Computing (2022) 104:2405-2429
https://doi.org/10.1007/s00607-022-01093-2

REGULAR PAPER

®

Check for
updates

A framework for modeling and executing task-Specific
resource allocations in business processes

Sven Ihde'® - Luise Pufahl? - Maximilian Volker' . Asvin Goel? -
Mathias Weske'

Received: 8 September 2021 / Accepted: 11 May 2022 / Published online: 17 June 2022
© The Author(s) 2022

Abstract

As resources are valuable assets, organizations have to decide which resources to allo-
cate to business process tasks in a way that the process is executed not only effectively
but also efficiently. Traditional role-based resource allocation leads to effective process
executions, since each task is performed by a resource that has the required skills and
competencies to do so. However, the resulting allocations are typically not as efficient
as they could be, since optimization techniques have yet to find their way in traditional
business process management scenarios. On the other hand, operations research pro-
vides a rich set of analytical methods for supporting problem-specific decisions on
resource allocation. This paper provides a novel framework for creating transparency
on existing tasks and resources, supporting individualized allocations for each activity
in a process, and the possibility to integrate problem-specific analytical methods of
the operations research domain. To validate the framework, the paper reports on the
design and prototypical implementation of a software architecture, which extends a
traditional process engine with a dedicated resource management component. This
component allows us to define specific resource allocation problems at design time,
and it also facilitates optimized resource allocation at run time. The framework is
evaluated using a real-world parcel delivery process. The evaluation shows that the
quality of the allocation results increase significantly with a technique from operations
research in contrast to the traditional applied rule-based approach.

Keywords Process Execution - Business Process Management - Resource
Allocation - Resource Management - Activity-oriented Optimization

Mathematics Subject Classification 68U35 - 90C29

B Sven Ihde
sven.ihde@hpi.de

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
Software & Business Engineering, Technische Universitaet Berlin, Berlin, Germany

Kiihne Logistics University, Hamburg, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-022-01093-2&domain=pdf
http://orcid.org/0000-0002-7318-6390

2406 S.Ihde et al.

1 Introduction

Organizations run a great variety of business processes for the successful delivery
of products or services to their customers, e.g., order handling, sales processes, or
employment processes. For the execution of business processes, organizations need
a rich set of resources consisting of human resources, machines, vehicles, materials,
etc. [, 15]. Resources have a high influence on the success and the efficiency of a single
process execution, also called process instance [15]. The resources of an organization
are valuable assets, often cost-intensive, and limited [2]. Thus, tasks (i.e., work needed
to be executed for a certain instance) need to be allocated to an appropriate resource
at the right time. Otherwise, it might lead to delays in the process execution, low
quality, high costs, or low utilization of resources [4]. A resource allocation maps the
demand of the running process instances with the availability of resources under a
certain business goal [20] (e.g., minimizing the execution time).

Whereas the discipline of business process management (BPM) provides methods,
techniques, and applications to manage organizational processes prosperously from the
design, over the implementation, until the monitoring and analysis [9], the discipline
of operations research (OR) provides a rich set of analytical methods and techniques
for a problem-specific resource allocation [24]. Current BPM systems (BPMSs) used
to support the execution of business processes (based on a given process model) [9,
35] still mainly work with rule-based resource allocation mechanisms (e.g., the FIFO
[First-In-First-Out] mechanism) [5, 28]—traditional approaches, which need less com-
putational power, but may result in suboptimal solutions [12]. With the progress of
technology and availability of higher computing power, the possibility exists to inte-
grate more sophisticated analytical techniques into BPMSs to support realistic business
scenarios. This integration of sophisticated resource allocation approaches in business
processes was also tackled by other recent research works, e.g. [2, 13, 16, 18] with
different optimization goals (e.g., minimizing costs) and solution techniques (e.g.,
linear programming). However, no generalized approach exists to integrate resource
allocation techniques flexible in a multitude of business processes in an organization
based on the demands of a certain process activity.

In this research work, we provide a framework and software design to support the
integration of optimized resource allocation in BPMSs. The framework aims at:

— Creating transparency on existing tasks and resources, and their characteristics in
an organization,

— Supporting a resource allocation that can be individualized for each activity, cater-
ing for the goals and environment of said activities, and

— Integrating problem-specific analytical methods and techniques for specific busi-
ness process activities, which can be flexibly adapted at design time.

Second to the framework, we provide a software architecture realizing the frame-
work. It integrates a BPMS with a so-called resource manager—a new component as
sketched in our previous work [17]-that enhances existing business process execution
environments to a resource-aware execution. The resource manager serves to describe
available resources and resource types, and allows the definition of resource alloca-
tion problems, for which problem-specific analytical techniques can be integrated. The

@ Springer

A Framework for Modeling and Executing Task-Specific... 2407

software architecture is prototypically implemented and tested in a real-world setting.
In contrast to our previous work in [17], we provide in this research work a general
formal framework for resource allocation in business processes, a more detailed pre-
sentation of the software architecture and its prototype, and a case study from logistics.
With the case study, we want to show the feasibility to integrate different allocation
techniques for a process activity in the resource manager and exemplify that a sophis-
ticated technique from OR can lead to qualitatively higher results than the rule-based
techniques, which are traditionally applied in existing BPMSs.

After this introduction, existing works on resource allocation in business processes
are discussed in Sect. 2, followed by motivating examples in Sect. 3. In Sect. 4, relevant
concepts of business processes, resources, and the problem of allocating resources to
process instances are introduced. After presenting the framework for resource allo-
cation in business processes in Sect. 5, the software architecture for sophisticated
resource allocations in a BPMS and a corresponding prototype are described in Sect. 6.
A case study evaluating its effect and implications is presented in Sect. 7, and limita-
tions and future work are discussed in Sect. 8.

2 Related work

The resource perspective is in addition to the control- and data-flow perspective in
process models essential for the successful execution of business processes [9]. Caban-
illas [5] distinguishes among three key operations of resource management in business
processes: (1) resource allocation configuration' (i.e., definition of resource require-
ments for process activities at design time), (2) resource allocation (i.e., designation
of concrete resources to a specific task during run time), and (3) resource analysis
(i.e., run-time and post-execution analysis of the process executions with focus on
resources).

A great variety of approaches have been developed to automatically support the
resource allocation in business processes as presented in the structured literature review
in [27]. They differ in their resource allocation capabilities, goals, whether they support
global or only local optimizations, and their solution technique. In the following, we
present a selective set of approaches to illustrate the different capabilities of existing
approaches summarized in Table 1. For the complete set of approaches, we refer the
interested reader to related literature reviews on this topic [2, 27].

Resource allocation approaches for business processes often support 1-to-1 alloca-
tions, where one task is allocated to exactly one resource, such as [1, 6, 8, 11, 14, 22,
31]. Some works also provide approaches for 1-to-many allocations, e.g. [10, 21, 36],
where the capacity of a resource is greater one, and many-to-1 allocations [7], where
a team or a group of resources solves a task. A minority of approaches even support
many-to-many allocations where a set of tasks can be allocated to a set of resources,
for instance supported by [34].

1 Originally called resource assignment by Cabanillas [S]. In operations management, resource assignment
is the mapping of resources to tasks. Thus, in this research work, we use the term resource allocation
configuration.

@ Springer

S.lhde et al.

2408

ONSLINOH [eqo[3 Auy Kuew-03-| 610C [01] T8 32 ueInQg

TN 1eqo[3 1509 $89001d QZIWIUTIA Kuew-03-| 810C [£] Te 19 d180palq

Surwwres3oad reaury 1eqo[3 90IN0sal SUINY-1S9q pul] 1-0)-1 810C [1] T8 10 seury
oy [eqo[3 peoIom ddurRg 1-03-Auew L10T [8€] Te 10 1qnoyex

TN [eqo[s prOPIoM ddueeq [-0)-Auewr 910t [L€] e 1w Y

Ay [eqo[s own A[oKd dZIWIUTA] 1-03-1 910t [1¢€] '[e 10 Srusoyog

TN 1eqois ndySnoay) azrwurxejy 1-03-Auew 910C [sz] ‘1810 Snpq

onsUNoH Teqor3 QuIT) A[OAD QZIWIUTIA Kuew-03-1 €102 [12] Te 10 rewuny|

onsUNoH [eo0] 90IN0SaI SuMY-159q purj [-03-1 €102 [9] 'Te 32 se[[ueqe)

o[nI paurel], [eqo[3 90IN0SAI FUMY-159q PUL [-0)-] (4114 [zl reronry

TN [e20] fuy [-0)-1 0102 [#1] Te 3o Sueny

oy [eqo[3 1509 $59001d 9ZTWIUIIA Auew-03-| 600T [9¢] TR 10 X

onsUmoy [eqo[3 peoIom ddurRg 1-03-Auew 800T [62] Te 10 29y

Ay [eqo[s PEO[IOM douR[Rg 1-03-1 900t (111119 EH

onsUNoH eqors 1500 ss9001d oZTIITUTI 1-03-T 9002 [8] 'Te 30 JouIR0(]
Surwwressoxd redur [e20] Quin 9[9Ad AZIWIUTIA Kuew-01-Auewr 100C [#€] Te 10 9o uep
anbruyogy, adA, [e0D Anpiqede) TeQx QOUAIRJY

1eak uoneoriqnd £q parepIo suonezII039)ed Y} puk SAIPNIS pAB[RY | 3|qel

pringer

As

A Framework for Modeling and Executing Task-Specific... 2409

Resource allocation is an optimization problem where a certain goal is targeted
and constraints are considered. Many suggested approaches for resource allocation in
business processes follow a specific goal. On the one hand, process-oriented goals are
supported, such as finding the best-fitting resource for a task [1, 6, 21, 22], minimizing
the cycle time [31, 34], or minimizing the process costs [7, 8, 36]. On the other hand,
resource-oriented goals are targeted, such as balancing the workload [11, 29, 37, 38].
Two of the selected approaches provide the option that the optimization goal can be
individually defined by a user when applying and implementing the approach: Huang
et al. [15] maximize the allocation reward, and the calculation of the reward can be
specified, whereas Duran et al. [10] describe a multi-objective optimization problem
that needs to be defined.

The execution of several business processes in an organization results in several
tasks which need to be allocated to resources. Each task has a different relevance
for the organization, which needs to be considered in the resource allocation. Several
approaches support a global optimization for allocating resources to business cases,
also considering different importance of tasks (see column 7ype in Table 1). Some
approaches support local optimization, where the best resource is selected for a specific
task without considering other available tasks, with the risk of arriving at a suboptimal
global solution. As solution techniques for the resource allocation problem in business
processes, rules, heuristics, machine learning (ML), and linear programming have been
applied. In general, the advantage of rule-based approaches is that solutions can be
delivered within a short time frame in the average case, but the solution quality is
in comparison to the other techniques not so high [12]. The other extreme is linear
programming, where a solution might not be found in the requested time, but the
quality of the solution is high. Heuristics are individual problem-solution techniques
which aim for a solution with a good quality that can be found in a short time frame.

Based on this review, we can observe that existing approaches usually tend to sup-
port one specific optimization goal and apply one specific allocation technique to all
process activities. However, it might be useful to apply specific allocation techniques
for specific tasks to reach an overall good performance. OR provides a rich set of ana-
lytical techniques, which are often problem-specific and especially useful when they
are applied to specific process activities. In contrast to existing work, we want to pro-
vide an activity-oriented resource allocation approach reusing sophisticated analytical
techniques from OR, which is integrated in a BPMS and can be directly defined and
executed there. Thereby, we want to allow that the process designer can flexible select
the optimization goal, the allocation capability and type, and the solution technique.

3 Motivation

This section is used to motivate the need for sophisticated resource allocation in
business processes on the example of (1) an incident resolution, and (2) a parcel
delivery process. The following examples are simplified to explain only the necessary
core concepts of resource allocation in business processes to motivate our approach.

@ Springer

2410 S.lhde et al.

Iassify

incident

Close
incident

Resolve
incident

Incident received Incident resolved

Fig. 1 BPMN diagram of the incident resolution process

allocated
resource

senior |
FIFO

junior |

optimized senior
algorithm junior

time

0 1 2 3 4 5

Fig.2 Difference between resource allocation strategies

3.1 Incident resolution

In Fig. 1, a simplified incident resolution process is given as BPMN process diagram.
After an incident is received it will be classified due to its severity into the classification
levels 1 to 4. An incident with classification 1 is to be treated with the highest priority,
meaning it is supposed to be done within a time unit of 1, whereas an incident with
classification 4 can be finished within four time units. Thus, the efficiency measure
is a quality measure that is increased, each time a deadline is not met. Therefore,
an optimized resource allocation will minimize this value, so that every task is done
within their deadlines. During the execution of this process, a human resource needs to
be allocated to resolve an incident. For simplicity, we assume that the process has only
two resources available - a senior (solving an incident in one time unit) and a junior
service expert (needs two time units). Traditionally, a simple scheduling strategy (e.g.,
FIFO), like for the “Classify incident” task, is often used in BPMSs. An example of
such an allocation is shown in the upper part of the Fig. 2. At time unit 0, five process
instances (Incident ID 1 to 5) are created and classified and have to be resolved in
the next step—meaning the task “Resolve incident” is enabled for all instances. In the
notation, the number in the brackets describes the classification of the incident, which
is the deadline until the task should be finished.

This example shows that a resource allocation for all incidents can be realized.
However, this simple allocation entirely ignores the classification—the priority—of the
incidents, which leads to inefficient process executions as the due dates were not
fulfilled. Therefore, a more sophisticated allocation technique should be applied in
this specific scenario that optimizes the allocation by considering the urgency of a
task. The resulting allocation is depicted in the lower part of Fig. 2. The overall
execution time is the same, but the second allocation is more efficient, as all deadlines
could be reached.

Based on this example, we can observe that depending on the individual task, the
use of a different resource allocation logic is recommended. Moreover, because of the

@ Springer

A Framework for Modeling and Executing Task-Specific... 2411

CoIIect

&
@—» recipient ‘Asstlgnt(%arrcel Deliver parcel

Parcel delivered preferences
to pick-up place

Parcel delivered

Fig.3 Process model of parcel deliveries with promised delivery time windows

limited availability of resources, we need to dynamically, based on the current tasks
and resource, plan the most efficient resource allocation. To achieve that, we need to be
able to define different resource allocation problems, the process and task information,
as well as resources needed.

3.2 Parcel delivery

We additionally consider the case of resource allocation with shared resources, mean-
ing we have a 1-to-many resource allocation between resources and tasks. In Fig. 3,
a common use case in the field of logistics of a parcel delivery is shown as BPMN
process diagram. The process starts when the information is received that the parcel
has arrived in a pick-up place (e.g., discounter, fitness studio, etc.). From this place,
the parcel should be delivered during a preferred time frame to the recipient by a local
carrier. Thus, first of all, the recipient’s preferences are collected. Then, the parcel
is allocated to a vehicle of a local carrier, for which the tour should be optimized,
meaning the efficiency measure is the length of the tour (= to the process execution
time). The carrier is then delivering the parcel according to the receiver’s preferences.

If we had all information about vehicles and parcels, the resulting problem would be
a vehicle routing problem [33], which is inherently NP-hard. Moreover, in many cases
we do not have all the necessary information, as parcels arrive sequentially over time.
If requests for parcel deliveries arrive dynamically, we need to decide on an allocation
of a parcel to a vehicle based on the limited information available at the time of making
decisions. Traditionally, this is done manually or by BPMS’s looking at one parcel
at a time and finding the best possible vehicle based on a rule-based approach. The
tours resulting from such a sequential decision-making approach may be inefficient.
In the OR field, research has shown that using more sophisticated algorithms can
improve the result [3]. In contrast to a sequential decision-making approach that only
considers one task at a time, the algorithms would look at multiple tasks (parcels)
concurrently. With the framework presented in this paper, we facilitate an integration
of sophisticated algorithms in the automated execution of business processes in order
to increase the efficiency of the processes.

4 Foundation
In this section, relevant existing concepts for resource allocation in the environment

of business processes are formally defined. First, basic concepts of an organization,
such as business process, task, resource, and resource allocations are defined. Then,

@ Springer

2412 S.lhde et al.

Allocation

Fig. 4 Organizations having business processes and their resources connected by the tasks resulting from
process executions, which need to be allocated to resources

these definitions are used to define a novel definition of a stateful orchestration that
combines these aspects in a global model.

Organizations are running a set of business processes for serving their clients. Often
these business processes are formalized in the form of business process models [35]
P as shown in Fig. 4. A business process model is defined as follows:

Definition 1 (Business Process Model) A business process model is a graphical repre-
sentation of a process consisting of a set of nodes (A, G, E, D). These nodes are either
activities A, gateways G, events E, or data objects D. These nodes are connected to
each other via control flow edges or data flow edges. A business process model acts as
a blueprint for a set of business process instances. A process instance represents one
concrete execution of the process model. O

An activity requires time and resources to be performed. Similarly to the process
instances, activity instances are created during run time [35]. In this work, we use the
term fask? (i.e., activity instance) defined as follows:

Definition 2 (Tusk) A task a’ describes exactly one concrete execution of a predefined
activity a € A. Each task of an activity a adheres to the same life cycle during run
time. It exists only during run time and is terminated when it reaches the final state
of the life cycle. During run time, a task has attributes and can access the process
instance attributes and related data objects, which is done via the function atr(a’).
Additionally, we define the set of tasks of all activities of all process instances as A’

(]

A task of a process instance has to be allocated to at least one resource for its
execution, such that the business goal can be reached. Its life cycle during execution
is given as a state transition diagram in Fig. 5 (based on the life cycle given in [35]
and extended to the aspect of resource allocation).

As soon as a process instance is started, its tasks are initialized. During the process
execution, a task in state inif is either enabled (for example by a control flow) and then
in state ready, or skipped (e.g., optional path due to process decisions) and in state

2 Please note that this definition of a task is different to the BPMN standard [23], in which it is defined
as single unit of work in a process diagram, whereas we define a fask as an activity instance of a process
instance.

@ Springer

A Framework for Modeling and Executing Task-Specific... 2413

reallocate

non-
existent

dlspose of

Fig.6 The life cycle of a resource in an organization

terminated. If a task is ready, it has to wait until resources are allocated, before it can
begin its execution. During the allocation state, it can be reallocated. At some point,
the resources begin with executing the task (running state), if the task is finished, it is
terminated.

Next, we define a resource in the context of resource allocation:

Definition 3 (Resource) Let R be the set of resources in an organization. Thenr € Ris
aresource (e.g., human, vehicle, software, etc.), thatis able to execute tasks. A resource
has a set of attributes, which change during run time. Additionally, a resource has a
current life cycle state, which is changed depending on the attribute values. O

Additional to attributes describing the capabilities and capacities of a resource, a
resource is also in a certain state as shown in Fig. 6.

First, aresource needs to be created in an organization, e.g. by hiring new personnel.
A resource is available, if the state of the resource is ready, meaning it has capacity left
to handle an additional task. Although some tasks might be already allocated to it, it is
possible to allocate more tasks to this resource as long as its maximum capacity is not
reached. When it is reached, the resource is in the state busy. Naturally, the resource
is able to return to the ready state as soon as it has capacity left for new allocations. At
all states, a resource can be disposed of, transferring it to the state non-existent. This
state means that from the organization’s point of view, this resource can no longer
execute tasks>.

In the next step, we now formalize the intersection of those two worlds, tasks and
resources—the resource allocation, which can be defined as follows:

3 One assumption here is that a temporary drop out, for example in the case of a vacation or illness of a
human resource, is not treated as a disposal. Instead, the maximum workload of that resource will be set to
0 and already allocated tasks to this resource will be considered for reallocation.

@ Springer

2414 S.lhde et al.

Definition 4 (Resource Allocation) A resource allocation is the single decision of
which concrete resource(s) are going to execute which concrete task(s) at a point in
time ¢. In the resource allocation decision, only the resources R;, which are available in
the organization at that point in time ¢ as well as all tasks A’; that are ready or allocated
need to be considered. Additionally, there exists a goal (e.g. an efficiency measure
like minimize the cost, maximize throughput, etc.) that the resource allocation should
optimize for in the context of the waiting tasks as well as constraints (e.g., maximum
number of parcels on a tour) that need to be upheld. A concrete implementation (e.g.
algorithm) is called allocation mechanism (alloc). |

Additionally, we need to consider the environment to optimize the allocation, e.g.,
other resource allocations (e.g., when predicting the future), attributes of the tasks,
prioritization, or constraints. If we look at the parcel delivery example, we can observe
this phenomenon quite easily. Here we have to match multiple tasks, each representing
one parcel to be delivered, to one resource, the vehicle. The address of the parcel
influences the distance the vehicle has to travel and thus the cost of the resource
allocation. In order to enable a meaningful global resource optimization, we need to
plan on an organizational level. Therefore, we propose the following state transition
system of a stateful orchestration to frame the organizational level:

Definition 5 (Stateful Orchestration) Let A be the set of tasks that are in the state
ready orneed to bereallocated, and R; be the set of resources ready in the organization
at a point in time 7. Then the state S; of an organization at time ¢ can be defined as
follows:

S: = (A}, Ry)

If the point in time changes (r — t’), the state of an organization may be changed,
too. Thus, we define three occurrences that can change the state:

1. A task gets added to or deleted from the set of .A;. This can happen due to a control
flow that enables an activity instance. The state of the organization is changing:
S; = (A}, R) — Sy = (A}, R,), whereby only the set A; changes and R; is
unchanged.

2. A resource gets added to or deleted from the set of ready resources. This
can happen by releasing a resource, reaching the capacity of the resource, or
when a resource is disposed of. The state of the organization is changing:
St = (A, R) — Sy = (A}, Ry), whereby only the set R; changes and A]
is unchanged.

3. A resource allocation was performed, whereby both sets of an organization are
changing: S, = (A}, R;) - Sy = (A, Ry).

1

m}

This model describes an abstraction of an organization with the focus on its tasks
waiting for execution and its available resources as well as their changes over time. At
run time, new business cases are created within an organization, initiating the execution
of new process instances. Therefore, the set of tasks of an organization, which need
to be executed, is constantly changing. Similar to tasks, resources can get added to

@ Springer

A Framework for Modeling and Executing Task-Specific... 2415

Business Processes " . .
Business Allocation Allocation
D_’D Problem Mechanism 1
Q . . .
E consists of is matched is matched
]
<
80
]
I3
e configures I
o Resource Allocation .
Activities ———) X is used
Configuration
is handled
\instanciates l instanciates
[
g creates is coll d
~§ —_ Resource Allocation is collected Resource Allocation
g Task A Request Orchestrator
o

returns the output

Fig. 7 Overview of the flow and dependencies of the framework, split into design-time and run-time
components

and deleted from the set of available resources (i.e., in state ready). To keep track
of the changes of resources, the second state change of stateful orchestrations, we
also assume that the information (e.g., capabilities, workload, working times, etc.) on
them is available. Finally, resource allocations may change the set of waiting tasks and
available resources by assigning a resource to a task. This way we can capture every
necessary information needed on the global level for resource allocation, considering
tasks and resources at the same time.

5 Framework for resource allocation in business processes

In this section, we introduce a general framework for deciding which resources to allo-
cate to which business process tasks (cf. Fig. 7). In the sections before, we discussed
that having a more sophisticated approach, in contrast to the traditional resource allo-
cation, has a positive effect on the overall efficiency. Next, we want to focus on the
essential elements for conducting resource allocation in a stateful orchestration.
Based on the definitions provided in Sect. 4, four key components for resource
allocation in business processes are necessary as shown in Fig. 7; namely, the business
allocation problem, resource allocation configuration, resource allocation request,
and the resource allocation orchestrator. The business allocation problem formalizes
the resource allocation problem observed in business processes. This definition is then
used at design time to configure the resource allocation of one or several process
activities. The so-called resource allocation configuration enriches a process activity
with resource allocation knowledge by specifying the business allocation problem and
mapping the process information to the resource allocation. At run time, a task then
creates a resource allocation request consisting of the process information available
to the task as well as the chosen resource allocation configuration. This request is then

@ Springer

2416 S.lhde et al.

received by the respective resource allocation orchestrator with a queue for incoming
requests as well as the respective solution technique for solving the optimization and
fulfilling the optimization goal. After giving a small intuition of the different concepts,
they are defined in more detail in the following.

Our framework suggests to first create a business allocation problem for the
resource allocation in business processes that describes the input and output infor-
mation required. This can be reused for one or several activities in different business
processes. It is defined formally as follows:

Definition 6 (Business Allocation Problem) A business allocation problem describes
the concrete resource allocation needed in a business process to be able to execute the
task. The business allocation problem is therefore a tuple (I, O), where

— I describes the expected input information of tasks, e.g., the type of the tasks, the
process information, data attributes, etc.,

— O describes the expected outcome or the blueprint of the solution, which is the type
of resource(s) allocated to the corresponding input tasks as well as their attributes.

O

In the case of our given parcel delivery example, the business allocation problem
would be the parcels that need to be planned on a tour. The input / is the information
about the parcel (address) and their receiver (time window). The output O is the tour,
consisting of the vehicle, the order of the parcels as well as the start time.

At design time, the process designer links each activity to a business allocation
problem. Additionally, the designer decides on the concrete goal of the optimization
as well as how the information of the business process (e.g. process data, data object
attributes) is transformed to match a business allocation problem, and how the solu-
tion is transformed back. This is summarized as the so-called resource allocation
configuration, which is defined as follows:

Definition 7 (Resource Allocation Configuration) A resource allocation configuration
is a tuple (bap, goal, alloc, g, h), where

— bap is a business allocation problem

— goal is a decision on what the bap should be optimized for (e.g. minimizing the
cost, cycle time, etc.)

— alloc is a concrete implementation matching the bap and goal, (a concrete algo-
rithm that solves the bap by also optimizing for the goal),

— gis afunction g : attr(a’) — I that transforms the information available at run
time by the task a’, into the input I of the bap.

— hisafunction h : O — attr(a’) that transforms a solution that is returned as the
output O of the bap into available data attributes of the task a’.

O

To keep the configuration in a manageable frame, we propose to use a default
resource allocation configuration that falls back to traditional allocation strategies
used by BPMSs for activities where a more sophisticated approach is not necessary.

@ Springer

A Framework for Modeling and Executing Task-Specific... 2417

During run time, processes get instantiated and create new tasks that need to be
executed. Based on the resource configuration of its related activity, the task creates a
resource allocation request at run time in order to start the resource allocation, which
is defined as follows:

Definition 8 (Resource Allocation Request) Each time a new task a’ is enabled or needs
a reallocation, it creates a corresponding resource allocation request. The resource
allocation request consists of the resource allocation configuration, as well as the
values for the input I needed of the bap. O

As we want to optimize the decision on what resources handle which task, we want
to make sure that multiple requests can be handled at the same time. This means, just
having the algorithms to solve the allocation problems is not enough as we additionally
need to have a scheduling in place that executes these algorithms at the right time and
order. This way we can enable prioritization of different activity instances as well as
the use case of shared resources. Another point of notice is that even though we can
define goals and constraints for a resource allocation problem, they are not constant and
change depending on the current situation. For example, the cost ¢,/ of an allocation
of the task a’ and resource r is dependent on which other task a” can potentially
use the same resource. If @” is from a higher prioritized process (not necessarily the
same process model), the cost ¢, will increase, so that a” will be chosen more likely
by the allocation solver. This means that a resource allocation cannot be limited to
only one process model, but need to take care of tasks of all process models working
with the same resources. The framework allows for cross-process resource allocation
by building resource allocation orchestrators that handle resource allocation requests
with resources and tasks of similar nature. We defined this approach as follows:

Definition 9 (Resource Allocation Orchestrator) A resource allocation orchestrator
is created for a set of resource allocation configurations. The orchestrator consists
of a queue for collecting resource allocation requests during run time, as well as a
scheduling logic that decides when the resource allocation is executed based on the
current information (S;). The temporary results O are then either further optimized or
returned to the process. Every time an orchestrator decides on a resource allocation, the
corresponding tasks and resources get updated. This means the stateful orchestration
gets updated to a new state S; — Sy. O

In the parcel delivery example, this would mean that the resource allocation orches-
trator is creating tours based on the current information (parcels, couriers, traffic, etc.).
However, not every new request (created by a new parcel in the system) triggers the
execution of the solution algorithm. The orchestrator is able to wait, for example until
a sufficient number of parcels have been collected or when a certain time has passed,
before the solving of the problem is started. Moreover, the resulting solution is not
immediately returned to the process, but can be further refined in the future, when new
information gets available.

@ Springer

2418 S.lhde et al.

Resource &
Process Designer Optimization Expert
O O

Process Participant]

Process
Modeler O

Resource
Information

0

Resource
Organization ik

O Business
Process Model Allocation
Repository Problem
Allocation
Environment HO) Mechanisms
Resource
Process Allocation Logic <>
Engine Allocation
Applications KO Log
Traditional BPMS Resource Manager

Fig.8 Architecture of a resource-aware BPMS for smart resource allocation shown as FMC diagram, which
represents active software components as rectangles and storage as ellipses

6 Architecture of a resource-aware BPMS

In this section, we want to present a software architecture to realize the above presented
framework for resource allocation in business processes.

Traditionally, the execution of business processes is supported by so-called
BPMSs [35]. Such a BPMS usually consists of a Process Modeler, where business
process models can be designed by a process designer and stored in a Process Model
Repository, and a Process Engine, where the modelled processes can be executed in
interaction with the Environment and Applications (cf. Fig. 8). A Process Engine usu-
ally supports simple resource allocation rules (e.g. role-based distribution or shortest
queue) [30]. The main idea of the resource-aware BPMS is to decouple the resource
allocation functions from the Process Engine and to bundle them into an own com-
ponent, the so-called Resource Manager as shown in Fig. 8. The resource manager
is designed as a component with the centralized, transparent knowledge on resources
and their attributes, and the possibility to design, integrate, and call different allocation
services. This decoupling also promotes a separation of concerns, as processes can
continue to be designed by the process designer, while the resource-related knowledge
required by the resource manager can be contributed by another role, the resource and
optimization expert.

As shown in Fig. 8, the Resource Manager, that extends the traditional BPMS
consists by two main components: the Resource Organization and Resource Allocation
Logic. The resource organization component is responsible for managing resource-
related information, like attributes and meta-information, including, for example, the

@ Springer

A Framework for Modeling and Executing Task-Specific... 2419

Vehicle

capacity: double
make: string

location: (double, double)

L

Cargo Bicycle Transporter
additionalBags: boolean fuelType: string
combinationLock: integer drivingLicence: string

Fig.9 Hierarchy of resource types with inheritance

costs of resources. Requests for resource allocations are handled by the resource
allocation logic component, which invokes the appropriate resource allocation solver
and returns the resource(s) determined by the service. Both main components are
briefly explained in the subsections.

6.1 Resource organization

In this component, information about resources, their characteristics, and their current
state can be managed. To be able to reflect the diversity of the resources that exist in a
company, and to model their similarities and differences, the notion of Resource Types
is introduced. Resource Types describe the structure of resources of a certain kind,
which includes their set of attributes, like a Cargo Bicycle always having a specific
capacity. Considering the different resources within a company, their sets of attributes
might overlap: For example, a Transporter, also some kind of freight vehicle, has a
capacity, too. Additionally, it might also have a fuel type or a required driving licence,
attributes that are not applicable to bicycles. So, although transporters have some
attributes in common with cargo bicycles, they are not of the same resource type.

To be able to model such commonalities, as well as specializations, the resource
types management of the platform is built on the concept of hierarchies: Using a
tree-like structure, resource types can inherit the set of attributes of another type, as
illustrated in Fig. 9. By this, the shared attributes of cargo bicycles and transporters
can be defined in a super-ordinate vehicle resource type. Both can now inherit the
characteristics of a vehicle, while adding their own, type-specific attributes.

In addition to resource types, the component is also responsible for managing
the digital representations of the resources available in the organization, which are
also referred to as resources. New resources can be created by using a resource type
definition as a blueprint and providing the resource-specific attributes. Furthermore,
resources can be modified by setting new attribute values, or deleted if a resource
becomes permanently unavailable.

@ Springer

2420 S.lhde et al.

6.2 Resource allocation logic

Based on the resource types and resources defined in the organization component, the
Resource Allocation Logic component enables the optimized allocation of resources
to tasks of process instances as introduced in Sect. 5. For this, apart from the resource
definition, two steps are necessary: the specification of the resource allocation at design
time and the calculation of the allocation during run time.

6.2.1 At design time—configuration

At design time, the means of how to find the best fitting resource to be allocated for the
given task must be defined by specifying the so-called business allocation problem (cf.
Definition 6). Here, the constraints and the goal of the allocation play an important
role and have to be incorporated (cf. Definition 4).

Initially, the types of resources that are relevant for the problem have to be specified
by the resource and optimization expert. For this, the resource types needed as input
and output, i.e. the type(s) of the allocated resource(s), are differentiated: For example,
avehicle for alist of parcels should be allocated. Therefore, at design time, this problem
is defined to take a list of resource of the type parcel, as well as all available resources
of the type vehicle as input (which also includes all sub-types) and to return a vehicle
resource as output. The output of an allocation does not necessarily have to be an
already existing resource, as long as the corresponding resource type already exists.
For example, when a tour should be allocated to a given set of parcels and vehicles,
the tour object itself does not exist beforehand, but is created during the allocation
process based on the input resources and returned as a new, allocated resource.

Between the input and the output, the mechanisms of actually finding the most
appropriate resource to allocate based on the inputs can be manifold: there are, for
example, rule-based, history-based or heuristic-based approaches. To cater for this
variety, the way of defining the resource allocation mechanisms should be flexible and
adaptable within the resource allocation platform.

For simple allocations, like finding the right packaging for a parcel, a simple rule-
based allocation might suffice: rules covering possible dimensions and weights of
parcels and assigning the appropriate box can easily be defined. However, when it
comes to planning routes for delivering parcels or even assigning a suitable driver to
it, rules are not adequate. In this case, a heuristic for route-planning or even an online-
service could be useful, whereas assigning the driver might benefit from historic data,
e.g. by analysing former routes in the same area and the respective drivers. Further-
more, a combination of these mechanisms is also conceivable, since it is not sufficient
to consider only the historical allocations, but also only the currently available drivers.

In summary, a problem definition consists of the input resource types and the type(s)
of the resource(s) that are returned and therefore allocated. The specifications of how
to find the best resource for the given problem from the input in regard to a specific goal
are stored as Allocation Mechanisms in the resource-aware extension of the BPMS as
shown in Fig. 8.

@ Springer

A Framework for Modeling and Executing Task-Specific... 2421

Resource
RCreate Manager
Model esources
Resource |\P/|rog elss
Types Define Configure Execute \ W ?_ eer oot
Problems & Allocation for Processes & Process
Mechanisms Activities Allocation Engine

Fig. 10 Workflow when working with the resource manager

6.2.2 At run time—resource allocation

At run time, the actual resource allocation takes place, meaning that a concrete
resource, or multiple resources, is/are allocated to the requesting activity based on
a received resource allocation request (cf. Definition 8). The request is passed to the
corresponding resource allocation orchestrator (Definition 9) in the Resource Allo-
cation Logic component, which invokes the desired resource allocation configuration
with the required input parameters, e.g. starts the tour allocation by executing the
corresponding allocation mechanism with the current set of parcels.

To keep track of resources that are currently in use and therefore probably unavail-
able, the results of allocations are stored in a log within the resource-aware extension
(cf. Allocation Log in Fig. 8). This also enables history-based approaches and perfor-
mance analysis.

6.2.3 Connection to BPMS

So far, only the internal parts of the resource manager have been described. But also the
interplay of this resource-aware extension and the BPMS is important and is enabled
by a documented interface that allows existing BPMS to connect to the resource-aware
extension and to use its functionalities described above.

The sequence of steps necessary for achieving an organization-wide optimized
resource allocation for tasks is pictured in Fig. 10.

First, the resource types available in the organization have to be modeled in the
resource manager. From now on, concrete resource representations, i.e. instances of
the modeled resource types, can be created at any time. Based on the knowledge of the
available resource types, the required problem definitions and associated allocation
mechanisms can be defined. As soon as these are created, the activities of the processes
in the BPMS can be connected to the resource-aware extension by specifying the
resource allocation configuration (cf. Definition 7), which connects the activity to a
problem definition and a concrete allocation mechanism.

Now, the processes are ready for execution. As soon as a task is enabled, the BPMS
sends a resource allocation request to the resource manager based on the allocation
configuration specified for this activity and subsequently receives the information
about the allocated resource(s) from it. After the allocated resource has completed the
task, the process engine gives feedback to the extension in order to release the resource
from the allocation.

@ Springer

2422 S.lhde et al.

Rembrandt Back-End
R > R
O Rembrandt ~
Front-End e
Resource HTTP (REST) Resource
Expert Organization
Process R,.’\
Modeler N
(e.g.Gryphon) HTTP (REST)
R
Process ~
Engine \
(e.g.Chimera) HTTP (REST)
T T T T e
|I Dol '@ Resource
! Docker B ~ Optimization
! Container T
A , Filesystem
D s

Fig. 11 The concrete prototypical implementation, Rembrandt, of the general Architecture of Fig. 8

6.3 Implementation

The described architecture of a resource-aware BPMS was used as foundation for
a prototypical implementation called Rembrandt*. The implementation, based on
TypeScript and MongoDB for data storage, is available under the MIT-License.
As proposed, Rembrandt consists of two major parts: the Resource Organization
and Resource Optimization components, which are briefly described below. It runs
separately from any BPMS, but integrates into existing approaches by offering a
documented application programming interface (API) based on REST/HTTP. For
demonstration purposes, we have integrated Rembrandt with the process engine
Chimera® and the process modeler Gryphon®.

As shown in the FMC model in Fig. 11, Rembrandt also includes a front-end, which
enables users to accomplish nearly the same tasks as provided by the API, e.g. creating
resource types and resources, or adding resource allocation definitions.

Resource Organization The implementation of the resource organization allows, as
described previously, for the creation of resource types within a hierarchy. For each new
resource type, a name and a parent resource type can be defined, where all attributes
of the specified parent type are then inherited.

Resource Optimization At design time, the process of finding the optimal resource to
allocate must be defined. In Rembrandt, this is done using so-called ingredients, which
are combined into recipes, which correspond to the concept of problem definitions in
conjunction with a concrete allocation mechanism. A recipe defines the steps (ingre-
dients) and their sequence that are necessary to determine the optimal resource(s) as
illustrated in a screenshot of Rembrandt in Fig. 12. Initially, the required ingredi-
ents must be set up, whereby a distinction is made between the following types of
ingredients:

4 https://github.com/bptlab/rembrandt.
5 https://bptlab.github.io/chimera.
6 https://bptlab.github.io/gryphon.

@ Springer

https://github.com/bptlab/rembrandt
https://bptlab.github.io/chimera
https://bptlab.github.io/gryphon

A Framework for Modeling and Executing Task-Specific... 2423

Please model your recipe below:

< Go Back

TRANSFORMERS

Tupurs l OPTIMIZATION
\ l: ovTPuT

Parcels to

Parcel o
Coordinates T

Available Optimization

Driver

Drivers

Fig. 12 Annotated screenshot of Rembrandt illustrating the recipe definition for defining an allocation
mechanism in the Resource Optimization component

— The input ingredient represents the list of resources of a certain resource type,
e.g., a set of Parcels and Drivers.

— Transformer ingredients can be used to manipulate a list of resources. This
includes filtering, combining, and modifying the resources in the list. For instance,
in Fig. 12 two transformers are used: a filter to select available, unassigned drivers
only, and a modification to convert the addresses of the parcels into coordinates.

— The optimization ingredient includes the most important part of the allocation:
the logic determining the best resource based on the provided list of resources,
e.g. the Tour Optimization algorithm. This ingredient reflects the concept of the
allocation mechanism.

— Like input ingredients, output ingredients are auto-generated for each resource
type and are used to indicate the resource types returned by the allocation. For
instance, the result of the Tour Optimization is a resource of the type Tour.

As motivated in Sect. 6.2.1, the allocation mechanisms can take on various forms.
To support this diversity, Rembrandt’s optimization ingredients are based on Docker
containers’ as shown in Fig. 11. This has several advantages: Optimized allocation
algorithms can be reused and shared between different Rembrandt instances. Addi-
tionally, the implementation of the algorithm is mostly independent regarding platform
and programming language, and existing algorithms, e.g. from the field of OR, can be
used in Rembrandt.

After all required ingredients have been created, they can be plugged together to
create recipes for resource allocation. If a resource allocation is requested at run time,
the respective recipe is executed by Rembrandt and the result of the execution is then
returned to the BPMS.

7 https://www.docker.com.

@ Springer

https://www.docker.com

2424 S.lhde et al.

7 Case study

In this section, we use the resource-aware BPMS to realize the parcel delivery example
presented in Sect. 3.2 for evaluating the feasibility, flexibility of our proposed archi-
tecture, and the potential to result in qualitative higher allocation solutions. For this
evaluation, we compare the outcome of a traditional rule-based optimization approach,
as being used by current BPMSs, with an heuristic-based approach favoring a global
optimization, originating from OR. Furthermore, the necessary steps in the different
phases introduced above are explained. In the following, we review the parcel deliv-
ery scenario including assumptions and constraints, then we explain the setup of the
experiments, the results, and finally discuss the outcome.

Evaluation scenario As discussed previously, the problem of the last mile delivery of
parcels is studied in the SMile project [26]. This research project intends to innovate
the last mile delivery of parcels with the help of a dense pick-up place infrastructure.
From a pick-up place (e.g., a fitness studio, a gas station, a small grocery store), the
parcel can be collected by a small carrier (e.g., a bike carrier), who brings the parcel to
the receiver in a preferred time slot. To achieve a reasonable price for the delivery in
preferred time slots, several parcels need to be scheduled on a tour and assigned to a
carrier. For this scenario, a process instance is created for each parcel, which should be
delivered to the receiver in a certain time frame. The selected scenario considers one
area of delivery in a city in Germany similar to the research project. We assume three
different available carriers for this area, each of which can handle the same number of
parcels at a time. The carriers get paid an hourly wage and, as we assume each driver
travels at the same speed, the length of the tour influences the price. Therefore, the
goal of the optimization is to minimize the cost per parcel by reducing the distance
travelled.

Design time As described in the previous chapters, at design time, the process, the
resources, and the business allocation problem with appropriate configurations must
be defined.

The process model as given in Fig. 3 is deployed at Chimera. The required resource
types, i.e., the schemas for parcels, drivers, receivers, as well as for tours are config-
ured in the prototypical setup as described in Sect. 6.3—the resource-aware extension
Rembrandst.

Additionally, the allocation logic is defined in Rembrandt, which will be able to
create tour resources out of the given drivers and parcels at run time. To test the
flexibility, we decided to use two approaches for the tour optimization, a rule-based
approach (as provided by BPMSs) and an heuristic-based approach (classical OR
approach). Both were developed in cooperation with the logistics experts from the
SMile project:

— Rule-based: This approach is based on the FIFO principle [32], standard of current
BPMSs. Therefore, it considers at most one parcel at a time (i.e., local optimization
approach) and adds it to the tour of a carrier until the tour cannot be extended
further.

— Heuristic-based: For this approach, the Munkres [19] algorithm is reused and
adapted to our setting. It handles all parcels concurrently (i.e., a global optimization

@ Springer

A Framework for Modeling and Executing Task-Specific... 2425

approach). In each iteration, it will extend existing tours by at most one parcel, or
it will add at most one new tour.

For each of the approaches, we employed one recipe in the resource optimization part of
Rembrandt as shown in Fig. 12. Both recipes were similar in their structure, but called
a different tour optimization algorithm. At last, the resource allocation configuration is
carried out so that the corresponding activity in the process is connected to the newly
created recipe in Rembrandt.

Run time To simulate different realistic situations, three different scenarios with recip-
ient’s addresses and time frames were developed. The scenarios differ in the number
of parcels that have to be delivered in the time frame of 6 to 10 pm (1: 20 parcels; 2:
100 parcels; 3: 35 parcels).

To reflect the real-world occurrence of delivering multiple parcels to the same
address, we introduce the notion of stops that describes one address where at least
one parcel gets delivered to. Furthermore, each driver can deliver up to 35 parcels at a
time. Each scenario was simulated ten times with a different set of addresses randomly
drawn from a pool of addresses within the ZIP area 10585 in Berlin.

At run time, for each parcel, the process is invoked and the “Assign parcel to tour”
activity is executed, which in turn requests Rembrandt to run the previously configured
allocation algorithm.

Metrics Since all three scenarios were executed twice, once for each allocation algo-
rithm, the resource-aware extension allows deriving further insights. While testing
the use cases, we observed that the Munkres approach achieves a much shorter total
distance to deliver every parcel, as shown in Table 2. At the same time, the Munkres
approach in general creates more tours, which, in combination with the advantage of
deciding the allocation for all cases at once, results in more optimized tours. Based on
the use case, we could observe that the stops seem to be the same, independent of the
approach used. In the case of 100 parcels, the rule-based approach more frequently
adds parcels with the same address to different tours, such that optimization potential
is unused as it has to follow the temporal order of instance creation. It is also noticeable
that the overall computation time tends to stay similar for both approaches. For the
case with 100 parcels, we can observe small differences.

Discussion The use case shows the feasibility of the framework to support run-time
decisions on allocating resources to tasks. We showed that existing (rule-based) as
well as more sophisticated (Munkres) algorithms can be incorporated and used within
the resource-aware extension, both assigning many tasks to one carrier. In contrast
to related work, we could show that we can incorporate different types of allocation
approaches, a local and a global one that use different techniques, a rule and an
heuristic.

In general, more sophisticated algorithms have to deal with the trade-off between
quality and the computation time needed to achieve a result. However, because of
the advancement of technology and its computation power, we did not notice any
significant difference with regards to time. At the same time, the quality of the result
increases significantly with the sophisticated algorithm: Only half the distance was
needed for the use case with the fewest parcels, and only a fourth was needed for the
use case with the most parcels. All in all, the experiment shows that a smarter decision

@ Springer

S.lhde et al.

2426

Il Il sdoys Jo Toquuny
. ‘91
. o e w m.wm wy9'y w1 JUBISIP [BIOL,
uy9'9 wy ey w16 N1 o _ or 1o o
’ S €
ot ~ g sQ/" Quin uonendwo)
SEC'T S9C'1 SEr'e $99'C SCL'O 8L°0
9Seq-9[Ny sonunA paseq-orny
son[unA paseq-orny son[unA paseq-of o
€ ase) f-5)

B uuni Jo Jnsa 9|qel
Sunr sa oy} Jo soSeIoAe 9y} aIe sanjeAa wﬁﬁﬁﬁmow U nwuaﬁ U3} paje[nuiis Sem 9Se) [OBo SY "S9sed 189) 921Y) 9} wﬁ: Joy d 9|9

pringer

As

A Framework for Modeling and Executing Task-Specific... 2427

for the resource allocation has a substantial influence for an organization, it can act
much more efficiently. With the architecture provided, different resource allocation
procedures can be simply added by a new recipe calling the new algorithm. These can
be tested, deployed, as well as exchanged at any time.

8 Conclusion

This research worked provided a conceptual framework for supporting the decision-
making of resource allocations in business processes and the employment of
optimization techniques of operation research problem-specific for process activities.
The framework was realized as a software architecture extending a traditional BPMS
with a dedicated resource manager and was implemented as a prototype. Experiments
in a simulated logistics real-world example showed the advantage of employing a
problem-specific optimization algorithms and the benefits of exchanging different
allocation algorithms at design time.

In existing organizational settings, decision-making for resource allocations is still a
challenging task because a transparency on resources and their availability is missing.
The designed resource manager of this work eases this task and gives support in
collecting the information centrally. With the advance of digitization, we believe that
the process of collecting this information organization-wide in the resource manager
will get more comfortable.

The resource manager is designed in a way, such that a set of allocation requests by
process instances of a certain time frame are batched until a resource allocation algo-
rithm is started again. That is a simple option to consider priorities of different process
instances. For prioritizing certain business cases, operations research offers different
static and dynamic batching approaches, whose application we want to investigate in
the future.

Even though the main contribution of the framework is related to the efficient exe-
cution of business processes at run time, namely by influencing the resource allocation,
we think the framework is potent for other applications, too. The aspect of process
performance is also the focus of process analysis and improvement. With the lack
of a framework that connects processes and resource information on an organiza-
tional level, such analysis, e.g. with process mining techniques, could so far identify
symptoms for a bad process performance as well as guess root causes for treatment.
Irregularities and bottlenecks can be identified, but as there was no whole picture of
the organization available, the effectiveness of the suggested improvement is limited.
By using our framework, all made allocations and the corresponding circumstances
can be recorded. This way, we can enrich the analysis by providing the information
on the available resources and running process cases at the same time, which in turn
enables a meaningful root cause analysis and treatment.

Acknowledgements The research leading to these results has been partly funded by the BMWi under grant
agreement 01MD18012C, Project SMile. http://smile-project.de.

Funding Open Access funding enabled and organized by Projekt DEAL.

@ Springer

http://smile-project.de

2428 S.lhde et al.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Arias M, Munoz-Gama J, Sepilveda M, Miranda JC (2018) Human resource allocation or recommen-
dation based on multi-factor criteria in on-demand and batch scenarios. Eur J Ind Eng 12(3):364—404
2. Arias M, Saavedra R, Marques MR, Munoz-Gama J, Septilveda M (2018) Human resource allocation
in business process management and process mining: A systematic mapping study. Manag Decis
56(2):376-405
. Bang-Jensen J, Gutin G, Yeo A (2004) When the greedy algorithm fails. Discret Optim 1(2):121-127
4. Bellaaj Elloumi F, Sellami M, Bhiri S (2018) Avoiding resource misallocations in business processes.
Concurrency and Computation: Practice and Experience 32:¢4888
5. Cabanillas C (2016) Process-and resource-aware information systems. In: EDOC, 2016 IEEE 20th
International, IEEE, p 1-10
6. Cabanillas C, Garcia JM, Resinas M, Ruiz D, Mendling J, Ruiz-Cortés A (2013) Priority-based human
resource allocation in business processes. In: ICSOC, Springer, 374-388
7. Djedovic A, Karabegovic A, Avdagic Z, Omanovic S (2018) Innovative approach in modeling business
processes with a focus on improving the allocation of human resources. Math Probl Eng
8. Doerner K, Gutjahr WJ, Kotsis G, Polaschek M, Strauss C (2006) Enriched workflow modelling and
stochastic branch-and-bound. Eur J Oper Res 175(3):1798-1817
9. Dumas M, La Rosa M, Mendling J, Reijers HA et al (2013) Fundamentals of business process man-
agement, vol 1. Springer, Berlin
10. Duran F, Rocha C, Salaiin G (2019) A rewriting logic approach to resource allocation analysis in
business process models. Sci Comput Program 183:102303
11. Ha BH, Bae J, Park YT, Kang SH (2006) Development of process execution rules for workload
balancing on agents. Data & Knowl Eng 56(1):64—-84
12. Havur G, Cabanillas C, Mendling J, Polleres A (2016) Resource allocation with dependencies in
business process management systems. In: BPM, Springer, pp 3-19
13. Hirsch MJ, Ortiz-Pefia H (2017) Information supply chain optimization with bandwidth limitations.
Int Trans Oper Res 24(5):993-1022
14. Huang Z, van der Aalst WM, Lu X, Duan H (2010) An adaptive work distribution mechanism based
on reinforcement learning. Expert Syst Appl 37(12):7533-7541
15. Huang Z, van der Aalst WM, Lu X, Duan H (2011) Reinforcement learning based resource allocation
in business process management. Data & Knowl Eng 70(1):127-145
16. HuangZ, Lu X, Duan H (2012) A task operation model for resource allocation optimization in business
process management. IEEE Transactions on Systems, man, and cybernetics-part a: systems and humans
42(5):1256-1270
17. Thde S, Pufahl L, Lin MB, Goel A, Weske M (2019) Optimized resource allocations in business process
models. In: Business Process Management Forum. BPM 2019., Springer International Publishing,
Cham, pp 55-71
18. Kamrani F, Ayani R, Moradi F (2012) A framework for simulation-based optimization of business
process models. SIMULATION 88(7):852-869
19. Kuhn HW (1955) The hungarian method for the assignment problem. Naval research logistics quarterly
2(1-2):83-97
20. Kumar A, Van Der Aalst WM, Verbeek EM (2002) Dynamic work distribution in workflow management
systems: How to balance quality and performance. J Manag Inf Syst 18(3):157-193
21. Kumar A, Dijkman R, Song M (2013) Optimal resource assignment in workflows for maximizing
cooperation. In: BPM, Springer, pp 235-250

w

@ Springer

http://creativecommons.org/licenses/by/4.0/

A Framework for Modeling and Executing Task-Specific... 2429

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

38.

Liu T, Cheng Y, Ni Z (2012) Mining event logs to support workflow resource allocation. Knowl-Based
Syst 35:320-331

OMG (2011) Notation BPMN version 2.0. OMG Specification, Object Management Group pp 22-31
Pellerin R, Perrier N, Berthaut F (2019) A survey of hybrid metaheuristics for the resource-constrained
project scheduling problem. EJOR

Pflug J, Rinderle-Ma S (2016) Application of dynamic instance queuing to activity sequences in
cooperative business process scenarios. Int J Coop 25(01):1650002

Pufahl L, Ihde S, Glockner M, Franczyk B, Paulus B, Weske M (2020) Countering congestion: A
white-label platform for the last mile parcel delivery. In: 23rd BIS Conference, Springer, pp 210-223
Pufahl L, Ihde S, Stichle F, Weske M, Weber 1 (2021) Automatic resource allocation in business
processes: A systematic literature survey. arXiv:2107.07264

Reijers HA, Jansen-Vullers MH, Zur Muehlen M, Appl W (2007) Workflow management systems+
swarm intelligence= dynamic task assignment for emergency management applications. In: BPM,
Springer, pp 125-140

Rhee SH, Cho NW, Bae H (2010) Increasing the efficiency of business processes using a theory of
constraints. ISF 12(4):443-455

Russell N, van der Aalst WMP, ter Hofstede AH, Edmond D (2005) Workflow resource patterns:
Identification, representation and tool support. In: CAiSE, Springer, pp 216-232

Schonig S, Cabanillas C, Jablonski S, Mendling J (2016) A framework for efficiently mining the
organisational perspective of business processes. Decis Support Syst 89:87-97

Tanenbaum A (2009) Modern operating systems. Pearson Education, Inc.,

Toth P, Vigo D (2014) Vehicle Routing: Problems, Methods, and Applications. No. 18 in MOS-SIAM
Series on Optimization, SIAM

Van Hee K, Reijers H, Verbeek H, Zerguini L (2001) On the optimal allocation of resources in stochastic
workflow nets. In: UK Performance Engineering Workshop, Print Services University of Leeds, pp
23-34

Weske M (2019) Business Process Management - Concepts, Languages, Architectures, 3rd edn.
Springer, Berlin

Xu J, Liu C, Zhao X (2009) Resource planning for massive number of process instances. In: CooPIS
Conference, Springer, pp 219-236

. Xu J, Liu C, Zhao X, Yongchareon S, Ding Z (2016) Resource management for business process

scheduling in the presence of availability constraints. ACM TMIS 7(3):1-26
Yaghoibi M, Zahedi M (2017) Cycle time reduction and runtime rebalancing by reallocating dependent
tasks. Int J Eng 30(12):1831-1839

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

http://arxiv.org/abs/2107.07264

	A framework for modeling and executing task-Specific resource allocations in business processes
	Abstract
	1 Introduction
	2 Related work
	3 Motivation
	3.1 Incident resolution
	3.2 Parcel delivery

	4 Foundation
	5 Framework for resource allocation in business processes
	6 Architecture of a resource-aware BPMS
	6.1 Resource organization
	6.2 Resource allocation logic
	6.2.1 At design time—configuration
	6.2.2 At run time—resource allocation
	6.2.3 Connection to BPMS

	6.3 Implementation

	7 Case study
	8 Conclusion
	Acknowledgements
	References

