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Abstract
Machine learning techniques aim to mimic the human ability to automatically learn
how to perform tasks through training examples. They have proven capable of tasks
such as prediction, learning and adaptation based on experience and can be used in vir-
tually any scientific application, ranging frombiomedical, robotic, to business decision
applications, and others. However, the lack of domain knowledge for a particular appli-
cation can make feature extraction ineffective or even unattainable. Furthermore, even
in the presence of pre-processed datasets, the iterative process of optimizing Machine
Learning parameters, which do not translate from one domain to another, maybe
difficult for inexperienced practitioners. To address these issues, we present in this
paper a Vectorized Automated ML Pre-processIng and post-pRocEssing framework,
approximately named (VAMPIRE), which implements feature extraction algorithms
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capable of converting large time-series recordings into datasets. Also, it introduces a
new concept, the Activation Engine, which is attached to the output of a Multi Layer
Perceptron and extracts the optimal threshold to apply binary classification.Moreover,
a tree-based algorithm is used to achieve multi-class classification using the Activa-
tion Engine. Furthermore, the internet of things gives rise to new applications such
as remote sensing and communications, so consequently applying Machine Learning
to improve operation accuracy, latency, and reliability is beneficial in such systems.
Therefore, all classifications in this paper were performed on the edge in order to reach
high accuracy with limited resources. Moreover, forecasts were applied on three unre-
lated biomedical datasets, and on two other pre-processed urban and activity detection
datasets. Features were extracted when required, and training and testing were per-
formed on the Raspberry Pi remotely, where high accuracy and inference speed were
achieved in every experiment. Additionally, the board remained competitive in terms
of power consumption when compared with a laptop which was optimized using a
Graphical Processing Unit.

Keywords Algorithms · Artificial intelligence · Multi Layer Perceptron ·
Classification · Edge computing · Feature extraction · Machine learning ·
Pre-processing · Post-processing · Signal processing

Mathematics Subject Classification 68W01 · 68W25 · 68W32 · 68W40 · 68T01 ·
68T05 · 68T07 · 68T10 · 68T27 · 68T30 · 68T40 · 68Q30

1 Introduction

Machine learning (ML) has become a key technique that is used in many modern
applications in many fields, such as busines, engineering, and healthcare. It is con-
sidered a form of artificial intelligence (AI), and because it possesses the ability to
learn, adapt, and remember, it proved superior to classical hard-coded programming
methods, which are application-specific in nature. Many ML algorithms can make
predictions in multiple fields while generalizing and have a relatively high accuracy
regarding a specific application. However, a ML process requires a workflow that usu-
ally consists of data collection, feature extraction, setting parameters, and applying the
forecast on both training and test-sets. This process is iterative and, relying upon the
application, some phases may require more tuning than others, depending on whether
accuracy is reduced due to high bias or high variance.

ML algorithms usually require that the practitioner possesses domain knowledge
in the field associated with the dataset that he is using, and most notably when feature
extraction is required. Feature extraction is the process of conversion of data into a
better format to use inML setups. However, currently, many pre-processed datasets are
available, where ML algorithm can be applied directly to the data without any domain
knowledge. This can be the case in many medical, physical, and business applications.

However, even after acquiring pre-processed data, the ML algorithm hyper-
parameters still need to be tuned to optimize forecast accuracy. Moreover, this
parameter tuning process can require a notable effort and sufficient experience in
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ML in general, and even ML domain experience in that specific application. This is
dominantly the case, since hyper-parameter tuning setups does not translate well from
one domain to another.

In this paper, we presentVAMPIRE, a vectorized automatedML pre-processing and
post-processing framework. It consists of novel pre-processing and post-processing
algorithms thatwe developed in the Python programming language. The first facilitates
the feature extraction phase in case the user is dealing with time-series data, where the
algorithm can be applied to fully annotated and semi-annotated datasets. Furthermore,
a post-processing algorithm has been developed that implements Activation Engines,
which are applied to the outputs of a multi layer perceptron (MLP) and extracts the
optimal threshold relevant to the test-set based on training accuracy.

The VAMPIRE framework achieves robust performance, since it can be applied
to multiple types of time-series for feature extraction and can be implemented to all
applications performed using MLP through the Activation Engine concept. Also, the
main computational blocks have been implemented using Python Numpy vectors to
considerably increase the speed of feature extraction, dataset generation, and post-
processing substantially. Moreover, a subset of the extracted features from the time-
series has been applied using the Rulex software in an edge computing arrangement.
Rulex [1] is a general-purpose ML platform that operates through a graphical user
interface (GUI); It can operate in a client/server setup where the ML forecasts are
applied on the general-purpose Raspberry Pi IoT device [2]. Rulex applies Switching
Neural Networks [1] and Positive Boolean Function Reconstruction [3] to implement
explainable AI which provide a white-box learning approach to ML.

Multiple classification forecasts were applied using various datasets taken from
various fields in a mesh setup, where some datasets were pre-processed using the algo-
rithms developed in this paper, and others were already pre-processed using different
techniques. Also, for the forecasts, Rulex was applied to a subset of the applications,
whileMLPwith and without the new post-processing block was applied to the remain-
ing datasets. Additionally, some forecasts were performed using just one of the ML
setups. Also for four of the used datasets, a comparison with the literature is outlined
and discussed since there exists viable related work suitable for comparison. More-
over, a complete description is provided in the experimental part of this paper. All ML
training and testing were applied in an edge computing setup with limited resources
by applying training and testing outside a cloud server. Therefore, ML workflows
were either applied using Rulex running on the Raspberry Pi and in a client/server
arrangement, or by running a MLP remotely on the Raspberry Pi with VAMPIRE’s
Activation Engine placed at its output. However, since the Activation Engine is a basic
binary classification block, a multi-class tree-based technique which was developed in
[4] was incorporated into the VAMPIRE Framework to implement multi-class classifi-
cation. Furthermore, the inference time of the framework was compared to other edge
setups and so was its power consumption with a laptop having an onboard graphical
processing unit (GPU).

This paper is organized as follows: Section 2 reviews the literature while discussing
various automated ML techniques, related pre-processing and post-processing algo-
rithms, and introduces the Rulex [5] and Raspberry Pi [2] platforms used in this paper.
The new VAMPIRE pre-processing algorithms are presented in detail in sect. 3 and
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VAMPIRE’s Activation Engine block is described in sect. 4. Section 5 presents the
data sources used for feature extraction and classification to test the VAMPIRE frame-
work’s robustness. All experimental results achieved using the data sources and the
performance comparisons are provided in Sect. 6. Also, we draw a conclusion in Sect.
7, and finally an appendix explaining version two of the pre-processing algorithm in
detail concludes the paper.

2 Literature review

Feature extraction or pre-processing is used to convert raw data into a more convenient
format to apply various ML algorithms. On the other hand, post-processing is the act
of applying an optimization block at the output of aMLworkflow to improve accuracy.

2.1 Feature extraction and pre-processing of time-series

A certain dataset in its available format may not be directly applicable to a ML algo-
rithm. Therefore, feature extraction is usually applied to time-series data, and most
notably biomedical datasets.

In [6] authors propose a Nature–Inspired Differential–Evolution for feature selec-
tion which was applied as a pre-processing method using the Logistic Regression
algorithm. The algorithm selects features based on the accuracy threshold applied
taken from the output of Logistic Regression.

A web platform for biomedical time-series pre-processing [7] was applied to Elec-
trocardiogram (ECG) signals for cases of myocardial ischemia, atrial fibrillation, and
congestive heart failure. Biomedical signals are usually noisy and so filtering is an
important issue in time-series pre-processing. In [8] an ECG signal is pre-processed
using an adaptive filter to remove noise before applying discrete wavelet transform
to extract features for classification using support vector machines (SVM). In [9]
authors describe the process of applying wavelet transform to extract features from an
Electroencephalogram (EEG) signal for classification using MLP.

In [10] authors review feature extraction and feature selection in ML techniques.
They describe how feature extraction is used to reduce the dimensionality of a dataset
through the transformation of the feature space, and also discuss how feature selection
reduces the dimensionality as it points out the subset of features that possess the most
significant effect on forecast accuracy.

A feature extraction Python pre-processing Library based on nature-inspired
optimization algorithms has been developed in [11]. The EvoPreprocess library is
compatible with the ML Scikit–Learn Library and performs well compared to other
frameworks.

A time-series is a waveform that corresponds to physical, biological, or business
data, that changes over time and is found in variousML applications. In [12], a Bag-of-
Words representation for biomedical time-series is presented. The methods presented
treat the time-series as text documents and extract segments as words. In that paper,
the Bag-of-Word’s methods were applied on two ECG datasets taken from [13] and an
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EEG dataset from [14]. An ensemble learning approach is also applied to biomedical
datasets in [15] which use the Chinese cardiovascular disease database [16]. Shortfuse
is presented in [17], which is a biomedical time-series feature extraction method that
implements Long Short–Term Memory to outperform competing models by 3%, in
terms of accuracy.

In the case of biomedical applications, ECG, EEG, and Photoplethysmogram (PPG)
are themost commonmeasurements. ECG consists of measuring the electrical activity
of the heart, PPG consists of the measurement of blood pressure and heart rate using
light emitting diode, and an EEG provides the electrical signals taken from the scalp
and usually have a much wider frequency spectrum than ECG and PPG signals. These
three signal categories are used in this paper as data sources for feature extraction
using the VAMPIRE framework.

2.2 AutomatedML and post-processing

AMLworkflow includes also a hyper-parameter tuning, such as setting class-weights
and feature-weights, which are used as parameters in a loss function to optimize clas-
sification accuracy regarding the training set. In some applications, expert knowledge
may not be available to tune the ML parameters, and so, automated ML techniques
and software packages have been developed to facilitate the process of implementing
forecasts. However, this can be a time-consuming process and requires much more
processing power compared to classical workflows that are performed by experts in
the field.

Post-processing is the process of applying a cognitive block at the output of a ML
algorithm such as MLP or Logistic Regression. This is applied for each sample and
may consist of applying multiple ML forecasts in parallel before combining all the
outputs to optimize the overall accuracy.

In [18] authors apply ensemble learning usingMLPonweather forecasts in different
configurations. Ensemble learning is a technique that applies multiple ML forecasts
in parallel and on the same dataset. Then, the outputs are brought together, and an
optimal output is selected using a voting scheme.

Guidelines are provided by authors in [19] to select the best ML scheme in the case
of biomedical application. They have performed forecasts on 31 datasets and applied
various ML algorithms to select the best configuration.

Another approach to ML automation is meta-learning, which consists of iterating
not just parameter tuning but alsoMLalgorithms in the quest for optimization. This can
be perceived as an optimization problem per algorithm and a collective optimization
problem which attempts to iterate between different ML techniques. According to
this approach, the Auto–WEKA package [20] has been presented as a modification
of the original WEKA workbench [21], conceived as a toolset for data analysis and
predictive modeling. Auto–WEKA applies Bayesian optimization to automatically
select the algorithm to be used, along with its tuned parameters. It is a tool dedicated
to non-experts to applyML forecasts and to achieve good performance. In [22] authors
present the AUTO–SKLEARN framework which is a Python implementation based
on the Scikit–Learn Library. The framework applies ensemble learning at the output of
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a meta-learning configuration to automate parameter tuning while choosing the most
suitable ML algorithm.

A situation where expert knowledge is not always available is presented in [23]
which consists of the prediction of the performance of a tunnel boring machine. So,
a Bayesian optimization scheme is applied for hyper-parameter tuning and algorithm
selection, and a neural architecture search for MLP optimization.

In [24] authors claim that modern MLP is poorly calibrated since increasing the
depth improves accuracy, however, may affect the calibration negatively. Furthermore,
a domain-specific ML framework dedicated to predicting the properties of inorganic
materials has been presented in [25].

2.3 Platforms used on the edge

IoT encompasses many fields of application which demand the monitoring and man-
agement of power, bandwidth, and reliability. For example, authors in [26] propose
an IoT framework for resource management with the goal of optimal task offloading,
where the framework is intended for healthcare systems. Power consumption during
ML forecasts on edge is a critical issue due the limited power availability for IoT
nodes. Therefore, power consumption optimization on the edge using ML is investi-
gated in [27–29]. Also, in [30] ML is applied on time-series data from IoT sensors in
order to predict failure in a slitting machine. Additionally, in [31, 32] MLP’s are used
to improve security in IoT networks.

Therefore, with the vast scope of ML application in IoT along with the existing
benefits of ML solutions, we’ve developed the present framework to perform ML
pre-processing and prediction using limited resources. Consequently, the hardware
platform chosen in this paper is the multi-purpose and widely popular Raspberry Pi
[33]. The Raspberry Pi is used as an edge computing node where the act of storing
and making a cognitive decision on a local node rather than making computation and
exchanging big data with a cloud server [34].

The Raspberry Pi is ideal for edge computing applications since it possesses ade-
quate processing power and is able to manage enough data for most ML applications.
As for the software part, The ML platform used is Rulex [5] which is a ML package
directed towards non-domain-experts and which has been ported to the Raspberry Pi
as reported in [2]. The user does not need to write any code to carry on ML forecasts
thanks to an easy-to-use GUI. It allows to easily manipulate the data, apply one among
many ML algorithms, and visualize the output. Following this approach, a subset of
the forecasts applied in this paper were performed using Rulex in an edge computing
environment. The client/server arrangement that has been implemented with Rulex
is presented in Fig. 1, where as shown, the Rulex engine runs on the Raspberry Pi
and is operated remotely while relying on a database server as a common storage
point. Also, forecasts were performed using VAMPIRE’s post-processing algorithm,
where an SSH connection [35] across the public network was established through the
interface of the VSCode editor (without a third-party database), which was used for
remote development.
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Fig. 1 ML forecasts applied using Rulex software over the public network in a client/server setup

In case of using Rulex as classifier, the client consists of an HP laptop with an
Intel code-i7 1.8 GHz processor having 16GB of RAM running Windows 10 and
without a GPU. The AI server is a Raspberry Pi 3B+ model with a ARM Cortex-A53
1.4GHz processor and running Raspbian as its operating system. The Databse used is
a PostgreSQL 12 docker deployed server operated through a dedicated ODBC driver
while running on Azure Cloud. The Client consists of a graphical interface developed
in Python 2.7, and the AI Engine is written in C/C++ vectors for optimal performance.
The connection between client and server is an encrypted SSH connection over the
public or private network. In case of operating VAMPIRE remotely, again, an SSH
connection locally or through the local or public network is applied where the code
is written in Python 3.8 and the ML models and post-processing are developed using
Tensorflow andNumpy libraries respectively. As for the dataset generation and feature
extraction algorithms, they are also written in the Python 3.8 Numpy library and are
performed outside the Raspberry Pi on an MSI laptop with an Intel 7-10750H CPU
2.60GHz processor with 16GB of RAM and a 6GB 2060 Nvidia GPU and on the same
HP laptop used as a client. Consequently, the datasets were generated simultaneously
on both computers with roughly the same time and efficiency.

2.4 Motivation for ML edge computing frameworks and automated dataset
generation

Applying ML on edge devices and under performance constraints requires the devel-
opment of light data processing programs which are not much of a burden under
limited resources. However, specification restrictions are not the only issue faced in
edge paradigms. Usually, training takes place on a remote cloud server [36] and so
are the online training updates due to continuously changing data from the real world.
The former demands bandwidth resources while compute-heavy ML tasks can cause
the edge node to lag which results in undesired downtime. Consequently, both of these
issues are common design goals in an industrial ML system deploy-able on the edge.
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Therefore in [37] Edge2Train is presented, which is a an edge computing setup that
allows for online training on the edge with automatic dataset generation capability.
The framework uses an instrumentation feedback system which monitors changes in
the real world in order to update and validate the model through training on the edge.
Even so, this arrangement does not attempt to tune the parameters of ML model but
rather takes them as inputs from an external application. Furthermore, currently this
setup only dealswith binary classification applications.Also in [38] authors implement
a pipeline that executes convolutional neural networks (CNN) on edge devices. The
pipeline aims to reduce the size and structure of the network and the volumeof data such
that they can be deployed on a unit with limited resources, while preserving accuracy.
However, this method trains the model outside an edge node before deployment and
does not include feature extraction which is missing from the framework.

For final or industrial implementation of edge-based AI systems, one fundamental
characteristic is automated feature generation regardless if training is applied in one
shot or whether online updates are applied. Time-series forecasting setups on the other
hand usually include feature extraction in order to reduce the dimensionality of data
and since it may improve prediction accuracy. Therefore, automating this process is
desirable considering the large amounts of data that can be collected by biomedical
edge devices and frommultiple patients.Authors in [39] review the automation of time-
series ML processes which encompass: Pre-processing, feature engineering, hyper-
parameter optimization,model selection and ensembling. They reveal that themajority
of publications only cover three out of the five pipelines mentioned. Also, based on
their report, ensembling and parameter optimization are not suitable to be applied on
the edge due to high computation requirements and since multiple complete training
runs are required twice for each block. EEG automated feature extraction is reported
in [40] where a GUI named Training Builder was developed which generates a dataset
automatically based on predefined computations and relies on a windowing technique
to split an unbounded time-series into smaller finite sets. However, the length of sets
and the overlap times needs to be defined manually. Consequently, a practitioner may
need to experiment with these time values since they affect the forecast accuracywhich
limits the automation attribute.

The VAMPIRE framework described in this paper avoids hyper-parameter tuning
and Automated-ML which are increasingly compute-expensive but relies on a post-
processing block that can run to a finite number of timeswhere the runtime is adjustable
for a loss in accuracy, where this loss is usually very small or improbable. Furthermore,
the framework adds a multi-class classification feature using the tree-based method
which is described in Sect. 6. As for the automated dataset generation part of the
VAMPIRE framework, the process is completely automated since in the case of dealing
with streams of data, the algorithmwill set a variable length for each finite set which in
continuously checked and updated without any predefined parameters and variables.
The feature extraction algorithms provided in this framework may be implemented in
an online learning approach due to their automated nature since they do not require
parameters fromanoperator or fromany additional programs.Also, the same statement
can be declared regarding the post-processing technique which is adopted.
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Fig. 2 Workflow of the VAMPIRE framework with various possible setups

3 Novel VAMPIRE pre-processing algorithms

The paper presents a new feature extraction method which takes a time-series as
an input, and can automatically generate a dataset in comma separated values (CSV)
format that can be processed by anyML algorithm. This process is automated andmay
only require the user to apply some filtering technique to the input signal to reduce
noise. Furthermore, the key computational blocks in the code were implemented using
Python Numpy to increase processing speed by a considerable factor.

The pre-processing algorithm is applied in two arrangements. The first operates
directly by applying multiple algorithms in case the signals are annotated by experts
in the field. The second version has been developed to deal with poorly annotated
datasets.

Preliminary operations consist in subdividing the whole time-series in portions,
each one with start and end clearly defined, and to annotate each portion according to
a classification provided by an expert in the field. A semi-annotated dataset consists
of a time-series that is classified over a longer period of time, meaning larger portion
size, and may be classified by non-domain-experts with limited accuracy, such as a
patient annotating her or his own state. The VAMPIRE pre-processing algorithms are
implemented in two setups, being capable of extracting datasets without any excessive
intervention by the ML practitioner. An illustration of the overall workflow of the
VAMPIRE framework is provided in Fig. 2, where the shaded areas represent to parts
where the VAMPIRE framework algorithms are being implemented.

In case of time-series data, the VAMPIRE pre-processing algorithm converts the
recordings into datasets, which can be applied to a MLP with a post-processing block
(or any other ML setup). Furthermore, a MLP with an Activation Engine at the output
may be applied to any pre-processed datasets.

3.1 VAMPIRE pre-processing algorithm: VAMPIRE FE1

The novel feature extraction algorithm VAMPIRE FE1 applies fast fourier transform
(FFT) [41] to every record in the waveform recordings and stores frequency response
information. The FFT input and the output signal are normalized on a scale of 0-N
where N is maximum value of the normalized signal. Then, the frequencies from the
FFT, and the voltages from the original signal are correlated andmultiplied, to form the
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Algorithm1Algorithm that converts a time-varyingvoltage signals into theD-Domain
Require: Waveform x indexed by i
Ensure: VHz which is the D-Domain representation of x
1: α1 ⇐ lower threshold
2: α1 ⇐ upper threshold
3: x ⇐ input wave f orm
4: x ⇐ normalize(x)
5: for i for every waveform in x from the dataset do
6: FFT ⇐ frequency response(x[i])
7: FFT ⇐ normalize(FFT )

8: V Hz ⇐ empty array of size(x[i])
9: for j < si ze(x[i]) do
10: temp ⇐ x[i, j]
11: for k < size(FFT ) do
12: if FFT [k] > α1 ∗ temp then
13: if FFT [k] < α2 ∗ temp then
14: Freq.insert(k)
15: end if
16: end if
17: end for
18: if size(Freq) > 0 then
19: max ⇐ max(Freq)

20: V Hz[i] ⇐ max ∗ x[i, j]
21: Freq ⇐ 0
22: end if
23: end for
24: end for
25: Return V Hz

Fig. 3 A waveform used for feature extraction after being converted to the D-Domain. This is the result of
applying the feature extraction method describes in Sect. 3, which correlates between time-varying signals
and their frequency response

novel V.Hz curve, which is a new unit of representation proposed in this paper, where
for every biomedical signal the curve is extracted and plotted versus the time axis as
shown in Fig. 3. The process of generating the curve presented in Fig. 3, is illustrated
in Fig. 4. As shown, the voltages from the original time-series are correlated with the
maximum frequency value taken from the FFT output, in order to generate the V.Hz
waveform. Algorithm 1 presents the coding steps needed to convert a time-varying
voltage into the D-Domain in order ro further process the signal and extract features.
It consists of taking FFT of signal x and normalizing its voltages to the same range,
and then multiplying each maximum frequency with the identified voltage to convert
x into the V.Hz Domain, which we will refer to as the D-Domain for simplicity.
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Fig. 4 a The original time-series from the recording with normalized voltages. b The FFT output for the
time-series in a. c After extracting the maximum frequency from b related to a particular voltage in a, the
normalized voltages and frequencies are multiplied generating the curve in c
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Algorithm 2 Algorithm that extracts static base variables from the D-Domain signals
Require: D-Domain signals and VHzcross indexes
Ensure: Arrayss a1, b1, Sum1, Diff1, IntegVHz, PeakVhz used for feature extraction
for every s crossings in VHz do

V Hza ⇐ V Hz[s]
while k < size(VHzcross) do

for j from VHzcross[s,k] ⇒ VHzcross[s,k+1] do
if V Hza[ j] == peak then

ipeak[s].insert(j)
end if

end for
peak ⇐ max(VHza[VHzcross[s,k]:VHzcross[s,k+1]])
PeakVHz[s].insert(peak)
Area ⇐ integral(VHza[VHzcross[s,k]:VHzcross[s,k+1]])
IntegVHz[s].insert(Area)
k=k+2

end while
while d < size(VHzcross) do

a1[s].insert(ipeak[s,d/2] - VHzcross[s,d])
b1[s].insert(VHzcross[s,d+1] - ipeak[s,d/2])
Diff1[s].insert(tail(b1[s])-tail(a1[s]))
Sum1[s].insert(VHzcross[s,d+1] - VHzcross[s,d])
d = d + 2

end while
end for
Return a1, b1, Sum1, Di f f 1, I ntegV Hz, PeakV Hz

Fig. 5 a Base variable a1 and b1 used to derive the first set features. b Variable a2 and b2 used to derive
second set of features. These variables are used to derive the features used in ML training, by implementing
basic statistical operations

After extracting the signal in the D-Domain which is a V.Hz curve, the spikes from
this signal are detected and two variables a1 and b1 are computed. The a1 variable
represents the time that is taken from the first zero-crossing of the V.Hz signal till
the peak of the same signal. Variable b1 represents the time taken from the peak till
the second crossing. Their difference Diff1 and their summation Sum1 are computed.
mean, standard deviation (STD), variance, median, range, maximum and minimum
values are derived for a1, b1, Sum1, andDiff1, and are saved as features for that record.
Variables a1 and b1 are presented in Fig. 5a. Also, for every spike, the peak, as well as
the area or integral values can be used to generate the same set of feature. Algorithm
2 describes the procedure that is used to extract a1, b1, Sum1, and Diff1 by detecting
the peak of each spike along with the zero-crossing pairs needed to calculate the base
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Algorithm 3 Algorithm that extracts dynamic base variables from the D-Domain
signals
Require: D-Domain signals and VHzcross indexes
Ensure: Base arrays a2, b2, Sum2, Diff2 used for feature extraction
1: for every s crossings in VHz do
2: V Hza ⇐ V Hz[s]
3: for w till size(VHzcross) with step-size = 2 do
4: h ⇐ w/2
5: v0 ⇐ VHzcross[s,w]
6: v1 ⇐ VHzcross[s,w+1]
7: for n from vo till ipeak[s,h] do
8: index1 ⇐ index(VHza[n])
9: difference1 ⇐ (ipeak[s,h] - index1)
10: a2[s,h].insert(difference1)
11: end for
12: for n1 from ipeak[s,h] till v1 do
13: index2 ⇐ index(VHza[n1])
14: difference2 ⇐ (index2 - ipeak[s,h])
15: b2[s,h].insert(difference2)
16: Sum2[s,h].insert(difference1+difference2)
17: Diff2[s,h].insert(absolute(difference1-difference2))
18: end for
19: end for
20: end for
21: Return a2, b2, Sum2, Di f f 2

variables along with the peak and area values. The algorithm requires as input the
V.Hz waveform along with the indexes determining the start and end of each spike.

Another class of variables is based on variables a2 and b2 presented in Fig. 5b,
which consist of the of sets of the averaged triangular function from zero-crossings to
the maximum of the spike. Also, corresponding values for Sum2 and Diff2 are com-
puted. Afterwords, statistical function of arrays a2, b2, Sum2, andDiff2 are computed,
where again, they consist of the range, mean, variance, STD, median, maximum, and
minimum values. Algorithm 3 outlines the process used to append all measurements
taken for every spike to arrays relating to the reported base variables, where it takes
the D-Domain representation an the spike crossings as input, in order to generate the
feature arrays that in turn are used to build the dataset in CSV format.

3.2 VAMPIRE pre-processing algorithm: VAMPIRE FE2

The goal of the second version of the pre-processing algorithm VAMPIRE FE2 is to
extract features from a semi-annotated dataset as in the case of the PPG dataset. It
allows to detect the status of time-series in real-time, in case the classes are distributed
over long periods of time such as the case in some biomedical applications. The classes
in the PPG dataset are taken over an hour and are not period-specific such is the case
with the ECG and EEG datasets. So, we could take a fixed period length distributed
over an hour and classify the periods with their overall hourly class. However, a
different approach is adopted, consisting in the detection of the uniformity of the
positively rectified signal and to sense a re-occurrence in the voltages or peaks. This
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Fig. 6 ECG Waveform before and after passing through the novel moving average algorithm, which gen-
erates a more defined signal where it is easier to extract features in the case of a semi-annotated data
source

Algorithm 4Modified moving average
Require: Waveform x
Ensure: avgs which is the moving average results from input x
1: avgs ⇐ x
2: step ⇐ step si ze
3: j ⇐ step
4: while j < si ze(x) do
5: k ⇐ j
6: while k > j − step do
7: avgs[ j] ⇐ avgs[ j] + avgs[k − 1]
8: k−−
9: end while
10: avgs[ j] ⇐ avgs[ j]/step
11: j++
12: end while
13: Return avgs

is performed while determining the window size that is continuously updated. So,
child records that are encompassed by a parent record are assigned, but with different
window sizes which are equal to the number of the child record’s zero-crossing pairs
(corresponding to the rectified signal). Therefore, To correctly rectify the input signal,
a novel moving average algorithm has been developed which defines the time-series
signal as it can be easily detected as shown in Algorithm 4.

Figure 6 presents two example signals: The upper signal is the raw ECG signal
which is difficult to process as it is. The novel moving average algorithm was applied
to the signal while updating the voltages with the average of the current mean and
the n-1 previous means with a window of width n. In case a signal crosses zero the
averaged output will remain in its vicinity for a longer time, thus allowing for zero-
crossing detection more easily. Algorithm 4 describes the code used tom implement
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Algorithm 5 VAMPIRE pre-processing algorithm for semi-annotated data
Require: Signal x
Ensure: Crosspx
1: β1 ⇐ starting window
2: β1 ⇐ last window
3: for every M portions of x do
4: Add N-to-P and P-to-N crossing index pairs of x to Cross
5: for j in Cross do
6: Patt[j] ⇐ max(x[Cross[2j],Cross[2j+1]])
7: end for
8: for Window from β1 till β2 do
9: for k in Window till end of Patt do
10: Mean[k] ⇐ Mean(Patt[k] + …+ Patt[k − Window + 1])
11: if STD(Mean[k]) < Threshold then
12: Set Window
13: Break
14: end if
15: end for
16: end for
17: while i with every index in Cross do
18: if Last index in Cross − i ≥ Window*2 then
19: Crosspx.insert(crossing pairs from Cross)
20: i = i + Window*2
21: end if
22: end while
23: Shift x byM
24: end for
25: Return Crosspx

this algorithm where as presented returns the mean-based moving average. Figure 6,
presents all the zero-crossings of an ECG signal after it has passed through Algorithm
4: the red dots represent zero crossings with positive slope and the blue dots represent
zero crossings with negative slope.

The pre-processing algorithm presented provides a novel technique to generate a
waveform from both frequency-dominant and voltage-dominant signals, such as EEG
and ECG signals respectively. This output waveform exists in the new D-Domain
where for every record in the used dataset the bounds of each record is clearly defined.
However, the generalized version of the algorithm, which can be applied to poorly
annotated datasets provides novel methods that expand the scope of operation into
a wider range of applications. This technique is presented in Algorithm 5 where as
demonstrated the waveform is subdivided into M portions whose window size is
based on the maximum voltage of each Negative-to-Positive (N-to-P) and Positive-to-
Negative (P-to-N) crossing pairs. The moving means of multiple maximum voltages
are collected before calculating their STDwhich is compared to a predefinedThreshold
in order to set the current Window size. this Window size is continuously refreshed
in order to subdivide the waveform x using Crosspx in real-time. Appendix A at the
end of this paper presents practical details of the code execution of Algorithm 5, by
posting data taken directly from the Python interpreter to further explain the operation
used to pre-process a time-series, in case it is not meticulously annotated.
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4 VAMPIRE post-processing algorithms - Activation Engines

In this paper, in addition to the pre-processing algorithms presented, we further pro-
pose a new post-processing technique we name the Activation Engine. It consists of
applying an optimal thresholding technique at the output of a classification algorithm,
aimed to significantly improve prediction accuracy. It is simple, yet capable of improv-
ing the accuracy without requiring too much effort on hyper-parameter tuning. This
approach can lead to more accurate classification results, using a single ML setup, and
without resorting to automated techniques which demand processing power, are time-
consuming, and are challenging to implement. Additionally, the Activation Engine
was implemented using Numpy vectors to allow for efficient post-processing on the
edge.

The Activation Engine has been developed to improve the testing accuracy of a
MLP with a binary Softmax output. Algorithm 6.1 determines the Ref variable which
presents the factor between the occurrence for the two classes in the training set.
Algorithm 6.2 may run the For Loop (Bordered in bold) from Algorithm 6.1 twice
since there might be two activation functions at the output.

In this case, the algorithm swaps the first and second Softmax outputs for each
iteration. Finally, in case there are two Activation Engines, the cluster that has the
highest accuracy will be voted based on overall training accuracy and is then applied
to the testing data. Furthermore, since there are two activation functions, there should
be two possible clusters per function. So, there can be four values from two pairs that
have to be considered for voting.

After determining values for array Th, the best version of the two thresholds arrays
is extracted from the training data, and two indices are computed which point to the
better version of the thresholds. Finally, the best threshold version is applied on the
testing date resulting in improved prediction accuracy.

Algorithm 6.1 and Algorithm 6.2 as shown in Fig. 7 and 8 respectively, describe the
steps and iterations taken to perform the binary classification versions of theActivation
Engine. Moreover, a tree-based technique is used to perform multi-class classification
using this approach. However, it is important to point out that since an output of two
Softmax functions are used, the variable Th is a 2x2 matrix since it has two possible
values for every Softmax threshold.

The feature extraction algorithms presented have been developed in order to convert
time-series of various characteristics and notations into datasets directly applicable to
variousML setups, and without resorting to any advanced and stressful pre-processing
techniques, which are in terms difficult for inexperienced practitioners. Furthermore,
since beginners in ML might find parameter tuning unreachable, the post-processing
algorithm presented: The Activation Engine, may be used along with a MLP in order
to optimize forecast performance without turning to automated ML methods, such as
meta-learning or ensemble learning, which require considerable processing power and
are time-consuming in nature.

The complexity of the Activation Engine can be expressed as shown in Eq. 1 where
the factor 2 corresponds to the 2x2matrix representing the two possible threshold pairs
of each Softmax activation function. Also the factor 4 corresponds the counting of True
and False values of each binary classification for the two cases of that threshold. the
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Fig. 7 Algorithm 6.1: VAMPIRE Activation Engine
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Fig. 8 Algorithm 6.2: Combining two Activation Engines
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factor 6 represents he extraction of the indices and the evaluation of the True and
False for the optimal threshold extraction. T1 and T2 represent the sizes of the training
set and test-set respectively. Consequently, N corresponds to the value 100 found in
Algorithm 6.1 and Algorithm 6.2 from Figs. 7 and 8 which sets the resolution for the
threshold used by the Activation Engine inference. Additionally, C corresponds to the
number of class labels used in the dataset which is included since the post-processing
algorithm uses a tree-based approach to achieve multi-class classification. Although,
setting C=2 implies that the tree-based method is not used and so Eq. 1 is valid also
for binary classification:

Complexi ty =
∑

0<=i<C−1

(1 − i

C
).(2.(N .4.T 1 + 2.T 1) + 2.6.T 1 + 2.6.T 2) (1)

Furthermore if N.T1 is large enough, which represents the product of the training
set size and threshold precision, Eq. 1 can be approximated in terms of Eq. 2:

Complexi ty =
∑

0<=i<C−1

(1 − i

C
).8.N .T 1 (2)

5 Data sources

In order to test the performance of the VAMPIRE Framework, five data sources taken
from five unrelated applications were adopted to perform forecasts using its pre-
processing algorithms and Activation Engines. Three biomedical time-series datasets
(Related to ECG, EEG, and PPG data) were used to implement VAMPIRE FE1 and
FE2. Therefore, the biomedical datasets along with the pre-processed datasets were
employed to test Rulex and theActivation Engine on data that was pre-processed using
VAMPIRE FE1 and FE2 and using different feature extraction techniques from the
literature. All tests were performed through a general-purpose laptop as a client and
the Raspberry Pi as an AI applications server.

5.1 ECG dataset

For the ECG application, the database used is the MIT-BIH arrhythmia database, [14,
42]. It consists of 48 30 min ECG recordings which pair with 48 annotation files
that contain the classification of each sample. Therefore, theVAMPIRE FE1 was used
which deals with fully annotated datasets. In this dataset, there are 20 arrhythmia
classes, however, we have chosen to consider five that have enough samples for fea-
sible ML training and testing. Also, we have applied multiple forecasts for the three
most dominant classes and with four most dominant classes to demonstrate that the
algorithm is more accurate in case a larger number of samples is available. Therefore,
a collective subset of 35989 samples was used in the forecasts having 73 features.
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5.2 EEG dataset

The EEG recordings were taken from the CHB-MIT scalp EEG database [14] which
consists of records from pediatric subjects with intractable seizures. Moreover, in
accordance with the previous section, VAMPIRE FE1 was implemented to generate
the features. The dataset analyzed in this work contains records from 22 subjects,
sampled at a rate of 256 samples per second with 16-bit resolution. Most files contain
23, 24, or 26 EEG signals. As a whole, a random subset from all patient was used with
17978 records having 180 features for the train/test split.

5.3 PPG dataset

The PPG data was taken from part of the predicting cognitive fatigue with Photo-
plethysmography project [43] and is taken from the Kaggle dataset repository [44].
The recordings consist of participants taking a 22 hour-shifts of gaming. These are
used to classify the Stanford Sleepiness Scale (1-7). However, due to the ambiguity
of the data, since it is a self-assessment and not a clinical diagnosis, we have split
the classes into two class groups True and False, which signify Sleepy or Not Sleepy.
Furthermore, the classification is taken over long periods of time, so, in order to clas-
sify the gamer’s fatigue level in real-time, VAMPIRE FE2was employed. Two gamers
records were chosen for the present ML workflow with a total of 31355 instances with
64 features.

5.4 Radar dataset

The radar dataset from [45] consists of features extracted from a double FFT applied
to radar measurements. These include statistical quantities of this signal such asmean,
STD, variance, range, and others.

There are four classes, where there is one forHumans and three others for Vehicles.
A MLP with an Activation Engine at its output with K-folder cross-validation splits
was implemented, which achieves high forecast accuracy. This dataset consists of 120
records equally split over its labels having 10 features.

5.5 Activity dataset

The activity detection dataset from [46] consists of features taken from the accelerom-
eter and gyroscope embedded in a smartphone. These include statistical quantities of
this signal such as mean, STD, variance, and others. Six classes describe the activity
performed by a subject such as Laying, Standing, Sitting,Walking,Walking Upstairs,
andWalking Downstairs. This dataset consists of 561 pre-processed features including
a user field while containing 7352 samples.
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6 Experimental results

All related experimental results will be presented in detail in this section. The
biomedical time-series described in the previous section were used to test VAMPIRE
framework’s performance where the recordings were pre-processed to generate corre-
sponding datasets, and were either applied using Rulex in a client/server arrangement
on the Raspberry Pi, or by remotely employing a MLP with an Activation Engine
on the same board. In case of the EEG and PPG datasets, both of VAMPIRE’s pre-
processing algorithms and Activation Engineswere employed, in addition to applying
the EEG and ECG datasets using Rulex on the Raspberry Pi.

Concerning the pre-processed datasets, both the activity detection and radar clas-
sification datasets were implemented with a MLP having an Activation Engine at its
output. Furthermore, the activity detection dataset was applied using Rulex on the
edge. In every case where ML was applied on the edge using Rulex running on the
Raspberry Pi, holdout validation was applied while implementing a K-folder setup for
the EEG, PPG, and radar forecasts. Additionally, the power consumption and iference
time will be evaluated by comparing with the performance of other ML setups.

6.1 Results for ECG forecasts

In the case of the ECG application, we used 73 Features for the generated dataset,
which were extracted using VAMPIRE FE1 from the MIT BIH arrhythmia database.
The features consist of the mean, variance, STD, median, minimum, and a maximum
of the variables a1, b1, Sum1, Diff1, the integral of the spike, the area of the spikes,
and the same statistical functions for the sets of a2, b2, Sum2, and Diff2 as presented
in Fig. 5.

We have applied ML algorithms decision trees (DT), and SVM in their default
format using the Rulex ML platform running on the Raspberry Pi in a client/server
setup [47]. Three arrangements were adopted with 3, 4, and 5 classes which take the
more dominant classes in the dataset into consideration. Just five classes have been
used in the simulations which are the forward-slash / which represents a Paced Beat,
N for Normal, L and R which are the left and right bundle branch respectively, and V
which means Premature Ventricular Contraction.

VAMPIRE FE1 requires a large time-series dataset as input, mainly since it trans-
forms the input data from one domain to another, which is then used for training and
testing. However, wewere still able to achieve highly accurate forecasts using classical
ML algorithms.

Figure 9a, b represent the accuraies for the training and testing using DT respec-
tively, however, due to the lack of samples in classes A and V, the accuracy is less than
for the other classes in the testing. In the case of 5 classes, the accuracies for decision
trees (DT) and SVM in testing are 95.55% and 96.24% respectively.

In Fig. 9c, d the accuracies for both training and testing using DT with 4 classes is
presented, respectively. DT and SVMperformmore accurately in the case of 4 classes.
class V which has the worst performance has been omitted. The overall accuracies in
the case of DT and SVM testing are 96.60% and 97.62% respectively.
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Fig. 9 Training and testing accuracies for ECG forecasts:(a) and (b) DT training and testing accuracy with
5 classes respectively. (c) and (d) DT training and testing accuracy with 4 classes respectively.(e) and (f)
SVM training and testing accuracy with 3 classes respectively

Figure 9e, f present the training and testing forecast accuracy for SVM using a
3-class arrangement. For all algorithms using the same datasets, the performance
improved in terms of accuracy as the fewer dominant classes were omitted. This is
due to the lack of samples where the algorithm does not generate enough information
in the features for accurate prediction. The overall accuracies in the case of 3 classes
for DT and SVM are 97.99% and 98.73% respectively.

In all the forecasts, the data which were used for prediction were taken from the
files which are dominated by the targeted classes. For instance, if there are the files
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Table 1 Five classes for ECG classification using Rulex on the edge

Classes / L N R V

SVM 99.57% 94.61% 98.80% 96.88% 89.11%

Decision Trees 98.19% 93.82% 97.10% 95.12% 89.98%

ECG Classification using Rulex running on the Raspberry Pi with 5 classes

Table 2 Four classes for ECG
classification using Rulex on the
edge

Classes / L N R

SVM 99.24% 94.77% 98.93% 97.14%

Decision Trees 99.24% 94.45% 97.20% 96.40%

ECG Classification using Rulex running on the Raspberry Pi with 4
classes

Table 3 Three classes for ECG
classification using Rulex on the
edge

Classes / L N

SVM 99.86% 99.82% 95.93%

Decision Trees 99.57% 98.73% 95.80%

ECG Classification using Rulex running on the Raspberry Pi with 3
classes

that predict classes F or S in a large enough number, these files were omitted to focus
on the targeted classes without adding any excessive data. So, even classes containing
labels such asN which represent a normal beat and exist in almost all files, the samples
are only taken from the files which are rich in the target classes.

This methodology proved to be fair since it generates very good results consistently
as the number of classes varied. This is also valid for various ML algorithms. A
complete set of results for forecast accuracy using the described Feature Extraction
method is presented in Tables 1, 2, and 3.

In [48] and ensemble learning approachwas applied to the same ECG dataset which
is used in this paper and another much smaller data source with the aim of improving
prediction accuracy. The system described is not fully automated since it requires
careful tuning while it relies on grid-search to tune an SVM from the ensemble. The
best accuracy achieved was realized by an MLP which is 98.06% while the overall
ensemble accuracy was recorded at 97.78%. However, the best accuracy was taken
without considering additional forecasts in a K-folder setup which provides more
reliable and unbiased results. In [49] a machine learning framework dedicated to ECG
classification is presentedwhich partly used the dataset used in this paper found in [13].
Even though an overall accuracy of 98.2% was achieved, this is due to the addition
of synthetic data which might have caused the ML model to over-fit to the test-et.
Furthermore, when using real world testing data, the accuracy dropped to 81% using
Random Forest and with a two-second window 85% using a five-second window for
a four-class forecast.
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Table 4 EEG forecast using
Rulex on the edge

Classes Non-Seizure Seizure

LLM 85.087% 85.992%

SVM 88.289% 81.493%

DT 84.355% 84.05%

EEG Classification using Rulex running on the Raspberry Pi

6.2 Results for EEG forecasts with VAMPIRE FE1 and Rulex

In the second forecast case, we have applied VAMPIRE FE1 on time-series related to
epileptic seizure Detection using EEG measurements, which are taken from subjects
with intractable seizures. Forecasts were applied using Rulex ML software running
on the Raspberry Pi in and edge computing setup. However, unlike the previous set of
ECG Features, the total number of features for the EEG applications was multiplied
by three, since brainwaves are frequency-dominant signals unlike voltage-dominant
signals occurring in ECG waveforms. So, the EEG recording was split into three
frequency bands using digital band-pass filters and the same number of features was
generated for each frequency band.

The forecast accuracies using the Rulex implementation are presented in Table 4,
where SVM, DT, and logic learning machine (LLM) algorithms were applied to the
extracted features which provide accurate results across all the adopted algorithms.

6.3 EEG forecasts with VAMPIRE FE1 and Activation Engines

As for the prediction results on the EEG data using VAMPIRE’s Activation Engine on
the Raspberry Pi, a Tensorflow implementation of a MLP was build using Keras. It
consists of a MLP trained using back-propagation. The MLP has an input layer with
219 inputs and a Rectified Linear Unit (Relu) activation function. The is proceeded
by four hidden layers alternating between Sigmoid and Relu until it reaches 2 Softmax
functions for a binary output. The corresponding transfer functions for the Sigmoid,
Relu, and Softmax functions can be found in Eqs. 3–5:

Sigmoid(x) = 1

1 + e−x
(3)

Relu(x) = max(0, 1) (4)

Sof tmax(xi) = e−xi

∑k
j=1 e

x j
(5)

The training using Tensorflow was run for 60 epochs with a K-folder split with K
= 5. As for the proposed MLP with Activation Engines, the overall testing accuracy
was 85.32% with the 2 output classes being predicted with accuracies of 87.58% and
83.07%. In [50] forecasts were applied partly on the same EEG dataset used in this
paper using classicalML algorithms and fuzzy-based techniques where an accuracy of
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85.6%was achieved using a deep CNN (which is computationally expensive) and 90%
using Sparse ExtremeLearningMachine [51]. However, the authors use a subset of five
patients from the CHB-MIT dataset whereas in this paper a completely random subset
from all patients is used which helps to avoid over-fitting and allows for more reliable
generalization, while remaining competitive. Furthermore, the MLP was tested after
removing the Activation Engines and relying on a one-vs-all approach where the new
method outperforms the classical technique by 3% which has an overall accuracy of
82.2%.

6.4 PPG forecasts with VAMPIRE FE2 and Activation Engines

Regarding the Sleepiness PPG recording dataset, we considered two subjects out of
the existing five, specifically gamers 1 and 3. The 7 sleepiness classes were grouped
into parent classes by equally distributing them into Sleepy and Not Sleepy. So, in this
binary classification arrangement, we have made forecasts using the Python Tensor-
flow library through a MLP. Also, as in the EEG application, the Activation Engine
technique was applied at the output of the MLP to improve testing performance.

VAMPIRE FE2 described in Algorithm 5 was used to extract the features from
the PPG dataset, considering that the time-series is patient-annotated with no expert
medical assessment present. Moreover, the Activation Engine described in Algorithm
6.1 and Algorithm 6.2 from Figs. 7 and 8 was applied at the output of a MLP to further
improve accuracy on the edge.

The MLP implemented using Keras has an input layer with 63 inputs and a Relu
activation function. The is proceeded by three hidden layers having a Relu as an
activation function and has two Softmax binary outputs. We have used the above MLP
arrangement with hidden layers having a size 70, and the algorithm was run for 20
epochs using Tensorflow.

For gamer 3, after 5 epochs,the testing accuracy as reported by the Activation
Engines with a k-folfer setup having K = 5 was 89.23% and 79.77% for Sleepy and
Not Sleepy classes, respectively. As for the overall accuracy, it was equal to 83.59%
in general.

As for gamers 1 and 3 combined, after 5 epochs, the testing accuracy as reported by
the Activation Engine arrangement with a K-folder setup having k = 5was 85.43% and
76.76% for Sleepy and Not Sleepy classes, respectively. As for the overall accuracy,
it was equal to 78.46% in general. Additionally, the MLP was test with no Activation
Engines as its output where the performance degraded without the post-processing
block having a unbalanced output testing accuracy of 90.93% and 38.58% for the two
classes.

6.5 Urban classification using Activation Engines

A multi-class dataset for urban classification via radar was used to test the Activation
Engine setup in Python in the case of four available classes. These are Humans, Cars,
Trucks, and Motorcycles.
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Fig. 10 Algorithm 7: Applying tree-based structure to perform classification on urban dataset

Table 5 Radar classification accuracy of pedestrians and vehicles using VAMPIRE on the edge with com-
parisons

Algorithms Classic MLP VAMPIRE [52] [53]

K-folds Yes Yes No No

Humans 94.78% 93.60% 100% 100%

Vehicles – 99.40% 80% 82.24%

Motorcycles 41.6% 99.40% 83.33% 75%

Cars & Trucks – 94.85% 80% 88.89%

Cars 97.22% 83.23% 75% 80%

Trucks 22.71% 93.75% 83.33% 100%

Urban classification using Activation Engines

The tree-based structure used in Algorithm 7 which is shown in Fig. 10, works
similarly to the one-vs-onemethod formulti-class classification except that it combines
child classes into parent classes, and once a child class is reached, its accuracy is
multiplied with the prediction accuracies of the parent classes. With this technique,
each forecast accuracy at a given level should be multiplied by the accuracy of their
preceding parent forecasts.

This tree as presented in Algorithm 7 from Fig. 10, applies four forecasts using
MLP with the Activation Engines method described in Algorithm 6.1 and Algorithm
6.2 from Figs. 7 and 8. The MLP consists of four Relu layers and a one Softmax
output layer. After running the algorithms in K-folder arrangement with K = 15, the
following results were obtained in Table 5where theywere comparedwith results from
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Fig. 11 Algorithm7:Applying tree-based structure to perform classification on the human activity detection
dataset

the literature where the dataset was first tested. Although the previous results don’t
use K-folders to generate reliable results in terms of test-set-variability, VAMPIRE
was able to achieve an overall classification accuracy with an 8.8% improvement over
previous techniques.

In the results from VAMPIRE, theMotorcycles detection accuracy shown is multi-
plied by that ofVehicles. Also, the accuracy forCars and Trucks classes wasmultiplied
with the Vehicles class accuracy, in addition to being multiplied with the accuracy of
the combinedCars-Trucks parent class. Also, after removing the post-processing block
and applying the MLP model using a one-vs-all approach, the performance degraded
with the classicMLPwhichhighlights the significance of theActivationEngine applied
at the output.

6.6 Human activity classification using Activation Engines

Amulti-class dataset for human activity detection using smartphone sensors was used
which has six classes that were also predicted using the same approach. As a first
step, the classes were allocated to two parent groups, Sitting, Laying, and Standing
as the first, and the three classes related to Walking in the other. Moreover, these two
classes were applied using a ML algorithm, and were subsequently split into sub-
classes following the same procedure as in the radar classification application, and are
similarly presented in Fig. 11. Again, as pointed out in the previous application, each
accuracy achieved through a child forecast is multiplied with the preceding parent
class accuracy. Forecasts were performed using a MLP with of four Relu layers and a
two Softmax outputs functions having two Activation Engines connected at the MLP
output. Furthermore, the human activity detection dataset was applied on the edge
using Rulex with multiple ML algorithms where the accuracies for LLM, KNN, SVM
and VAMPIRE are provided in Table 6. Moreover, the MLP was tested in a one-vs-all
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Table 6 Human activity forecasts using Rulex and VAMPIRE on the edge

Algorithm LLM KNN SVM [54] Classic MLP VAMPIRE

User field No No No Yes No No

Laying 100% 100% 100% 100% 89.11% 100%

Standing 86.80% 94.40% 98.40% 96% 93.82% 99.81%

Sitting 88.48% 91.86% 97.63% 97% 99.92% 99.81%

Walking 94.74% 100% 100% 99% 98.57% 100%

Walking Upstairs 89.89% 99.47% 100% 100% 99.36% 100%

Walking Downstairs 82.93% 100% 100% 99% 89.01% 100%

Human activity classification using Rulex

Table 7 Inference and specifications using VAMPIRE and other IoT setups on the edge

Board Cores Frequency RAM GPU ML setup Inference (msec.)

Raspberry Pi 3B+ 4 1.4GHz 1GB NO PPG 3.1

Raspberry Pi 3B+ 4 1.4GHz 1GB NO EEG 6.1

Raspberry Pi 3B+ 4 1.4GHz 1GB NO Activity 25

MacBook 4 2.7GHz 8GB NO AlexNet 29

Jetson TX2 6 2GHz 8GB YES AlexNet 13.5

FogNode 4 3.2GHz 32GB NO AlexNet 27

Raspberry Pi [34] 4 0.9GHz 1GB NO SqueezeNet 2080

Inference time for IoT boards

setup without an Activation Engines (with K equal to 5) to validate its effectiveness
in tuning the model. Moreover, the forecasts applied in [54] are included in Table 6 to
compare the accuracies achieved in every case.

In [54], an KNN ensemble classifier with 30 instances was used to classify human
activity using the same dataset where an overall accuracy of 98.6% was achieved.
This accuracy is substantially less than that achieved using both SVM in the Rulex
client/server forecast, andwhen using aMLPwith aVAMPIRE Activation Engine edge
setup, as shown in Table 6. In the original dataset, a user field was included which
identifies the person who is holding the smartphone. However, in this experiment the
field was removed for more generality where VAMPIRE outperforms the literature
with a lesser degree of information.

6.7 Latency and power consumption on the edge

To evaluate the performance of VAMPIRE on the Raspberry Pi and to ensure its effi-
ciency in addition to providing accurate predictions, a comparison has been made with
a laptop (using the same data sources) and other edge setups described in the litera-
ture. Therefore, in [34], variousML libraries have been tested onmultiple IoTmodules
including the Raspberry Pi. Consequently, Training was applied outside the edge node
and inference was performed on each board. Table 7 presents a comparison between
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Table 8 Power consumption comparison between Raspberry Pi 3B+ and a MSI laptop using VAMPIRE’s
Activation Engine

Platform Dataset Kfolds GPU DC Power (Wh) AC Power (Wh) inference (msec.)

Rasp-Pi Activity 1 NO 1.28 1.63 25

Rasp-Pi EEG 5 NO 7.1 10.43 6.1

Rasp-PI PPG 5 NO 0.76 1.06 0.1

MSI-PC Activity 1 NO – 3.2 3.1

MSI-PC EEG 5 NO – 13.78 1.4

MSI-PC PPG 5 NO – 5.2 1.5

MSI-PC Activity 1 Yes – 0.92 4

MSI-PC EEG 5 Yes – 8.38 0.24

MSI-PC PPG 5 Yes – 2.29 0.2

Power consumption of the Raspberry Pi and MSI laptop running VAMPIRE

VAMPIRE on the Raspberry Pi and the additional setups. As shown, VAMPIRE’s opti-
mizedActivation Engine post-processing block outperforms the other setups presented
in the literature where the inference/task is presented along with the specifications of
all hardware platforms. Furthermore, in [55] authors present performance measure-
ments taken from the Raspberry Pi on various classification and regression datasets
using different ML classifiers. During the classifications, the inference time on the
board depend on the dataset where these inferences are compared with those applied
on a personal computer (PC). the ratio between the Raspberry Pi’s inference divided
by the PC’s inference varies between 175 and 306 depending on the dataset. However,
using VAMPIRE on the Raspberry pi, this ratio varies only between 2 and 8 without
a GPU, and between 6.25 and 25.4 with a GPU, as shown in Table 8. Additionally
the Raspberry pi’s performance using VAMPIRE is compared with that of the MSI
laptop (described in sect. 2.3) where the same datasets were used for the comparison in
terms of power consumption (For training and testing combined) and inference time.
Also, when using the laptop two forecasts were applied per dataset where the first
was performed without including the onboard GPU and the second where a GPU was
used to optimize the latency and power consumption. Table 8 illustrates the results for
the EEG, activity detection and PPG datasets using VAMPIRE. As illustrated, when
running training and inference, the Raspberry Pi outperformed the case with the laptop
running without GPU optimization by 3-4 orders of magnitude regarding the energy
consumption. Moreover, the board remains competitive with the PC even when it is
optimized using the 2060 Nvidia GPU which is designed to increase the power and
decrease the overall energy in ML workflows.

7 Conclusion

To summarize, this paper presents the VAMPIRE framework, which implements novel
pre-processing algorithms and introduces Activation Engines that can extract features
from any time-series data and can be applied to any other type of application, through
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the Activation Engine concept. The pre-processing algorithms consist of converting
time-varying signals into the proposed D-Domain, which is a V.Hz co-representation
the original signal and its FFT. The novel waveform is used to derive statistical
information obtained from the shape of the rectified time-series. Furthermore, the
pre-processing can be applied in two modes: either using an annotated time-series
where a classification exists for every event in the signal, or when the time-series
is poorly annotated where the classification is taken for a large span of time. In the
second case, an adaptive algorithm was implemented to detect an event in real-time
by continuously classifying the current segment of a time-series before producing the
V.Hz waveform and extracting statistical features. Also, the paper introduces the Acti-
vation Engine which is a post-processing block which improves testing accuracy by
optimizing the classification threshold at the output of an MLP based on the training
performance. The Activation Engine achieves high testing accuracy by relying on an
optimal threshold extraction method that is based on the training accuracy by employ-
ing a pair of Activation Engines and relying on a clustering approach. Additionally,
VAMPIRE’s core pre-processing and post-processing operations were implemented
in Python Numpy vectors in order to the improve performance considerably. Also,
every ML forecast was carried out in an IoT setting, either using Rulex running on the
Raspberry Pi and in a client/server setup, or by performing forecasts using aMLPwith
an Activation Engine running on the Raspberry Pi remotely through an SSH tunnel.

In regards to the pre-processing algorithms developed in this paper, experiments
were carried out by generating three datasets from biomedical time-series automati-
cally before applyingML forecasts. The forecasts were performed on these datasets in
an edge computing setup where our results confirm that high accuracy was achieved in
every experiment. Furthermore, in the cases of the EEG and PPG datasets, in addition
to VAMPIRE FE1 and VAMPIRE FE2, Activation Engines were employed. In these
two cases, the novel post-processing method lead to better testing accuracy than in
training due to the influence of the threshold clustering technique of Algorithms 6.1
and 6.2. Also, the forecast accuracy for the two already pre-processed datasets is sig-
nificantly higher than the accuracies achieved in the original publications. This is the
case, again, thanks to the addition of Activation Engines at the Softmax outputs of the
MLP.

Feature extraction was performed on biomedical time-series such as ECG, EEG,
and PPG signals where a dataset can be generated in an automated manner and the
operator only needs to remove noise and offset from the input signal, before applying
ML algorithms on the Raspberry Pi. Also, two pre-processed datasets related to urban
classification and human activity detection were also used to perform ML forecasts
on the edge.

Furthermore, the framework’s accuracy, latency and power consumption on the
Raspberry Pi was also evaluated where the Activation Engine outperforms most previ-
ously published results in terms of inference speed and accuracy. Moreover, regarding
the power consumption of the Raspberry Pi, a comparison with a PC was employed
where the board consumes less energy than the laptop in case the GPU is not included
in the training and remains competitive in comparisonwith theGPUbeing used to opti-
mize the ML workflow. In the end, accurate results across all experiments prove that
VAMPIRE is easy to implement and demonstrate the robustness of the framework by
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competingwith different techniques from the literature (Which are compute-expensive
in most cases) while maintaining generality and so it can be used virtually in any ML
application.
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Appendix A: Further explaining Algorithm 5 by example

This appendix aims to provide a step-by-step application of Algorithm 5 from VAM-
PIRE FE2 in order to clarify the pseudo-code by supplying real data taken from the
Python interpreter and to clear up any ambiguity. Initially, in the array below, we can
find all the zero-crossings of an input signal. To determine the crossings, the minimum
local maxima and the maximum local minima are used as reference points to detect
crossings rather than zero. The name of the array from Algorithm 5 to be computed
is Cross.

Cross:
[100, 169, 201, 269, 293, 335, 361, 379, 405, 484, 506, 576, 604, 682, 708, 777,
811, 880, 909, 990, 1022, 1081, 1116, 1182, 1211, 1279, 1309, 1373, 1402, 1475,
1503, 1570, 1600, 1683, 1705, 1779, 1809, 1884, 1914,…]

As shown in Cross for every Cross[i]:
Cross [0] = 100 Cross [2] = 201
Cross [1] = 169 Cross [3] = 269 …

In the array Cross, Cross[i] represents a Negative-to-Positive crossing (N-to-P) if
the index is zero or is an even number, and Cross[i] represents a Positive-to-Negative
crossing (P-to-N) if the index i is odd. For every pair of crossings, the maximum
voltage should be computed. The array Patt is used for storing the maximum Value
in the signal between every N-to-P and P-to-N pair. Patt [] represents the maximum
voltage between every crossing pairs:

Patt:
[57.878, 64.533, 64.724, 3.538, 42.306, 45.081, 51.199, 49.983, 42.531, 48.166,
28.105, 39.79, 53.489, 62.38, 61.229, 54.553, 60.818, 56.603, 54.73, 51.671,
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57.029, 66.834, 65.955, 32.123, 34.94, 30.187, 55.639, 43.408, 49.639, 62.696,
59.278, 64.183, 48.3, 65.897, 142.026, 72.131, 511.249, 338.739, 367.466,10.085,
101.134, 105.386, 47.537, 28.63, 52.903, 43.38]

Consequently, after computing the maximum voltages between crosses in the Patt
[] array, the window-size of every beat or repeating series of crossings needs to be
determined. In order to do this, we can rely on the mean for every possible window
size. The arrayMean [] below contains all the computed means:

Mean:
[0.0, 0.0, 0.0, 47.668, textit43.775, 38.912, 35.531, 47.142, 47.198, 47.97, 42.196,
39.648, 42.388, 45.941, 54.222, 57.913, 59.745, 58.301, 56.676, 55.956, 55.008,
57.566, 60.372, 55.485, 49.963, 40.801, 38.222, 41.044, 44.718, 52.846, 53.755,
58.949, 58.614, 59.414, 80.102, 82.089, 197.826, 266.036 …]

For example:
or Window = 4
Mean [3] = Mean of: Patt [3], Patt [3-1], Patt [3-2], Patt [3-3]
Mean [3] = Mean of: Patt [3], Patt [2], Patt [1], Patt[0]
Mean [3] = (57.878 + 64.533 + 64.724 + 3.538)/ (4 = Window Size)
Mean [3] = 47.668

Therefore, after computing the mean for some window size, as in Algorithm 5, the
standard deviation is computed and if STD is higher a certain Threshold, theWindow
variable is incremented by one. This will go on recursively until the correct Window
size is determined. It should also be pointed out that multiples of a correct window-size
hold and may incorrectly detect Window. In case Window = 3, Windows of sizes 2,
4, and 5 will give a higher STD for Mean [], which implies that this is an incorrect
Window.

For example:

Mean (Window size of 3) = Mean (Window size of 3*N) (A1)

If we choose forWindow a starting point of 4, instead of starting at 2, and the correct
Window is 3,Windowmay be detected as 6. This is true since the mean of arrayMean
[] with Window size 3 is almost equal to the array Mean [] of Window size 3*N. A
description of this is presented in Eq. (A1).

After detecting Corss and Window for that series, Crosspx is generated from the
collection of Cross pairs of size 2*Window. Algorithm 5 demonstrated how to collect
the first and last crossings from Cross into Crosspx of size Window*2. The Crosspx
[] array is used to transform the signal into the D-Domain which in terms is used to
extract the features for ML classification.

Crosspx:
[100, 379, 405, 777, 811, 1182, 1211, 1570, 1600, 1978, 2012, 2329, 2365, 2726,
2761, 3097, 3137, 3508, 3541, 3853, 3886,...]
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