduling LIGO workflow using EBABC-PF
algorithm, the decreasing rate in the processing cost (TCexe) is −30.60% while it
is −12.78% with the number of tasks equal to 1000 comparable with BABC algo-
rithm. When scheduling SIPHT workflow the decreasing rate in the processing cost
(TCexe) is−32.88% with the number of tasks equal to 100, while the decreasing rate
is −15.39% with the number of tasks equal to 1000.

Generally, with this workflow scheduling using our proposed algorithm
EBABC−PF, the decreasing rate in the processing cost (TCexe) comparable to BABC
algorithm is decreasing with the number of tasks increase in the case of CyberShake,
Epigenomics, LIGO and SIPHT workflow applications while the decreasing rate is
increasing slightly with the number of tasks increase in the case of Montage workflow
application only.

Practically, the results depict that our proposed algorithm EBABC-PF outperforms
all the suggested baseline algorithms for comparison (HEFT, DHEFT, NSGA-II, and
BABC) considering minimizing makespan (MS) and processing cost (TCexe) while
maximizing the utilization (Aû). Although, BABC shows better results than HEFT,
DHEFT, andNSGA-II.WhileNSGA-II is better thanDHEFTbutDHEFToutperforms
HEFT. Overall, our proposed algorithm EBABC-PF gives noticeable improvement for
every type of the benchmark workflows implemented in our experiments.

6 Conclusion and future work

Scheduling workflow applications in cloud computing is an important issue as a
multi-objective optimization problem that need an efficient scheduling strategy to
optimize the use of cloud resources considering different Quality of Services (QoS)
requirements. This article develops a newefficient hybrid algorithm formulti-objective
workflow scheduling problem in cloud, called EBABC-PF. In our approach, the pri-
ority list is built for the summited workflow applications using the Heterogeneous
Earliest Finish Time (HEFT) algorithm. As the determination of the initial population
plays a crucial role to preserve convergence and diversity in the search space of the food
sources (feasible solutions), the proposed approach combines the greedy randomized
adaptive search procedure (GRASP) and the Binary Artificial Bee Colony (BABC).
Further, several modifications are applied considering the loads of the available virtual
machines within swapping tasks between the virtual machine ofmaximum completion
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time and the other of minimum completion time in each food source (feasible solu-
tion). These modifications try to enhance local search of the foragers and maintaining
sustainable diversity in a population towards minimizing makespan, and processing
cost while maximizing utilization. The proposed approach is simulated using Work-
flowSim simulator based CloudSim simulator and the results are compared with the
algorithms: HEFT, DHEFT, NSGA-II, BABC. The simulation results and the compar-
isons demonstrate the effectiveness of the proposed algorithm EBABC-PF in terms of
makespan, processing cost and utilization comparedwith the other existing algorithms.

The future work is to investigate other meta-heuristics for the multi-objective task
scheduling problems and generalize the application of the proposed algorithm to
solve other combinatorial optimization problems considering the evolution of power-
constrained Internet of Things (IoT) devices.
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