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Abstract
Recent advances in non-volatile main memory (NVM) technology have spurred
research on algorithms that are resilient to intermittent failures that cause processes to
crash and subsequently restart. In this paper we present a Recoverable Mutual Exclu-
sion (RME) algorithm that supports abortability. Our algorithm guarantees FCFS and
a strong liveness property: processes do not starve even in runs consisting of infinitely
many crashes, provided that a process crashes at most a finite number of times in
each of its attempts. On DSM and Relaxed-CC multiprocessors, a process incurs
O(min(k, log n)) RMRs in a passage and O( f +min(k, log n)) RMRs in an attempt,
where n is the number of processes that the algorithm is designed for, k is the point
contention of the passage or the attempt, and f is the number of times that p crashes
during the attempt. On a Strict CC multiprocessor, the passage and attempt complexi-
ties are O(n) and O( f +n), respectively. Our algorithm uses only the read, write, and
CAS operations, which are commonly supported by multiprocessors. Attiya, Hendler,
and Woelfel proved that, with any mutual exclusion algorithm, a process incurs at
leastΩ(log n) RMRs in a passage, if the algorithm uses only the read, write, and CAS
operations (in: Proc. of the Fortieth ACM Symposium on Theory of Computing, New
York, NY, USA, 2008). This lower bound implies that the worst-case RMR complexity
of our algorithm is optimal for the DSM and Relaxed CC multiprocessors. This paper
is an expanded version of our conference paper as reported by Jayanti and Joshi (in:
Atig and Schwarzmann (eds) Networked Systems. Springer International Publish-
ing, Cham, 2019), which presented the first Recoverable Mutual Exclusion (RME)
algorithm that supports abortability. This algorithm from our conference paper (in:
Atig and Schwarzmann (eds) Networked Systems. Springer International Publishing,
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Cham, 2019) admits starvation when there are infinitely many aborts in a run. In this
paper, we fix this shortcoming and prove the algorithm’s properties by identifying an
inductive invariant.

Keywords Concurrent algorithm · Synchronization · Mutual exclusion · Recoverable
algorithm · Fault tolerance · Non-volatile main memory · Shared memory ·
Multi-core algorithms

Mathematics Subject Classification 68W15

1 Introduction

Recent advances in non-volatile main memory (NVM) technology [11, 26, 30, 31]
have spurred research on designing algorithms that are resilient to process crashes.
NVM is byte-addressable, so it replaces main memory, directly interfacing with the
processor. This development is exciting because, if a process crashes and subsequently
restarts, there is now hope that the process can somehow recover from the crash by
consulting the contents of the NVM and resume its computation.

To leverage this advantage given by the NVM, there has been keen interest in
reexamining the important distributed computing problems for which algorithms were
designed in the past for the traditional (crash-free) model of an asynchronous shared
memory multiprocessor. The goal is to design new algorithms that guarantee good
properties even if processes crash at arbitrary points in the execution of the algorithm
and subsequently restart and attempt to resume the execution of the algorithm. The
challenge in designing such “recoverable” algorithms stems from the fact that when
a process crashes, even though the shared variables that are stored in the NVM are
unaffected, the crash wipes out the contents of the process’ cache and CPU registers,
including its program counter. So, when the process subsequently restarts, it can’t have
a precise knowledge of exactly where it crashed. For instance, if the last instruction
that a process executes before a crash is a compare&swap (CAS) on a shared variable
X , when it subsequently restarts, it can’t tell whether the crash occurred just before
or just after executing the CAS instruction and, if it did crash after the CAS, it won’t
know the response of the CAS (because the crash wipes out the register the CAS’s
response went into). The “recover” method, which a process is expected to execute
when it restarts, has the arduous task of ensuring that the process can still somehow
resume the execution of the algorithm seamlessly.

The mutual exclusion problem, formulated to enable multiple processes to share a
resource that supports only one process at a time [6], has been thoroughly studied for
over half a century for the traditional (crash-free) model, but its exploration is fairly
recent for the crash-restart model, where processes crash intermittently and restart
subsequently. In the traditional version of the problem, each process p is initially
in the “remainder” section. When p becomes interested in acquiring the resource, it
executes the tryp() method; and when this method completes, p is in the “critical
section” (CS). To give up the CS, p invokes the exitp() method; and when this
method completes, p is back in the remainder section. An algorithm to this problem
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specifies the code for the try and exit methods so that at most one process is in the CS at
any time and other desirable properties (such as starvation freedom, bounded exit, and
First-Come-First-served, or FCFS) are also satisfied.Golab andRamarajuwere thefirst
to reformulate this problem for the “crash-restart model”, where a process can crash at
any time and subsequently restart [10]. In the reformulated problem, which they called
Recoverable Mutual Exclusion (RME), if p crashes while in try, CS, or exit, p’s cache
and registers (aka local variables) are wiped out and p returns to the remainder section
(i.e., crash resets p’s program counter to its remainder section). When p restarts after
a crash, it is required to invoke a new method, named recoverp(), whose job is to
“repair” the adverse effects of the crash and send p to where it belongs. In particular, if
p crashed while in the CS, recoverp() puts p back in the CS (by returning IN_CS).
On the other hand, if p crashed while executing tryp(), recoverp() has a choice—
it can either roll p back to the Remainder (by returning IN_REM) or put it in the CS
(by returning IN_CS), but of course without violating Mutual Exclusion. Similarly,
if p crashed while executing exitp(), recoverp() has a choice of returning either
IN_REM or IN_CS.

Golab and Ramaraju made a crucial observation that if p crashes while in the CS,
then no other process should be allowed into the CS until p restarts and reenters the
CS. This Critical Section Reentry (CSR) requirement was strengthed by Jayanti and
Joshi’s Bounded CSR requirement: if p crashes while in the CS, when p subsequently
restarts and executes the recover method, the recover method should put p back into
the CS in a bounded number of its own steps [17]. There has been a flurry of research
on RME algorithms in the recent years [3, 5, 8–10, 14, 15, 17, 18, 20].

Orthogonal to this development of recoverable algorithms, motivated by the needs
of real time systems and database systems, Scott and Scherer advocated the need for
mutual exclusion algorithms to support the “abort” feature, whereby a process in the
try section can quickly quit the algorithm, if it so desires [28]. More specifically, if p
receives an abort signal from the environment while executing the try method, the try
method should complete in a bounded number of p’s steps and either launch p into
the CS or send p back to the remainder section.1

In the past two decades, there has been a lot of research on abortable mutual exclu-
sion algorithms for the traditional (crash-free) model.

The possibility of crashes, together with the CSR requirement, renders abortabil-
ity even more important in the crash-restart model, yet there have been no abortable
recoverable algorithms until the conference publication of the algorithm in this sub-
mission [18]. There has since been one more algorithm, by Katzan andMorrison [20],
and we will soon compare the two algorithms.

1.1 RMR complexity

Remote Memory Reference (RMR) complexity is the standard complexity metric used
for comparing mutual exclusion algorithms, so we explain it here. This metric is

1 Of course, p might receive an abort signal even while executing the exit section. However, because of the
standard “bounded exit” requirement that every process completes the exit method in a bounded number of
its steps, no special intervention is necessary to handle an abort-signal during the exit method.
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explained for the two prevalent models of multiprocessors—Distributed SharedMem-
ory (DSM) and Cache-Coherent (CC) multiprocessors—as follows. In DSM, shared
memory is partitioned into n parts, one per process, and each shared variable resides
in exactly one of the n parts. A step in which a process p executes an instruction on
a shared variable X is considered an RMR if and only if X is not in p’s part of the
partition.

In CC, the shared memory is remote to all processes, but every process has a local
cache. A step in which a process p executes an instruction op on a shared variable X
is considered an RMR if and only if op is read and X is not in p’s cache, or op is any
non-read operation (such as a write or CAS). If p reads X when X is not present in
p’s cache, X is brought into p’s cache. If a process q performs a non-read operation
op while X is in p’s cache, X ’s copy in p’s cache is deleted in the Strict CC model,
but in the Relaxed CC model it is deleted only if op changes X ’s value. Thus, if X is
in p’s cache and q performs an unsuccessful CAS on X , then X continues to remain
in p’s cache in the relaxed CC model.2

A passage of a process p starts when p leaves the remainder section and completes
at the earliest subsequent time when p returns to the remainder (note that p returns to
the remainder either because of a crash or because of a normal return from try, exit or
recover methods). An attempt of p starts when p leaves the remainder and completes
at the earliest subsequent time when p returns to the remainder “normally,” i.e., not
because of a crash.3 Note that each attempt includes one or more passages.

The RMR complexity of a passage (respectively, attempt) of a process p is the
number of RMRs that p incurs in that passage (respectively, attempt).

1.2 Adaptive complexity

A process is active if it is in the CS, or executing the try, exit, or recover methods, or
crashed while in try, CS, exit, or recover and has not subsequently invoked the recover
method. The point contention at any time t is the number of active processes at t . The
point contention of a passage (respectively, attempt) is the maximum point contention
at any time in that passage (respectively, attempt). An algorithm is adaptive if the
RMR complexity of each passage (or attempt) of a process p is bounded by a constant
(independent of n) whenever the point-contention is bounded by a constant.

1.3 Our contribution

We design the first abortable RME algorithm, based on the ideas underlying two
earlier algorithms—one that is recoverable but not abortable [17] and another that

2 We are not aware of any real machines that satisfy the Relaxed CC model, but it might be possible to
relate this model to the Strict CC model. In particular, we are currently investigating whether algorithms
designed for the Relaxed CC model can be automatically transformed for the Strict CC model with only a
constant factor blow up in the RMR complexity.
3 An “attempt” [17] is similar to, but not the same as, “super-passage” [10]. The need for this distinction
arises from the difference in the models: when a process p crashes in the try section and subsequently
executes recoverp(), the recover method always puts p back in the try section in the model of [10], but
it may put p in any of try, remainder, or critical sections in our model and the model of [17].

123



Recoverable mutual exclusion with abortability 2229

is abortable but not recoverable [13]. Our algorithm guarantees FCFS and a strong
liveness property: processes do not starve even in runs consisting of infinitely many
crashes, provided that a process crashes at most a finite number of times in each of its
attempts. It also satisfies bounded exit, bounded CSR, and bounded abort.

The algorithm has adaptive, logarithmic worst-case RMR complexity. On DSM
and Relaxed CC multiprocessors, a process p incurs O(min(k, log n)) RMRs in a
passage and O( f + min(k, log n)) RMRs in an attempt, where n is the number of
processes that the algorithm is designed for, k is the point contention of the passage or
the attempt, and f is the number of times that p crashes during the attempt. On a Strict
CC multiprocessor, the passage and attempt complexities are O(n) and O( f + n),
respectively.

The algorithm’s space complexity—the number of words of memory used—is
O(n). It is assumed that a memory word is wide enough to store a process name
and an unbounded sequence number, which is incremented at most once by a process
in each of its passages. Thus, on a standard 64-bit architecture, if we set aside 16 bits
for the process name (to accommodate 64K processes), we would have 48 bits for the
sequence number, which means that about 256 trillion passages have to occur before
the sequence number wraps around.

Our algorithm uses only the read, write, and CAS operations, which are commonly
supported by multiprocessors. Attiya, Hendler, and Woelfel proved that, with any
mutual exclusion algorithm (even if the algorithm does not have to satisfy recov-
erability or abortability), a process incurs at least Ω(log n) RMRs in a passage, if
the algorithm uses only the read, write, and CAS operations [2]. This lower bound
implies that the worst-case RMR complexity of our algorithm is optimal for the DSM
and Relaxed CC multiprocessors.

1.4 Comparison to Katzan andMorrison’s algorithm

To the best of our knowledge, there is only one other abortable RME algorithm, pub-
lished recently by Katzan and Morrison [20]. By using the fetch&add instruction, in
addition to CAS, they breach Attiya, Hendler, and Woelfel’s lower bound and achieve
sublogarithmic complexity: a process incurs at most O(min(k, log n/ log log n)

RMRs in a passage and O( f + min(k, log n/ log log n)) in an attempt. Further-
more, they achieve these bounds for even the Strict CC multiprocessor, and
without the use of unbounded variables. The space complexity of their algorithm
is O(n log2 n/ log log n).

To compare, their algorithm is better than ours in RMR complexity (by a factor of
log log n) and worse than ours in space complexity (by a factor of log2 n/ log log n).
Themore significant advantages of our algorithm are that it satisfies FCFS and a strong
liveness property: processes do not starve even in runs consisting of infinitely many
crashes, provided that each process crashes at most a finite number of times in each
of its attempts. In contrast, Katzan and Morrison’s algorithm guarantees starvation-
freedom only in runs where the total number of crashes over all processes is finite.

On the downside, unlike Katzan and Morrison’s algorithm, our algorithm employs
variables that store a pair consisting of a process name and an unbounded counter
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whose value is incremented at most once per passage. This requirement might not be
a limitation in practice because, on 64-bit machines, if 48 bits of a word are reserved
for the counter, the counter wraps around only after about 256 trillion passages.

Finally, Katzan and Morrison correctly point out a shortcoming in our conference
paper: our algorithm there admits starvation if there are infinitely many aborts in a
run. The algorithm has been revised to eliminate this shortcoming.

1.5 Related research

All of the works on RME prior to the conference version of our paper [18] has focused
on designing algorithms that do not provide abortability as a capability. Golab and
Ramaraju [10] formalized theRMEproblemand designed several algorithms by adapt-
ing traditional mutual exclusion algorithms. Ramaraju [25], Jayanti and Joshi [17],
and Jayanti, Jayanti, and Joshi [14] designed RME algorithms that support the First-
Come-First-Served property [21]. Golab and Hendler [8] presented an algorithm that
has sub-logarithmic RMR complexity on CC machines. Jayanti, Jayanti, and Joshi
[15] presented a unified algorithm that has a sub-logarithmic RMR complexity on
both CC and DSM machines. In another work, Golab and Hendler [9] presented an
algorithm that has the ideal O(1) passage complexity, but this result assumes that
all processes in the system crash simultaneously. Recently, Dhoked and Mittal [5]
present an RME algorithm whose RMR complexity adapts to the number of crashes,
and Chan and Woelfel [3] present an algorithm which has an O(1) amortized RMR
complexity. Katzan and Morrison [20] gave an abortable RME algorithm that incurs
sub-logarithmic RMR on CC and DSM machines.

When it comes to abortability for classical mutual exclusion problem, Scott [27]
and Scott and Scherer [29] designed abortable algorithms that build on the queue-
based algorithms [4, 23]. Jayanti [13] designed an algorithm based on read, write,
and comparison primitives having O(log n) RMR complexity which is also optimal
[2]. Lee [22] designed an algorithm for CC machines that uses the Fetch-and-Add
and Fetch-and-Store primitives. Alon and Morrison [1] designed an algorithm for CC
machines that has a sub-logarithmic RMR complexity and uses the read, write, Fetch-
And-Store, and comparison primitives. Recently, Jayanti and Jayanti [16] designed
an algorithm for the CC and DSM machines that has a constant amortized RMR
complexity and uses the read, write, and Fetch-And-Store primitives. While the works
mentioned so far have been deterministic algorithms, randomized versions of classical
mutual exclusionwith abortability exist. Pareek andWoelfel [24] give a sublogarithmic
RMR complexity randomized algorithm andGiakkoupis andWoelfel [7] give an O(1)
expected amortized RMR complexity randomized algorithm.

1.6 The differences with the conference publication

The previous version of this paper appeared in NETYS ’19, but the algorithm there
admits starvation if there are infinitely many aborts in a run. The algorithm here
eliminates this shortcoming. Furthermore, the FCFS and strong starvation freedom
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properties are hard to prove. Their proofs are presented here, but they were missing
in the conference version.

2 Modeling an Abortable RME algorithm and its runs

An Abortable RME algorithm is described by the following elements.

– A set P of processes that may execute the algorithm. Each process p ∈ P has a
set of registers, including a program counter, denoted PCp, which points to an
instruction in p’s code.

– A set X of variables, which includes a Boolean variable AbortSignal[p], for
each p ∈ P . No process except p can invoke any operation on AbortSignal[p],
and p can only invoke a read operation on AbortSignal[p].
Intuitively, the “environment” sets AbortSignal[p] to true when it wishes to
communicate to p that it should abort its attempt to acquire the CS and return to
the remainder section.

– An assignment of initial values to variables in X .
– A set OP of operations that each variable in X − {AbortSignal[p] | p ∈ P}
supports.
For the algorithm in this paper, OP = {read,write,CAS}, where CAS(X , r , s),
when executed by a process p (and X is a variable and r , s are p’s registers),
compares the values of X and r ; if they are equal, the operation writes in X
the value in s and returns true; otherwise, the operation returns false, leaving X
unchanged.

– Δ is a partition of X into |P| sets, named Δ(p), for each p ∈ P . Intuitively, Δ(p)
is the set of variables that reside locally at process p’s part of the shared memory
on a DSM machine. (Δ(p) has no relevance on a CC machine.)

– A set M of methods, which includes three methods per process p ∈ P , named
tryp(), exitp(), and recoverp(), such that:

– In any instruction of any method, at most one operation in OP is performed
and it is performed on a single variable from X .

– Themethodstryp() andrecoverp() return avalue from {IN_CS, IN_REM},
and exitp() has no return value.

– None of tryp(), exitp(), or recoverp() calls itself or the other two. (This
assumption simplifies the model, but is not limiting in any way because it does
not preclude the use of helper methods each of which can call itself or the other
helper methods.)

For each process p ∈ P , we model p’s code outside of the methods inM to consist of
two disjoint sections, named remainderp() and csp(). Furthermore, we introduce
the following abstract variables, which are not in X and not accessed by the methods
inM, but are helpful in defining the problem.

– statusp ∈ {good, recover-from-try,recover-from-cs, recover-from-exit,
recover-from-rem}.
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Informally, statusp models p’s “recovery status”. If statusp �= good, it means
that either p has crashed and not yet restarted or p has restarted and invoked
recoverp() but has not yet completedrecoverp(). The value of statusp reveals
the section of code where p most recently crashed.

– Cachep holds a set of pairs of the form (X , v), where X ∈ X and v is a value.
Informally, if (X , v) is present in the cache, X is in p’s cache and v is its current
value. This abstract variable helps define what operations count as remote memory
references (RMR) on CC machines.

Definition 1 (State, Configuration, Initial Configuration)

– A state of a process p is a function that assigns a value to each of p’s registers,
including PCp, and a value to each of statusp, AbortSignal[p], and Cachep.

– A configuration is a function that assigns a state to each process in P and a value
to each variable in X . (Intuitively, a configuration is a snapshot of the states of
processes and values of variables at a point in time.)

– An initial configuration is a configuration where, for each p ∈ P , PCp =
remainderp(), statusp = good, AbortSignal[p] = false, and Cachep = ∅;
and, for each X ∈ X , X has its initial value.

Definition 2 (Run) A run is a finite sequence C0, α1,C1, α2,C2, . . . αk,Ck , or an
infinite sequence C0, α1,C1, α2,C2, . . . such that:

1. C0 is an initial configuration and, for each i , Ci is a configuration and αi is either
(p, normal) or (p, crash), for some p ∈ P .
We call each triple (Ci−1, αi ,Ci ) a step; it is a normal step of p ifαi = (p, normal),
and a crash step of p if αi = (p, crash).

2. For each normal step (Ci−1, (p, normal),Ci ), Ci is the configuration that results
when p executes an enabled instruction of its code, explained as follows:

– If PCp = remainderp() and statusp = good in Ci−1, then p invokes either
tryp() or recoverp().

– If PCp = remainderp() and statusp �= good in Ci−1, then p invokes
recoverp().

– If PCp = csp(), then p invokes exitp().
– Otherwise, p executes the instruction that PCp points to in Ci−1.
If this instruction returns IN_CS (resp., IN_REM), PCp is set to csp() (resp.,
remainderp()).
If the instruction causes p to return from recoverp(), statusp is set to good
in Ci .
If p performs a read on X and X is not present in Cachep in Ci−1, then (X , v)

is inserted in Cachep, where v is X ’s value in Ci−1.
In the Strict-CCmodel, if p performs a non-read operation on X , for all q ∈ P ,
if Cacheq contains a pair of the form (X , v), it is removed from Cacheq . In
the Relaxed-CC model, this removal happens only if p’s non-read operation
on X changes X ’s value. (In both models, since (X , ∗) is removed from every
process’ cache anytime the value of X changes, at any time a process’ cache
contains at most one pair with X as its first component.)
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3. For each crash step (Ci−1, (p, crash),Ci ), we have:

– In Ci , PCp is set to remainderp() and all other registers of p are set to
arbitrary values, and Cachep is set to ∅.

– If statusp �= good in Ci−1, then statusp remains unchanged in Ci . Otherwise,
if (in Ci−1) p is in tryp() (respectively, csp(), exitp(), or recoverp()),
then statusp is set in Ci to recover-from-try (respectively, recover-from-cs,
recover-from-exit, or recover-from-rem).

Liveness of the algorithm, which guarantees that processes don’t wait forever, can
be realized only if the underlying model assures that every crashed process eventually
restarts, no process stays in the CS forever, and no process permanently ceases to take
steps when it is outside the Remainder section. Hence, “fair” runs of the algorithm
where these assurances are kept are of interest, as captured by the next definition.

Definition 3 (Fair run) A run R = C0, α1,C1, α2,C2, . . . is fair if and only if either
R is finite or, for all configurations Ci and for all processes p ∈ P , the following
condition is satisfied: unless PCp = remainderp() and statusp = good in Ci , p
has a step in the suffix of R from Ci .

Definition 4 (Passage and Attempt)

– A passage of a process p is a contiguous sequence σ of steps in a run such that p
leaves remainderp() in the first step of σ and the last step of σ is the earliest
subsequent step in the run where p reenters remainderp() (either because p
crashes or because p’s method returns IN_REM).

– An attempt of a process p is a maximal contiguous sequence σ of steps in a run
such that p leaves remainderp() in the first step of σ with statusp = good and
the last step of σ is the earliest subsequent normal step in the run that causes p
to reenter remainderp() (which would be a return from exitp, or a return of
IN_REM from tryp or recoverp).

Definition 5 (RMR)

– A step of p is an RMR on a DSMmachine if and only if it is a normal step in which
p performs an operation on some variable that is not in Δ(p).

– A step of p is an RMR on a Strict or Relaxed CC machine if and only if it is a
normal step in which p performs a non-read operation, or p reads some variable
that is not present in p’s cache.

Definition 6 (Active) A process p is active in a configuration C if the condition
(PCp �= remainderp()) ∨ (statusp �= good) holds in C .

Definition 7 (Point contention)Thepoint contention at a configurationC is the number
of active processes in C .

3 Properties of an abortable RME algorithm

We state the properties required of an abortable RME algorithm which, for easy com-
prenhensibility, we have divided into four categories: basic safety, responsiveness,
liveness, and fairness.
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Basic safety properties

P1. Mutual Exclusion: At most one process is in the CS in any configuration of any
run.4

P2. Critical Section Reentry (CSR) [10]: In any run, if a process p crashes while in
the CS, no other process enters the CS until p subsequently reenters the CS.

P3. No Trivial Aborts: In any run, if AbortSignal[p] is false when a process p
invokes tryp() and it remains false throughout the execution of tryp(), then
tryp() does not return IN_REM.

Responsiveness properties
Once a process leaves the CS, it should be able to return to the remainder section

without having to wait on other processes, as captured by the next property.

P3. Bounded Exit: There is an integer b, which may depend on |P|, such that if in any
run any process p invokes and executes exitp() without crashing, the method
completes in at most b steps of p.

The next property formalizes the requirement that, if the environment signals a
waiting process p to abort (and maintains that signal so that it is not missed), then the
process should be able to quit tryp() (i.e., either return to the remainder or capture
the CS) without being obstructed by others.

P4. Bounded Abort [13]: There is an integer b, which may depend on |P|, such that
if at any point in any run a process p is in tryp() or is in recoverp() with
statusp = recover-from-try, and from that point on AbortSignal[p] stays true
and p executes steps without crashing, then tryp() or recoverp() returns in
at most b steps of p.

A process p finds itself in the remainder section either because it crashed while
executing the algorithm or because it returned normally from the algorithm. In the
former case, when p restarts, it is required to execute recoverp(), but in the latter
case, p has a choice—it can execute either tryp() or recoverp(). If p is unsure
whether it is restarting from a crashed state, it can harmlessly “probe” by executing
recoverp(). However, if p executes recoverp() in the latter case, for efficiency
we require recoverp() to complete quickly (and return IN_REM).

P5. Fast Probing: There is an absolute constant c, i.e., a constant independent of |P|,
such that if in any run any process p executes recoverp() without crashing
and with statusp ∈ {good, recover-from-rem}, the method completes in at most
c steps of p.

If p crashes while in the CS, the CSR property stated earlier prohibits others from
entering the CS until p reenters the CS. Therefore, when p restarts and executes
recoverp(), we would want p to be able to complete recoverp() (and return
IN_CS) without being obstructed by other processes [17]. Similarly, when p executes
recoverp() following a crash in the exit section, p should be able to complete
recoverp() (returning IN_CS or IN_REM) without having to wait on others. On

4 We say a process p is in the CS if PCp = csp(). Similarly, p is in the remainder, recover, try, or exit
sections if PCp equals or is in remainderp(), recoverp(), tryp(), or exitp(), respectively.
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the other hand, if p crashes while executing tryp(), the execution of recoverp()

upon restart has two options: either it gives up the attempt to acquire the CS and
returns IN_REM or it tries once again to acquire the CS. In the latter case, waiting is
unavoidable, but in the former case we require that p completes recoverp()without
having to wait on others. The next property formalizes these requirements.

P6. Bounded Recovery: There is an integer b, which may depend on |P|, such
that if in any run any process p executes recoverp() without crashing and
either with statusp ∈ {recover-from-cs, recover-from-exit} or with statusp =
recover-from-try and the method returns IN_REM, the method completes in at
most b steps of p.

Liveness property
For the traditional mutual exclusion problem, the liveness condition is usually

starvation-freedom, which states that if a process p is in tryp() at any point in a
fair infinite run, it is in the CS at a later point. We adapt this definition to allow for
aborts and crashes. To accommodate aborting, we relax the phrase “it is in the CS at a
later point” in the definition to “it returns from tryp() at a later point.” Furthermore,
since a non-aborting waiting process cannot enter the CS if the process in the CS
fails repeatedly (infinitely many times), we could require progress only when there
are finitely many crashes:

Starvation Freedom: In every fair infinite run in which there are only finitely many
crash steps, if a process p is in tryp() in a configuration, p subsequently returns
from tryp().

Our algorithm satisfies a stronger property that guarantees progress evenwhen there
are infinitely many crashes in the run, provided that each process crashes at most a
finite number of times in each of its attempts.

P7. Strong Starvation Freedom: In every fair infinite run in which each process
crashes at most a finite number of times in each of its attempts, if a process
p is in tryp() in a configuration, p subsequently returns from tryp().

Fairness property
For the traditional mutual exclusion problem, a standard fairness property, known

as First-Come-First-Served (FCFS), states that if a process p requests the CS before
a process q, then q does not enter the CS before p. More precisely, if a process p
completes the “doorway”—a bounded section of code at the start of tryp()—before
q invokes its try method, then q does not enter the CS before p [21].

To extend this definition to the present setting where processes may crash or abort,
we require that if p requests the CS before q and p is well behaved (i.e., p does not
crash and p does not abort), then q does not enter the CS before p. More precisely:

P8. FCFS: If a process p completes the doorway in its attempt a before a process q
begins its attempt b and p neither crashes nor receives the abort signal in the
attempt a, then q does not enter the CS in the attempt b before p enters the CS
in the attempt a.
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4 A key building block: themin-array object [12]

The design of a mutual exclusion algorithm requires a facility by which processes can
quickly identify a most deserving (i.e., a highest priority or a longest waiting process)
among the waiting processes that should be launched into the CS next. When an
algorithm is restricted to using only the read, write, and CAS operations, Jayanti’smin-
array construction [12] has proved useful for this purpose in some earlier algorithms
[13, 17]. Our algorithm is also based on the min-array object.

A min-array object X of n locations supports two operations: X [p].write(v),
which can only be executed by process p ∈ {1, 2, . . . , n}, writes v in X [p]; and
X .findmin() returns the minimum value among X [1], X [2], . . . , X [n]. The con-
struction in [12] presents a linearizable and wait-free implementation of this object
using only the read, write, and CAS operations. The following properties of this imple-
mentation are what makes it useful for our algorithm:

– The implementation has adaptive and small worst-case step complexity. Specifi-
cally, a process p completes X .findmin() in O(1) steps and X [p].write(v)

in O(min(k, log n)) steps, where k is the maximum point contention during the
execution of X [p].write(v).

– Suppose that p invokes X [p].write(v) and crashes before completing the
method; when it restarts, suppose that it invokes X [p].write(v) once more and
yet again crashes before completing the method. Suppose this pattern repeats f
times before p invokes X [p].write(v) and executes it to completion. Despite the
many partial executions before the full execution, the implementation ensures that
the X [p].write(v) operation appears to take effect exactly once. Furthermore,
the total number of p’s steps, over all of the partial executions and the final full
execution, is O( f + min(k, log n)).

– Suppose that p invokes X [p].write(v) and crashes before completing it. When
p subsequently restarts, suppose that p chooses to abandon that write operation
and instead executes X [p].write(v′) to completion, for some v′ �= v. Then,
the implementation guarantees that either X [p].write(v) does not take effect
and only X [p].write(v′) takes effect, or X [p].write(v) takes effect before
X [p].write(v′) takes effect.

– The implementation has O(n) space complexity (i.e., uses only O(n) memory
words).

5 The Algorithm and its intuitive description

We present in Fig. 1 our abortable RME algorithm for the set of processes P =
{1, 2, . . . , n}. All the shared variables used by our algorithm are stored in NVM.
Variables with a subscript of p to their name are local to process p, and are stored in
p’s registers or volatile memory. We begin by describing the role played by each of
the shared variables used in the algorithm.
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Persistent variables (stored in NVM)
Registry[1 . . . |P|] : A min-array; initially Registry[p] = (p,∞), for all p ∈ P.
CSStatus ∈ {0} × ({0} ∪ N

+) ∪ {1} × P; initially (0, 1).
Seq ∈ N; initially 1.
∀p ∈ P,Go[p] ∈ N

+ ∪ {−1, 0}, initially ⊥.
Token ∈ N, initially 1.

1. Remainder Section

procedure tryp():
2. tokp ← Token
3. CAS(Token, tokp, tokp + 1)
4. Go[p] ← tokp
5. Registry[p].write((p, tokp))
6. promotep(false)
7. wait till Go[p] = 0 ∨ AbortSignal[p]
8. if Go[p] = 0: return IN CS
9. return abortp()

10. Critical Section

procedure exitp():
11. Registry[p].write((p,∞))
12. sp ← Seq
13. Seq ← sp + 1
14. CSStatus ← (0, sp + 1)
15. promotep(false)
16. Go[p] ← −1

procedure recoverp():
17. if Go[p] = −1: return IN REM
18. return abortp()

procedure abortp():
19. Registry[p].write((p,∞))
20. promotep(true)
21. if CSStatus = (1, p): return IN CS
22. Go[p] ← −1
23. return IN REM

procedure promotep(boolean flagp):
24. (bp, sp) ← CSStatus

if bp = 1:
peerp ← sp
go to Line 27

25. (peerp, tokp) ← Registry.findmin()
if tokp = ∞ ∧ flagp:

peerp ← p
else if tokp = ∞: return

26. if ¬CAS(CSStatus, (0, sp), (1, peerp)): return
27. gp ← Go[peerp]; if gp ∈ {−1, 0}: return
28. if CSStatus = (1, peerp): return
29. CAS(Go[peerp], gp, 0)

Fig. 1 Abortable RME Algorithm for CC and DSM machines. Code for process p

– Token is an unbounded positive integer. A process p reads this variable at the
beginning of tryp() to obtain its token and then increments, thereby ensuring
that processes that invoke the try method later will get a strictly bigger token.

– CSStatus and Seq: These two shared variables are used in conjunction, with
Seq holding an unbounded integer and CSStatus holding a pair, which is either
(true, p) (for some p ∈ P) or (false,Seq). If CSStatus = (true, p), it means
that p is in the CS and, if CSStatus = (false,Seq), it means that no process is in
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the CS. If Seq has a value s while p is the CS, when exiting the CS, p increments
Seq to s + 1 and writes (0, s + 1) in CSStatus. As we explain later, this act is
crucial to ensuring that no process will be made the owner of the CS after it has
moved back to the remainder.

– Go[p] has one of three values — −1, 0, or p’s token. The algorithm ensures that
Go[p] = −1 whenever p is in the remainder “normally”, i.e., not because of a
crash but because the try, exit, or recover method returned normally. IfGo[p] = 0,
itmeans that p ismade the owner of CS, hence p has the permission to enter theCS.
After p obtains a token in tryp(), p writes its token in Go[p] and, subsequently
when p must wait for its turn to enter the CS, it spins until either Go[p] turns 0 or
it receives a signal to abort.

– Registry is a min-array object [12] of n locations. After p obtains a token t in
tryp(), it announces its interest in capturing the CS by writing the pair (p, t)
in Registry[p], and when no longer interested, it removes the token by writing
(p,∞) in Registry[p]. The “less than” relation on pairs is defined as follows:
(p, t) < (p′, t ′) if and only if t < t ′ or (t = t ′) ∧ (p < p′).

Next we present an intuitive understanding of the algorithm, explaining the lines
of code and, more importantly, drawing attention to potential race conditions and how
the algorithm avoids them.

Understanding tryp()

After a process p invokes tryp(), it reads Token into tokp (Line 2) and then
attempts to increment it (Line 3). The attempt to increment serves two purposes. First,
if a different process q invokes tryq() later, it gets a strictly larger token, which
helps achieve FCFS. Second, if p were to abort its curent attempt A, it will obtain a
strictly larger token in its next attempt A′, which, as we will see, helps ensure that any
process q that might attempt to release p from its busy-wait in the attempt A will not
accidentally release p from its busy-wait in the attempt A′. Process p writes its token
in Go[p] (Line 4), where it will later busy-wait until some process changes Go[p] to
0, and then announces its interest in the CS by changing Registry[p] from (p,∞) to
(p, tokp) (Line 5). It then executes promotep() Line 6), which ensures that p will
launch itself into the CS in the event that the CS is unoccupied and no other process
has been waiting longer for the CS than p.

Understanding promotep()

The promotep() procedure’s purpose is to push a waiting process into the CS,
if the CS is unoccupied. To this end, p reads CSStatus into (bp, sp) (Line 24). If
bp = 1, it means that sp owns the CS. In this case, p sets peerp to sp. Recognizing
that it is possible that peerp is still busywaiting (because it is unaware that it owns the
CS), p jumps to Line 27, where it releases peerp from its busywait. On the other hand,
if the CS is unoccupied (i.e., bp = 0), it obtains the minimum entry (peerp, tokp)
in the registry (Line 25) to find the process peerp that has been waiting the longest.
Since promotep() is called from p’s Line 6, when Registry[p] has a finite token
number, we have tokp �= ∞ when p executes Line 25. So, p proceeds to Line 26,
where it attempts to launch peerp into the CS by performing a CAS on CSStatus. If
p’s CAS fails, it means that someone else must have succeeded in launching a process
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into the CS between p’s Line 24 and Line 26; in this case p has no further role to
play, so it returns from the procedure. On the other hand, if p’s CAS succeeds, which
means that peerp has been made the CS owner, p has a responsibility to release peerp
from its busywait, i.e., p must write 0 in Go[peerp]. However, there is potential for
a race condition here, as explained by the following scenario: some process different
from p releases peerp from its busywait; peerp enters the CS and then exits to the
remainder; some other process q is now in the CS; peerp executes the try method once
more and proceeds up to the point of busy-waiting. Recall that p is poised to write
0 in Go[peerp]. If p executes that write, peerp will be released from its busywait,
so peerp proceeds to the CS, where q is already present. So, mutual exclusion is
violated! Our algorithm averts this disaster by exploiting the fact that, while peerp
busywaits, Go[peerp]’s value is never the same between different attempts of peerp.
Specifically, p readsGo[peerp] into gp (Line 27); if gp is−1 or 0, it means that peerp
is not busywaiting, so p has no role to play, hence it returns. If things have moved
on and peerp no longer is in the CS, then too p has no role to play, hence it returns
(Line 28). Otherwise, there are two possibilities: either Go[peerp] is still gp or it has
changed. In the former case, peerp must be busywaiting, so it is imperative that p
takes the responsibility to release peerp (by changing Go[peerp] to 0). In the latter
case, peerp requires no help from p, so p must not change Go[peerp] (in order to
avoid the race condition described above). This is precisely what the CAS at Line 29
accomplishes.

The rest of tryp()

Upon returning from promotep(), p busywaits until it reads a 0 in Go[p] or it
receives a request to abort (Line 7). If p reads a 0 in Go[p], p infers that it owns
the CS, so tryp() returns IN_CS (Line 8). If p receives a request to abort, it calls
abortp() (Line 9), which we describe next.

Understanding abortp()

To abort, pwrites (p,∞) in the registry tomake it known to all that it has no interest
in capturing the CS (Line 19). If any process will invoke the promote procedure after
this point, it will not find p in Registry, so it will not attempt to launch p into the
CS. Does this mean that p can now return to the remainder section? The answer is a
no because there are two race conditions that need to be overcome.

First, it is possible that, before p performed Line 19, some process q performed
its Line 25 to find p in Registry, and then successfully launched p into the CS
(by writing (1, p) in CSStatus). Taking care of this scenario is easy: p can read
CSStatus and if p finds that it owns the CS, it can abort by simply returning IN_CS.

The second potential race is more subtle and harder to overcome. As in the earlier
scenario, suppose that, before p performed Line 19, some process q performed its
Line 25 to find p in Registry (i.e., peerq = p). Furthermore, suppose that q is now
at Line 26 and CSStatus = (0, sq). So, after performing Line 19, if p naively returns
to the remainder and then q performs Line 26, we would be in a situation where p has
been made the CS owner after it was back in the remainder!

To overcome the above two race conditions, p calls promotep(true) (Line 20).
The parameter true conveys that the call is made by p while aborting, and has the

following impact on how p executes promotep(): if p finds the CS to be unoccupied

123



2240 P. Jayanti, A. Joshi

at Line 24 and finds Registry to be empty at Line 25, to preempt the second race
condition discussed above (where some process q is poised to launch p into the CS), p
will attempt to launch itself into theCS (by setting peerp to p at Line 25 and attempting
to change CSStatus to (1, peerp)). The key insight is that, after p performs the CAS
at Line 26, only two possibilities remain: either p is already launched into the CS (i.e.,
CSStatus = (1, p)) or it is guaranteed that no process will launch p into the CS. In
the former case, abortp() returns IN_CS at Line 21; and in the latter case, since it
is safe for p to return to the remainder, abortp() returns IN_REM at Line 23 after
settingGo[p] to −1 at Line 22 (in order to respect the earlier mentioned invariant that
Go[p] = −1 whenever p returns to the remainder normally).

Understanding exitp()

There are two routes by which p might enter the CS. One is the “normal” route
where p executes tryp() without aborting or crashing, and tryp() returns IN_CS,
thereby sending p to the CS. The second route is where p receives an abort signal,
calls at Line 9 abortp(), which returns IN_CS at Line 21, causing tryp() also to
return IN_CS at Line 9. When p is in the CS, p’s announcement in Registry[p]
(made at Line 5), would no longer be there if it entered the CS by the second route
(because of Line 19), but it would still be there if it entered the CS by the first route.
So, when p exits the CS, it removes its announcement in Registry[p] (Line 11). It
then increments the number in Seq and gives up its ownership of the CS by changing
CSStatus from (1, p) to (0,Seq) (Lines 12, 13, 14). To launch a waiting process,
if any, into the just vacated CS, p then executes promotep() (Line 15), and returns
to the remainder after setting Go[p] to −1 at Line 16 (in order to respect the earlier
mentioned invariant thatGo[p] = −1 whenever p returns to the remainder normally).

Understanding recoverp()

Process p executes recoverp() when it restarts after a crash. If Go[p] has the
value −1, p infers that either recoverp() was called when statusp = good or the
most recent crash had occurred early in tryp(), so recoverp() simply sends p
back to the remainder (Line 17). Otherwise, recoverp() simply calls abortp()

(Line 17), which does the needful. In particular, if p was in the CS at the most recent
crash, then CSStatus would have (1, p), which causes abortp() to send p back to
the CS. Otherwise, abortp() extricates p from the algorithm, sending it either to the
CS or to the remainder.

6 The invariant

Figure 2 presents the invariant satisfied by the Abortable RME algorithm given in
Fig. 1. The invariant is the conjunction of the 13 parts displayed there. Of these, Con-
ditions (1) through (7) of the invariant are used later to prove the safety, responsiveness,
and FCFS properties; (12) and (13) are used to prove strong starvation freedom; and
(8) through (11) are needed to make the invariant inductive.

The invariant is presented with the following conventions. All statements about
process p are universally quantified, i.e., ∀p ∈ P is implicit (these are Statements 3
through 11, and Statement 13). The program counter for a process p, i.e., PCp, can
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Conditions:

1. Token ≥ 1
2. The first field of CSStatus is either 0 or 1. If it is 0, the second field must be Seq. If it is 1, the second field

holds a process name. More precisely:
(CSStatus = (0, Seq)) ∨ (∃q ∈ P, CSStatus = (1, q))

3. Go[p] contains one of three values—-0, -1, or tokp, the positive integer value that p reads from Token—and
the following condition states when Go[p] takes on each of these values.
(−1 ≤ Go[p] < Token) ∧ (PCp = 5 ⇒ Go[p] = tokp) ∧ (PCp ∈ [6,8] ⇒ Go[p] ∈ {0, tokp})

∧ (PCp ∈ {9-16,18-22, 24-29} ⇒ Go[p] = −1)
∧ ((PCp ∈ {2-4,23} ∨ (PCp ∈ {1,17} ∧ statusp ∈ {good, recover-from-rem})) ⇒ Go[p] = −1)

4. The first field of Registry[p] i always p, and its second field is either ∞ or the positive integer token that p
reads from Token. The following condition states when Registry[p] takes on these values.
(∃t ∈ [1,Token − 1] ∪ {∞},Registry[p] = (p, t))

∧ (PCp ∈ [6,8] ⇒ Registry[p] = (p, tokp))
∧ ((PCp ∈ {5,12-16, 20-22} ∨ Go[p] = −1) ⇒ Registry[p] = (p,∞))

5. CSStatus contains (1, p) when process p “owns” the CS. The following condition states the regions of the
code when p is guaranteed to own the CS and the regions when p is guaranteed not to hold the CS.
(((PCp ∈ [6,8] ∧ Go[p] = 0) ∨ PCp ∈ [10,14] ∨ statusp = recover-from-cs) ⇒ CSStatus = (1, p))

∧ ((PCp ∈ {5,22} ∪ [15, 16] ∨ Go[p] = −1) ⇒ CSStatus = (1, p))
6. This condition states what values local variables of process p take on.

(PCp = 3 ⇒ 1 ≤ tokp ≤ Token) ∧ (PCp ∈ [4,8] ⇒ 1 ≤ tokp < Token)
∧ (PCp = 13 ⇒ sp = Seq) ∧ (PCp = 14 ⇒ sp = Seq − 1)
∧ (PCp ∈ [6::24, 6::29] ∪ [15::24, 15::29] ⇒ flagp = false) ∧ (PCp ∈ [20::24,20::29] ⇒ flagp = true)
∧ (PCp ∈ [26, 29] ⇒ peerp ∈ P)
∧ (PCp ∈ [2,16] ⇒ statusp = good)

7. The following condition states that, if process p goes past the busywait loop at Line 7, it must be because
either p has the permission to enter the CS (i.e., Go[p] = 0) or p received the abort signal.
(PCp = 8 ⇒ (Go[p] = 0 ∨ abort was requested)) ∧ (PCp = 9 ⇒ abort was requested)

8. Conditions (12) and (13) below are needed to prove strong starvation-freedom, and Conditions (8) through
(11) below are auxiliary conditions that are needed to inductively prove (12) and (13).
PCp ∈ {25,26} ⇒ (sp ≤ Seq ∧ (∀q, PCq ∈ {13, 14} ⇒ sp ≤ sq))

9. ((PCp = 25 ∧ CSStatus = (0, sp)) ⇒
∀q, (Registry[q] = (q,∞) ⇒ (PCq ∈ {6-9,18, 19} ∨ (PCq ∈ {1,17} ∧ Go[q] = −1))))

∧ ((PCp = 26 ∧ CSStatus = (0, sp)) ⇒ (PCpeerp ∈ [6,8] ∪ {18-20,20::24}
∨ (PCpeerp ∈ {20::25, 20::26} ∧ speerp = sp)
∨ (PCpeerp ∈ {1,17} ∧ Go[peerp] = −1)))

10. PCp = {28,29} ⇒ 1 ≤ gp < Token
11. PCp = 29 ⇒ ((PCpeerp ∈ {3,4} ⇒ 1 ≤ gp < tokpeerp )

∧ (PCpeerp = 5 ⇒ 1 ≤ gp < Go[peerp])
∧ ((PCpeerp ∈ {6,7,8} ∧ gp = Go[peerp]) ⇒ CSStatus = (1, peerp)))

12. If a process is registered, some q is either in CS or can be counted on to launch a waiting process into CS.

min(Registry) = (∗,∞) ⇒ ∃q, (CSStatus = (1, q)
∨ (PCq ∈ {1,17} ∧ Go[q] = −1) ∨ PCq ∈ {6, 15,18-20, 24}
∨ (PCq ∈ {25, 26} ∧ CSStatus = (0, sq)))

13. If p has the ownership of CS but Go[p] = 0, then there is some q that can be counted on to set Go[p] to 0.

(CSStatus = (1, p) ∧ Go[p] = 0) ⇒ ∃q, (PCq ∈ {18-20, 24} ∨ (PCq = 27 ∧ peerq = p)
∨ (PCq ∈ {28,29} ∧ peerq = p ∧ gq = Go[p])
∨ (PCq ∈ {1,17} ∧ Go[q] = −1))

Fig. 2 Invariant of the Abortable RME Algorithm from Fig. 1

take any of the values from the set {1, . . . , 29}. However, when a call to procedure
promotep() is made by p and p is executing one of the steps from Lines 24-29, for
clearly conveying where the call was made from, we prefix the value of PCp with
the line number from where promotep() was called, along with the scope resolution
operator from C++, namely, “::”. Thus, PCp = 6 :: 27 means p called promotep()

from Line 6 and is now executing Line 27 in that call. Sometimes, in the interest of
brevity, we use the range operator, i.e., [a, b], to convey something more than just
saying the range of values from a to b (inclusive). That is, if PCp ∈ [6, 8], we also
mean that PCp could take on values from [6 :: 24, 6 :: 29] because there is a call to
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promotep() at Line 6. Similarly, the range [5, 6] includes Line 5 as well as the lines
in the range [6 :: 24, 6 :: 29] because, again, there is a call to promotep() at Line 6.

The lemma below asserts that the invariant is correct. Its proof is presented in the
archived version of this paper [19].

Lemma 1 The algorithm in Fig. 1 satisfies the invariant in Fig. 2 (i.e., the conjunction
of all the conditions stated in Fig. 2 holds in every configuration of every run).

7 Proof of the properties and themain theorem

Using the invariant, we now prove that the algorithm satisfies all of the properties
stated in Sect. 3, and its RMR complexity, on DSM and Relaxed-CC machines, is
adaptive and logarithmic in the worst case.

Lemma 2 (At most one process in CS or Exit) In any configuration of any run,
if p and q are distinct processes and PCp ∈ {10, 11, 12, 13, 14}, then PCq /∈
{10, 11, 12, 13, 14}.
Proof Assume to the contrary that there is a configuration C of a run and distinct pro-
cesses p and q such that PCp ∈ {10, 11, 12, 13, 14} and PCq ∈ {10, 11, 12, 13, 14}.
By Condition 5, in C , CSStatus equals both (1, p) and (1, q), which is impossible.

��
Lemma 3 (Mutual Exclusion) At most one process is in the CS (i.e., has the value 10
for its program counter) in any configuration of any run.

Proof Follows from Lemma 2. ��
Lemma 4 (Critical Section Reentry) In any run, if a process p crashes while in the
CS, no other process enters the CS until p subsequently reenters the CS.

Proof Suppose that p crashes while in the CS, thereby moving from the CS to the
remainder section with statusp set to recover-from-cs. The value of statusp remains
recover-from-cs until p subsequently restarts and executes recoverp() to com-
pletion. It follows from Condition 5 of the invariant that CSStatus = (1, p) and
Go[p] �= −1 throughout this interval. Therefore, when p executes recoverp(), the
condition Go[p] = −1 on Line 17 evaluates to false, causing p to call and execute
abortp() at Line 18. When executing abortp(), at Line 21, p reads (1, p) from
CSStatus and returns IN_CS, thereby reentering the CS. Hence, we conclude that
CSStatus = (1, p) from the time of p’s crash to the time of its reentering the CS.
Therefore, if the lemma is false and some process q is in the CS (i.e., PCq = 10)
before this reentry of p to the CS, we have a contradiction at the configuration where
PCq = 10: on the one hand, PCq = 10 implies that CSStatus = (1, q) (by
Condition 5 of the invariant); and, on the other hand, as we have already argued,
CSStatus = (1, p). ��
Lemma 5 (No Trivial Aborts) In any run, ifAbortSignal[p] is false when a process
p invokes tryp() and it remains false throughout the execution of tryp(), then
tryp() does not return IN_REM.
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Proof Suppose that p returns from an execution e of tryp() and AbortSignal[p]
is false throughout the execution e. Since the loop at Line 7 terminates only when
AbortSignal[p] is true or Go[p] = 0, it follows that when p quits the the loop at
Line 7 in the execution e, Go[p] is 0. Since no process other than p ever changes
Go[p] from 0, the value ofGo[p] remains 0 when p evaluates the condition at Line 8,
so p returns IN_CS in the execution e. Hence, we have the lemma. ��
Lemma 6 (Responsiveness) The algorithm satisfies Bounded Exit, Bounded Abort,
Bounded Recovery, and Fast Probing.

Proof Eachof themethods—exitp(),recoverp(),abortp(), andpromotep()—
executes a constant number of read, write, CAS, ormin-array operations. Furthermore,
the min-array operations Registry[p].write() and Registry[p].findmin() are
wait-free, and complete in O(log n) and O(1) steps, respectively. Hence, the algorithm
satisfies Bounded Exit, Bounded Abort, and Bounded Recovery.

To argue Fast Probing, suppose that p executes recoverp() with statusp ∈
{good, recover-from-rem}. Then, when p executes Line 17 of recoverp(), we have
PCp = 17 and statusp ∈ {good, recover-from-rem}; and it follows from Condition 3
of the invariant thatGo[p] = −1. Therefore, p returns from recoverp() at Line 17,
having executed only O(1) steps. Hence, we have Fast Probing. ��

7.1 Proof of FCFS

For any attempt α, let procα denote the process that executes the attempt α and, if
procα executes a line numbered i in the attempt α, let α[i] denote the time when
procα first executes that line in α.

Lemma 7 1. The value in Token is non-decreasing.
2. If α and β are any two attempts and α[3] < β[2], then the value tokprocα read

from Token at α[2] is smaller than the value tokprocβ read from Token at β[2].
3. The value in Seq is non-decreasing.
4. CSStatus �= (1, p) at the start and at the completion of any attempt by p.

Proof We note that the CAS at Line 3 either succeeds and increments the value in
Token, or fails and leaves the value unchanged. Moreover, no other line in the algo-
rithm changes Token. Hence, we have Part (1) of the lemma.

Part (2) follows from the observation that at the time procα executes the CAS at
Line 3 in α, either Token’s value is greater than tokprocα , or the CAS succeeds and
Token’s value increments to tokprocα + 1.

By Lemma 2, at most one process is in the code segment consisting of Lines 12 and
13. Since Seq is incremented at these lines and these are the only lines that modify
Seq, Part (3) of the lemma holds.

Just before the step in which p starts an attempt and just after the step when p
completes an attempt, we have PCp = 1 and statusp = good. Then, the invariant (3)
implies thatGo[p] = −1,which by the invariant (5), implies thatCSStatus �= (1, p).
Hence, we have Part (4) of the lemma. ��
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Lemma 8 If Registry[p] �= (p,∞) at some time t during an attempt α by a process
p, then CSStatus has (1, q), for some q, at some time between t and α’s completion.

Proof Assume to the contrary that Registry[p] �= (p,∞) at some time t during an
attempt α by process p, and CSStatus = (0, ∗) in the entire interval from t to α’s
completion. We argue two claims below:

– Claim 1: For some integer s, CSStatus = (0, s) in the interval from t to α’s
completion.
Proof: By our assumption, the first component of the pair stored in CSStatus is
0 in the interval from t to α’s completion. Suppose that the claim is false and the
value of CSStatus changes from (0, s) to a different value (0, s′) at some time
t ′ during the interval. Since Line 14 is the only line in the algorithm where any
value of the form (0, ∗) is written in CSStatus, it follows that some process q
executes Line 14 at t ′. Then, by the invariant (5), CSStatus = (1, q) at t ′, which
contradicts thatCSStatus = (0, ∗) in the entire interval from t to α’s completion.

��
– Claim 2: In the attempt α, it is not the case that p calls promotep(true) after
time t and executes it to completion.
Proof: Suppose that p calls promotep(true) after t in the attempt α and exe-
cutes the method to completion. Claim 1 implies that p finds some value (0, s) in
CSStatus at Line 24, and CSStatus has the same value (0, s) when p executes
Line 26. So, p’s CAS at Line 26 succeeds and changes the value of CSStatus to
(1, peerp), contradicting Claim 1 above. ��
At time t , since Registry[p] �= (p,∞), it follows from the invariant (4) that

PCp /∈ {5, 12 − 16, 20 − 22} and Go[p] �= −1, and it follows from the invariant (3)
that PCp /∈ {2 − 4, 23}. Thus, at t , we have PCp ∈ {1, 6, 7, 8, 9, 10, 11, 17, 18, 19}
and Go[p] �= −1.

When p completes α, PCp = 1 and statusp = good, so Go[p] = −1 (by
Condition (3) of the invariant). Thus, Go[p]’s value is changed to -1 by p at some
point between t and α’s completion by executing either Line 16 or Line 22. In either
case, we argue below that a contradiction arises.

If p executesLine16between t andα’s completion, since PCp /∈ {12, 13, 14, 15, 16}
at time t , it must be the case that p executes Line 12 at some point t ′ that is between
t and α’s completion. Then, by Condition (5) of the invariant, CSStatus = (1, p) at
t ′, contradicting Claim 1 from above.

If p executes Line 22 between t and α’s completion, since PCp /∈ {20, 21, 22} at
time t , it must be the case that p calls promotep(true) (at Line 20) after time t and
executes the method to completion, contradicting Claim 2 from above. ��
Lemma 9 If t, t ′, t ′′ are points in time such that t < t ′ < t ′′,CSStatus has the values
(0, s), (1, q), and (0, s′) (for some s, q, and s′) at times t, t ′, and t ′′ respectively, then
s′ > s.

Proof Condition (2) of the invariant implies that Seq = s at t . The earliest time after
t ′ that CSStatus’s value changes is when q executes Line 14 of the exit method.
Therefore, t ′′ is greater than or equal to the time of this execution of Line 14 by q. At
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the time of this execution of Line 14 as well as at the time of the prior two lines by
q (Lines 12 and 13), Condition (5) of the invariant implies that CSStatus = (1, q).
Therefore, the time at which q executes these lines, in particular Line 12, is after t .
Therefore, by the monotonicity of Seq, the value sq that q reads at Line 12 is greater
than or equal to s. At Line 14, q writes (0, sq + 1) in CSStatus. It follows from
Condition (2) of the invariant that Seq = sq + 1 at the point when q executes Line 14.
Since t ′′ is greater than or equal to the time of q’s execution of Line 14, it follows from
the monotonicity of Seq that s′ ≥ sq + 1. Since sq ≥ s, it follows that s′ > s. ��

We introduce some more notation to state and prove the next few lemmas. If α is
an attempt in which procα enters the CS, let α[cs] denote the earliest time during
the interval of α’s execution when CSStatus takes on the value (1, procα) (Part
(4) of Lemma 7 assures that α[cs] is well defined). In the algorithm, Line 26 of the
promote method is the only place where CSStatus could be changed to take on the
value (1, procα). Let πα denote the execution of the promote method that performs a
successful CAS at Line 26 to change the value ofCSStatus from (0, ∗) to (1, procα),
and let procπα denote the process that executes πα . Let πα[i] denote the time at which
procπα executes the line numbered i of the promote method during πα .

Lemma 10 If α is an attempt in which procα enters the CS, then:

1. procα does not crash before Line 4 in α.
2. α[4] < πα[25]
Proof Suppose that α is an attempt in which procα enters the CS. If procα crashes
before executing Line 4, thenGo[procα] = −1 at the time of this crash (by Condition
(3) of the invariant). So, when procα restarts and executes the recover method, the
recover method returns at Line 17. Thus, procα completes α without entering the CS,
a contradiction. Hence, we have the first part of the lemma.

To prove the second part, assume to the contrary that πα[25] < α[4]. We consider
two cases and derive a contradiction in each case.

– Case 1: procα �= procπα

Since procπα changes the value of CSStatus to (1, procα) at Line 26 of
πα , the response it receives at Line 25 from Registry.findmin() must be
(procα, τ ), for some finite integer τ . Since πα[25] < α[4] (by assumption)
and since Registry[procα] = (procα,∞) just before the start of α and when
PCprocα ∈ {2, 3, 4} (by Conditions (3) and (4) of the invariant), it follows that
procπα executesLine 25 ofπα when an earlier attemptα′ of procα was in progress.
Then, by Lemma 8, CSStatus must have a value of (1, q) (for some q) at some
time t betweenπα[25] and the start of α.When procπα readsCSStatus at Line 24
ofπα , the value it obtainsmust be (0, s), for some s (the value cannot be of the form
(1, q) since procπα proceeds to execute Line 26).When procπα performs the CAS
on CSStatus at Line 26 of πα , since the CAS is successful, it must be the case
that CSStatus’s value, just prior to the CAS, is (0, s′), for some s′. Furthermore,
since the CAS is successful, s′ must equal s. However, sinceπα[24] < t < πα[26],
Lemma 9 implies that s′ > s, a contradiction. ��
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– Case 2: procα = procπα

In this case, πα is procα’s execution of promote during α. The first part of the
lemma guarantees that, during α, procα does not crash before Line 4. Therefore,
any call to promote by procα during α does not happen until procα executes
Line 4, contradicting the assumption that πα[25] < α[4]. ��

Lemma 11 (FCFS) For any two attempts α and β, if procα completes the doorway
in its attempt α before procβ begins its attempt β, and procα neither crashes nor
receives the abort signal in the attempt α, then procβ does not enter the CS in the
attempt β before procα enters the CS in the attempt α.

Proof Assume to the contrary that procβ enters the CS in β before procα enters the
CS in α. Then, throughout the interval from the start of β to the time t when procβ

first enters the CS in β, the premise of the lemma implies that Registry[procα]
has a finite token and Registry[procβ ] has a bigger token, possibly ∞. By the
definitions of πβ [26] and β[cs], we have πβ [26] = β[cs] ≤ t . By Lemma 10, we have
β[4] < πβ [25]. Putting the above inequalities together, we have β[4] < πβ [25] <

πβ [26] = β[cs] ≤ t . Thus, πβ [25] falls in the interval from the start of β to the
time t . Since Registry[procα] has a finite and smaller token than Registry[procβ ]
during this interval, when procπβ executes Line 25 and receives the response of
Registry.findmin() into (peerprocπβ

, tokprocπβ
), we have peerprocπβ

�= procβ

and tokprocπβ
�= ∞. Therefore, Line 26 of πβ cannot possibly change CSStatus to

(1, procβ), a contradiction. ��

7.2 Proof of strong starvation-freedom

Lemma 12 Consider a fair, infinite run in which each process crashes at most a finite
number of times in each of its attempts, and a process p is “stuck” at Line 7, i.e., there
exists a time τ such that, for all times t ≥ τ , PCp = 7. If CSStatus = (1, p) at any
time t ≥ τ , then there exists a later time t ′ ≥ t when Go[p] = 0.

Proof This proof is principally based on Condition (13) of the invariant. IfGo[p] = 0
at t , the lemma is satisfied; hence, suppose that Go[p] �= 0 at t . We note that Go[p]’s
value remains unchanged unless some process performs a successful CAS onGo[p] at
Line 29. To prove the lemma by contradiction, assume thatGo[p] remains unchanged
at all times after t .

Given the premise of the lemma, by Condition (13) of the invariant, there is a
process q such that Statement S below holds at t :

Statement S: PCq ∈{18-20, 24} ∨ (PCq = 27 ∧ peerq = p)
∨ (PCq ∈{28, 29}∧ peerq = p∧gq =Go[p])
∨ (PCq ∈ {1, 17} ∧ Go[q] �= −1)

We observe that, whenever Statement S holds, Condition (3) implies that Go[q] �=
−1. We use this observation wherever needed in the rest of this lemma, without an
explicit reference to it.

Let t∗ ≥ t be any time at which Statement S holds. This statement asserts that if
PCq = 1, then Go[q] �= −1, which implies (by Condition (3) of the invariant) that
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statusq �= good. Thus, if q is in the remainder at t∗, it will eventually restart and
execute the recover method. In other words, q is guaranteed to take the next step.

Let σ denote the first step of q after t∗. We make the following observations about
the possibilities for this step.

(O1) If σ is a crash step of q, the step sets PCq to 1. Since Go[q] �= −1, it follows
that Statement S continues to hold after the step σ .

(O2) If σ is the execution of Line 29, then q performs a successful CAS on Go[p],
setting its value to 0, thereby satisfying the lemma. (The CAS is guaranteed to
succeed because Statement S guarantees that if PCq = 29, then peerq = p and
gq = Go[p]).)

(O3) If σ is the execution of any of the other lines of code that PCq points to at time
t∗, which can be any of Lines 18-20, 24, 27, 28, 1, or 17, Statement S remains
satisfied after the step σ and the step moves PCq closer to Line 29, whose
execution (as just observed) causes the lemma to be satisfied.

The three observations above, together with the premise that q eventually stops
crashing, imply that Go[p] is eventually set to 0. ��
Lemma 13 Consider a fair, infinite run in which each process crashes at most a finite
number of times in each of its attempts, and a process p is “stuck” at Line 7, i.e., there
exists a time τ such that, for all times t ≥ τ , PCp = 7. If CSStatus = (1, q) at any
time t ≥ τ , there exists a later time t ′ > t when CSStatus = (0, ∗).

Proof Suppose that in the run, CSStatus = (1, q) at time τ . We note that no process
other than q can change this value in CSStatus, and q can possibly change it by
executing Line 14.

We observe that the following Statement S holds at τ .

Statement S:

1. Go[q] �= −1.
(This follows from Condition (5) of the invariant.)

2. PCq /∈ {2−4, 23}∪{5, 22}∪[15, 16], and if PCq ∈ {1, 17}, then statusq /∈
{good, recover-from-rem}. (Therefore, PCq ∈ {1, 6 − 14, 17 − 21}.)
(This follows from the premise that CSStatus = (1, q), the first part of
Statement S that Go[q] �= −1, and Conditions (5) and (3) of the invariant.)

Let t∗ ≥ t be any time at which the Statement S above holds. Statement S.2 asserts
that if PCq = 1, then statusq �= good. Hence, if q is in the remainder at t∗, it will
eventually restart and execute the recover method. In other words, q is guaranteed to
take the next step.

Let σ denote the first step of q after t∗. There are many possibilities for what this
step σ can be, and we make observations about these.

(O1) If σ is a crash step of q, the step sets PCq to 1, and sinceGo[q] �= −1, Condition
(3) of the invariant implies that statusq �= good. It follows that Statement S
continues to hold after the step σ .

(O2) If σ is the execution of Line 14, then CSStatus changes to (0, ∗), thereby
satisfying the lemma.
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(O3) If σ is the execution of Line 7, one possibility is that PCq remains at 7 (because
Go[q] �= 0 and the abort signal is not present), and Statement S continues to
hold. However, importantly, it follows from Lemma 12 that q eventually quits
the busywait at Line 7 and moves on to Line 8.

(O4) If σ is the execution of any of the other lines of code that PCq points to at time
t∗, which can be any of Lines 6, 8-14, 17-21, Statement S remains satisfied after
the step σ and the step moves PCq closer to Line 14, whose execution (as just
observed) causes the lemma to be satisfied.

The observations above, together with the premise that q stops crashing, imply that
CSStatus is eventually set to (0, ∗). ��
Lemma 14 Consider a fair, infinite run in which each process crashes at most a finite
number of times in each of its attempts, and a process p is “stuck” at Line 7, i.e., there
exists a time τ such that, for all times t ≥ τ , PCp = 7. If CSStatus = (0, ∗) at any
time t ≥ τ , then there exists a later time t ′ > t when CSStatus changes from (0, ∗)

to (1, q), for some q.

Proof The proof is principally based on Condition (12) of the invariant. Since p is
stuck at Line 7 from time τ , Registry[p] holds (p, a), for some positive integer a,
at all times after τ ; so min(Registry) �= (∗,∞) at all times after τ .

Suppose that in the run R, CSStatus = (0, s) at some time t ≥ τ . We note
that CSStatus can change from this value if and only if some process q later per-
forms a successful CAS at Line 26. To prove the lemma by contradiction, assume that
CSStatus remains unchanged at (0, s) at all times after t .

At time t , since min(Registry) �= (∗,∞) andCSStatus = (0, s), Condition (12)
of the invariant guarantees that there is a process q for which the following statement
holds:

Statement S: (PCq ∈ {1, 17} ∧ Go[q] �= −1) ∨ PCq ∈ {6, 15, 18-20, 24}
∨ (PCq ∈ {25, 26} ∧ CSStatus = (0, sq)))

We observe that, whenever Statement S holds, Condition (3) implies that Go[q] �=
−1.

Let t∗ ≥ t be any time at which Statement S holds. If PCq = 1, sinceGo[q] �= −1,
Condition (3) of the invariant implies that statusq �= good. Hence, if q is in the
remainder at t∗, it will eventually restart and execute the recover method. In other
words, q is guaranteed to take the next step.

Let σ denote the first step of q after t∗. There are many possibilities for what this
step σ can be, and we make observations about these.

(O1) If σ is a crash step of q, the step sets PCq to 1, and sinceGo[q] �= −1, Statement
S continues to hold after the step σ .

(O2) If σ is the execution of Line 26, since CSStatus = (0, sq), the CAS at Line 26
succeeds and changes CSStatus to (1, peerq), thereby satisfying the lemma.

(O3) If σ is the execution of Line 24, the step sets PCq to 25, and ensures that
CSStatus = (0, sq) is true after the step. So, Statement S continues to hold
after the step σ .
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(O4) If σ is the execution of any of the other lines of code that PCq points to at
time t∗, which can be any of Lines 1, 17, 6, 15, 18-20, or 24-25, Statement S
remains satisfied after the step σ and the step moves PCq closer to Line 26,
whose execution (as just observed) causes the lemma to be satisfied.

The observations above, together with the premise that q eventually stops crashing,
imply thatCSStatus is eventually set to (1, ∗), which contradicts our assumption that
CSStatus = (0, s) at all times after t . ��
Lemma 15 In every fair, infinite run in which each process crashes at most a finite
number of times in each of its attempts, for any q, if CSStatus changes from (0, ∗)

to (1, q) at any time t, then q enters the CS at some time after t .

Proof Let σ denote the step performed at time t that changesCSStatus from (0, ∗) to
(1, q), and let r denote the process that performs this step (r is possibly the same as q).
Regardless of whether r is the same as or distinct from q, since CSStatus �= (1, q)

just before the step σ , it follows from Condition (5) of the invariant that PCq /∈ [10−
14] immediately before and immediately after the step σ . Furthermore, Lemma 13
guarantees thatCSStatus is changed to (0, ∗) at some time t ′ > t , and the earliest such
change is possible in the code only when q executes Line 14. Since PCq /∈ [10− 14]
at time t , and PCq = 14 at time t ′ > t , it must be the case that q enters the CS (i.e.,
q enters Line 10) sometime after t (and before t ′). ��
Lemma 16 (Strong Starvation Freedom) In every fair, infinite run in which each pro-
cess crashes at most a finite number of times in each of its attempts, no process is stuck
at Line 7, i.e., for all processes p, if PCp = 7 at any time, then PCp �= 7 at a later
time.

Proof Assume to the contrary that a process p is “stuck” at Line 7, i.e., there exists a
time τ such that, for all times t ≥ τ , PCp = 7. Then, by applying Lemmas 13, 14,
and 15 repeatedly ad infinitum, we see that there are infinitely many attempts in which
processes enter the CS. Since the number n of processes is finite, it follows that some
process enters the CS infinitely many of its attempts (while p is stuck at Line 7, past
its doorway), thereby violating the FCFS property, which contradicts Lemma 11. ��

7.3 Themain theorem

The theorem below summarizes the result of our paper.

Theorem 1 The algorithm in Fig. 1 is an abortable RME algorithm for n processes
using read, write, and CAS operations. It satisfies the following properties: Mutual
Exclusion, Critical Section Reentry, No Trivial Aborts, Bounded Exit, Bounded Abort,
Fast Probing, Bounded Recovery, FCFS, and Strong Starvation Freedom.

A process incurs O(min(k, log n)) RMRs per passage on DSM and Relaxed-CC
machines, and O(n) RMRs per passage on Strict-CC machines, where k is the maxi-
mum point contention during the passage.

If a process p crashes f times during its attempt and k is the maximum point
contention during the attempt, on DSM and Relaxed-CC machines, p incurs O( f +
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min(k, log n)) RMRs in that attempt, and on Strict-CC machines, p incurs O( f + n)

RMRs in that attempt.
The algorithm’s space complexity is O(n).

Proof The properties listed are proved in Lemmas 3, 4, 5, 6, 11, and 16.
We now analyze the complexity. Consider the RMRs that a process p incurs due

to its busy-wait at Line 7. On DSM machines, where Go[p] is assigned to p’s part of
NVM, p does not incur any RMRs at Line 7. On Relaxed-CC machines, one RMR is
incurredwhen bringingGo[p] to p’s cache at the start of executing Line 7, spinning on
Go[p] incurs no RMRs, one RMR is incurred when some process changesGo[p] to 0,
and possibly one more RMR is incurred to read that 0 inGo[p]. Thus, on Relaxed-CC
machines, p incurs only O(1) RMRs at Line 7. On Strict-CC machines, while p spins
onGo[p] at Line 7, O(n) processes could be at Line 29, each poised to perform a CAS
on Go[p]. At most one of these succeeds in its CAS, but every one of them makes
p incur an RMR with their CAS (albeit the CAS is unsuccessful). Thus, p can incur
O(n) RMRs at Line 7.

As explained in Sect. 4, each of Lines 5 and 19 incurs O(min(k, log n)) RMRs.
Every other line in the code (except Line 7 that is already analyzed) incurs at most
one RMR. Hence, we have the RMR complexity stated in the lemma.

The space complexity of O(n) immediate from the observation that Go[p] array
takes O(n) space andRegistry takes O(n) space, as explained in Sect. 4, other shared
variables take O(1) space, and O(1) local variables per process. ��

8 Discusion and conclusion

In this paper, we have introduced the notion of a mutual exclusion lock that is both
recoverable and abortable. Our algorithm demonstrates a curious relation between
recoverability and abortability: an algorithm designed only to be recoverable can
easily incorporate abortability if only the recover method were carefully designed
to be bounded even when recovering from a crash that occurs in the try method.
This idea works because aborting can then be implemented by feigning a crash and
executing the recover method. In fact, our algorithm showcased that this idea leads
to an optimal RMR algorithm for DSM and Relaxed-CC machines, using only the
commonly available read, write, and CAS operations.

It would be interesting to explore if the logarithmic RMR complexity, shown here
for DSM and Relaxed-CC machines, is also attainable for Strict-CC machines.
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