
Computing (2022) 104:1839–1865
https://doi.org/10.1007/s00607-022-01069-2

REGULAR PAPER

Formal model for inter-component communication and its
security in android

Mohamed A. El-Zawawy1 · Parvez Faruki2 ·Mauro Conti3

Received: 20 May 2021 / Accepted: 22 February 2022 / Published online: 27 March 2022
© The Author(s) 2022

Abstract
The Android application framework has a pervasive presence. In early 2021, Android
has over 70% share of the operating system mobile market (according to Global-
Stats). Components are the main building blocks of Android Applications. These
blocks communicate via a rich Inter-Component Communication (ICC) model rather
than the traditional inter-process communication model. Intents, Intent-filters,
and their Intents resolution (matching) algorithm are main elements of the ICC.
However, the Intent resolution algorithm is not robust enough and has flaws that
can lead to security breaches. In this paper, we present DLAIR, as an enrichment of
the Intent resolution algorithm to overcome its security issues. To this end, we
start by presenting a formal model to express and validate the ICC semantics. This
includes defining key properties guaranteeing consistent and realistic semantic states.
We then demonstrate how the semantics can be used to formally validate ICC aspects
and to express and check ICC system updates. We verified our proposed model and all
its lemmas and theorems in the Coq Proof Assistant, a machine-assisted verification
tool. We extend our semantics to develop DLAIR which is assisted by a heuristic, and
lightweight tool, LekInt. This tool identifies suspicious execution paths responsible for
intent based sensitive user-information leakage. On a dataset of 2000 real-world
apps, we evaluated LekInt against Flowdroid, a state-of-the-art information leakage
analysis tool. Experiments show that LekInt is more effective and efficient than Flow-
droid which has a higher false-negative rate and lower false-positive rate than LekInt.

B Mohamed A. El-Zawawy
maelzawawy@cu.edu.eg

Parvez Faruki
parvez.faruki@avptirajkot.gujgov.edu.in

Mauro Conti
conti@math.unipd.it

1 Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt

2 Department of Information Technology, AVPTI Rajkot, Rajkot, India

3 Department of Mathematics, University of Padua, Padua, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-022-01069-2&domain=pdf
http://orcid.org/0000-0002-5208-124X

1840 M. A. El-Zawawy et al.

Considering the dynamic context in which LekInt is designed to work, the advantage
of efficiency overcomes the disadvantage of higher false-negative.

Keywords Android security · ICC · Intents · Intent filters · Semantics · Formal
verification · Coq proof assistant

Mathematics Subject Classification 68N30 · 68M25

1 Introduction

The legacy Cell-phone and feature phone were primarily used for messaging, phone
calls, short-text, and multimedia communication. However, the advent of smartphone
operating systems, theApple iOS, andGoogleAndroid, has ushered a paradigm shift in
computing. The current generation smartphone is sophisticated hand-held computers
capable of running third-party developer applications (apps).Users preferAndroidOS-
supported smartphones for social networking, banking, email, and shopping with apps
taking an increasing role in our daily life [8, 17, 21]. Android framework components
such as Activities, Broadcast receivers, Content providers, and Services are the basic
buildingblocks of anyuser app.Android canbe realized as an asynchronous framework
whose components are independent with multiple entry points [12, 15].

Android framework has a rich Inter-component Communication (ICC) model. It
enables the development and deployment of highly usable appswith a facility to extend
services offered by other apps. Hence, ICC facilitates the communication between
components of apps. Intent is a complicated messaging technique for implement-
ing ICC [13]. Although Intent is equipped with a security mechanism to prevent
attackers from directly accessing data and services of third-party apps, it does have
critical security issues [15]. Each app has a file (manifest file) that includes definitions
of Intent filters. These filters determine Intents that can be treated by the
app components [13].

Intent resolution [13] is an Android framework mechanism for matching
a component via its Intent filter with the corresponding Intent specified
in source-code of another component. The Intent filters are defined in the
Anroidmanifest.xml, a binary file for app developers used for explicit dec-
larations. Currently, Android does the matching process even if Intent is leaking
sensitive data. While an Android app is executed in Sandbox, an app Intent is
resolved dynamically. Therefore, it is not possible to afford the delay caused by state-
of-the-art techniques, dynamically testing the Intent leakage. Further, Android ICC
framework is limited due to non-availability of formal Intent representation model
that can match the manifest defined Intent filters with corresponding Intents
at run-time. Such a model is invaluable for theoretical representation and potential
framework improvements that can be used for proofs of desirable properties of system
updates. More specifically, such formal representation would provide a robust basis
for a modified Intent resolution algorithm that considers sensitive data leakage.

In this paper, we investigate Intent vulnerabilities responsible for data leakage
and propose a formal model which defines Android ICC semantics. The semantics

123

Formal model for inter-component... 1841

captures Intents, Intent filters, Intent-related APIs, and finally the Intent-
resolution algorithm matching Intents and Intent filters. We define a set of
key properties that guarantee a consistent and realistic Android state in our proposed
semantics. We label the states satisfying such properties as “well-defined”. Further,
we prove that the transitions of the proposed semantic preserve the “well-defined”
propriety of states. Then, we prove the effectiveness of the semantics in two ways: i)
We express different aspects of ICC such as changing Intent types via its attributes;
ii) We express and check a specific potential update for improving ICC security. The
update includes inserting a caching element to semantic states so that processes that
led to security breaches can be reported and avoided later on. We expressed and the
model and verified all its lemmas and theorems with Coq proof assistant, a formal
modeling tool [10]. We present the proof of one lemma in the paper and make proofs
of all other lemmas and theorems available at our GitHub repository.1

Based on our ICC formalization, we propose DLAIR, a security-aware algorithm
for Intent resolution. To assist DLAIR, we propose a lightweight and heuristic
tool (LekInt) that identifies suspicious execution paths. These are the paths that use
Intents in a way that is suspicious of leaking sensitive data. On a set of 2, 000 real-
world apps, we evaluated LekInt and compared it against Flowdroid [3], the state-
of-the-art information leakage detection tool. The evaluation proves that LekInt is
more effective and efficient thanFlowdroid.LekInt andFlowdroid reported issues in
824 and 425 applications, respectively. The average running times per application for
LekInt and Flowdroid are 47.8 and 74.6 seconds, respectively. Therefore LekInt
has a better time complexity than Flowdroid. Efficiency is an important factor as
LekInt is to run dynamically as part of Android. On a set of 100 apps, Flowdroid
has higher false-negative rate (21 against 8) and lower false-positive rate (4 against
13) than LekInt. Bearing in mind the dynamic environment in which LekInt is
designed to work, the advantages of efficiency and high true positives rate overcome
the disadvantage of high false-negative rate (due to the approximation adopted in
LekInt to boost its lightweight feature). Some of the issues reported by LekInt,
which were not identified by the Flowdroid, are referred to in this paper. The metadata
of the dataset and results of the experimental evaluation are available in our GitHub
repository.2

Contributions This paper has the following contributions:

1. We propose a formal model to theoretically represent the Android framework for
Inter-Component Communication (ICC).

2. We formally represent general and security-related ICC properties in our model.
3. We implement and verify our formal model and all the lemmas and theorems of

the paper in the well-known proof-assistant Coq [10].
4. We propose DLAIR, a novel security-aware Intent resolution framework.
5. Based on the security guarantee, we propose LekInt, a lightweight and heuristic

tool that detects Intent generated sensitive data leakage.
6. We compare LekInt against Flowdroid as one of the state-of-the-art techniques.

1 https://github.com/maelzawawy/LekInt.
2 https://github.com/maelzawawy/LekInt.

123

https://github.com/maelzawawy/LekInt
https://github.com/maelzawawy/LekInt

1842 M. A. El-Zawawy et al.

Paper Outline The paper is organized as follows. The most relevant state-of-the-art
is critically evaluated and discussed in Sect. 2. Necessary background is presented in
Sect. 3. The threat model that motivates the work in this paper is presented in Sect. 4.
Section 5 presents our formal model for ICC framework. This model comprises the
semantic states and key properties defining well-defined state. The main APIs of ICC
have been discussed in this section as well. In Sect. 6, we present semantic rules for
the framework APIs and prove that, semantic preserves the “well-defined” predicate
of states. Section 7 utilizes the semantics presented in the paper to express basic and
advanced ICC attributes. Section 8 presents DLAIR including the lightweight tool
LekInt and its design, implementation, and evaluation.

2 Related work

Many studies have been published on intents and component communication using
intents. This section reviews recent studies focused on these issues and also onAndroid
formalization [5, 28]. Potential future research is also discussed in this section.

Permissions are located in application manifest files. Permissions can be realized as
requests to acquire access to delicate resources. Betarte et al. [5, 6] presented a model
for formalizing permission system of Android 6. They also formalized and proved
some properties and security mechanisms for the permission model of Android using
Coq. While our model targets the interesting behavior of intents and intent filters
simply, the work in [5, 6] is focused on the permission system in a complicated
way. Chin et al. presented a tool, ComDroid [9], to check application interaction in
Android. The tool is based on code analysis and detects security vulnerabilities related
to data leakage in Android components. However, unlike our work, ComDroid is not
supported by formal semantics to application interaction or its analysis steps.

Xu et al. presented a malware detection method, ICCDetector [29] which needs
training with sets of benign applications and malware. This method focuses on the
interactions among components of the same application. However, most other similar
methods focus on resources claimed by malware such as permissions, system calls,
and API calls. The work in our paper can be realized as a formal way to represent
this interaction between components. Feizollah et al. [16] studied the effectiveness
of including intent information in a characterizing feature for detecting malicious
applications. They claimed that using intents reveals more precise malware behaviors
than using only permission features. This emphasizes the need for a formal model to
intents such as the one presented in our paper.

Building on the Android framework, Schmerl et al. presented a technique, Rain-
droid [25], that boosts security and preserves extendability. Raindroid relies on static
analysis methods to recognize interaction among applications. The technique relies
also on run-time methods that observe these interactions. Then the methods advise
the system to reject interactions, require user permissions, or grant them. However,
formal reasoning about the correctness of the advice is not presented in the paper.
The model presented in our paper can be augmented with specific APIs to provide
formal reasoning. Barros et al. presented static-analysis methods for Java reflection
and intents in [4]. These methods are based on implicit control-flow. The methods also

123

Formal model for inter-component... 1843

reveal control-flow points and data passed at these points. While our work is based on
axiomatic semantics to precisely capture the Intent concept, the work in [4] uses
type systems to treat intents.

Android has a mechanism by which an application can have private components.
Such components are not accessible by other applications. Using next-intent vulner-
ability (NIV), this privacy can be bypassed by malicious applications. Hence private
components become invocable by other applications. In [26], Tang et al. proposed
an intent-flow static analysis NIVAnalyzer to investigate smali code and reveal NIV.
The static detection is then followed by a dynamic verification via crafted exploit
applications. However, the method is not supported with a formal model proving the
correctness of the analysis. Some of the APIs used inNIVAnalyzer are given semantics
in our model. Also remaining APIs (such as getIntent()) used in NIVAnalyzer can be
added to our model easily. This can lead to formal reasoning about NIV.

3 Background

Android Concepts The building blocks for the Android app development framework
are activities (UI tasks); broadcast receiver (system-wide broadcasts); content provider
(data handling); and service (background services). A service is a group of background
processes that do not have a user interface since they execute in the background.
Broadcast receivers are background event observers that are commenced by other
components. Content providers enable reaching and treating memory contents such
as files, folders, and databases [11, 20].

Intent3 is a messaging object used for communication between the app compo-
nents. Intents are either explicit or implicit. An explicit Intent determines the
target component which is usually in the same app. Implicit Intents do not specify a
certain component. Instead, they specify the needed action. This makes it possible for
a component from another app to do the action. Listing 1 illustrates an example of an
explicit Intent usage, ImpViewIntent also manifests implicit intent example.
ImpViewIntent exhibits the action for viewing text. ImpViewIntent requests
that another adequate app shows the text (announcement).

Listing 1 Examples of Explicit and Implicit Intents.

Intent ExpServiceIntent= new Intent (this , MyService. class) ;
startService (ExpServiceIntent) ;

Intent ImpViewIntent= new Intent () ;
ImpViewIntent . setAction(Intent .ACTION_VIEW) ;
ImpViewIntent . putExtra(Intent .EXTRA_TEXT, announcement) ;
ImpViewIntent . setType(" text / plain") ;
i f (ImpViewIntent . resolveActivity (getPackageManager()) != null) {

startActivity (ImpViewIntent) ;
}

An Intent filter is a specification inmanifest file. The filter determinesIntents
that a component can handle. Declaring an Intent filter for an activity enables other

3 https://developer.android.com/reference/android/content/Intent.

123

https://developer.android.com/reference/android/content/Intent

1844 M. A. El-Zawawy et al.

apps to invoke the activity using a convenient Intent. Listing 2 demonstrates an
example of such Intent filter. The filter declares that its component receives an
ACTION_VIEW Intent when text is the value of data type [7].

Listing 2 Intent Filter Example.

<activity android :name="ViewActivity">
<intent−f i l te r >

<category android :name ="android . intent . category . DEFAULT"/>
<action android :name ="android . intent . action .VIEW"/>
<data android :mimeType ="text / plain"/>

</intent−f i l te r >
</activity>

Intent Resolution Intent resolution [13] is the process of assigning a convenient
component to a given implicit Intent. The assigned component must contain an
Intent filter whose attributes match corresponding ones in the Intent. These
attributes are action, category, and data. Therefore, Intent resolution includes three
tests: action, category, and data tests. The tests are formalized n Table 2.

4 Threat model

This section presents the threat model which motivates us to formalize the intent
resolution mechanism. The threat model visualized in Fig. 1 depicts main entities of
the Android system; App1, App2, and Intent Resolution Algorithm (IRA). App1 has a
componentComp1, that defines an implicit Intent, I , to start an activity.We assumes
that I stores sensitive data in its Extra field. This is fair assumption as it common for
Intents to store sensitive data [1]. Then I is passed to the API startActivity that
asks Android to start an activity with characteristics determined in I . The Android
system passes I to IRA to find amatching component. App2 has a component,Comp2.
The manifest file of App2 has an Intent filter, F , corresponding to Comp2. IRA uses
F to check if Comp2 is a good match for I . If I and F match each other, I (with the
wrapped sensitive data) is passed toApp2 that initiates an instance ofComp2. The flow
of I from App1 to App2 is an example of leaking sensitive data in the ICC framework.

The example above shows that there is a need for a lightweight and heuristic algo-
rithm that identifies Intent-related sensitive data leakage. This need motivated our
paper. The lightweight nature of the algorithm is justified by the fact that it is to be
used dynamically while the app is running. Therefore the algorithm should not affect
the performance significantly. The heuristic aspect of the algorithm is due to the fact
that it should recognize cases where there is no need for security checks. Examples
of these cases are when the checked Intent and the Intent filter are protected
by permissions. In cases like these, the sensitive data passing is intended for some
logical reasons related to the functions of the involved apps. The other motivation for
this paper is the need to build the algorithm on formal semantics for the process of
Inter-Component communication (ICC). It would be an advantage if the semantics is
general enough to reason formally about ICC functional and security aspects [29].

123

Formal model for inter-component... 1845

Android System

App1 App2

Intent Resolution
Algorithm (IRA)Comp1

Comp2

getExtra(I)

Manifest file

Intent Filter F

Category: C2
Action: A2
Data: D2

Intent I
Category: C1
Action: A1
Data: D1
Extra: Sensitive data

startActivity(Intent I)

Category Test

Action Test

Data Test

Legend:
 : Sensitive Data Leakage. : Passing Resolution Elements.
 : Linking Components With Their Intent Filter.

Fig. 1 Threat model

5 Semantic states

In the following, we present the basis of our formal model for Android ICC. This
section introduces the states of the model and axiomatic semantics [18, 23] for
Intent APIs. The semantics are formalized as state-transition maps that preserve a
well-defined feature of states. The theoretical model is verified with the proof
assistant Coq [10].

An Ù application, as described in Fig. 2, is a pair of an application id, AppID,
and a manifest, Manifest. The Manifest component is a formalization of the
Android manifest file. The Manifest is formalized as a pair: Comp∗ representing
the application components and Compf representing Intent filters together with
their hosting components. A component (Comp) is an element of the set {Activity,
Service, BroadReceiver} which are uniquely specified using identifiers [11].
Moreover, the Service has a Boolean (ClientServer) that specifies whether the
service is a client or server one. The setsAId, SId, BId denote sets of activity IDs,
service IDs, and broadcast receiver IDs, respectively. The union of these sets forms
the set of component IDs, CmpId. Since the Components are implemented as classes,
the Android framework creates instances of the component classes at run-time. In the
following, the instances will be referred to as component instances. As long as the
instance exists, we call it an active or a running instance. We describe a component
as installed (downloaded) means that the component and its app are included in the
system under study [11].

123

1846 M. A. El-Zawawy et al.

Fig. 2 Intents, Intent-filters, and Applications Formalization

Fig. 3 Model states formalization

Intent and Intent filters concepts are also formalized in Fig. 2. An Intent
is 6-tuple that consists of:

o IntId: the Intent identifier,
o CmpId: the identifier of the component hosting the Intent,
o Action: the action type of the Intent,
o Data: the data type of the Intent,
o (Category)∗: the set of categories targeted by the Intent, and
o Extra: the extra data (if any) needed to execute the Intent.

An Intent filter is quadruple that consists of:

o IntFilId: the Intent filter identifier,
o (Action)∗: the set of action types that can be handled by the Intent filter,
o (Category)∗: the set of categories that can be handled by the Intent filter, and
o (Data)∗: the set of data types that can be handled by the Intent filter.

The semantic states (Fig. 3) of the model are 6-tuples with the following compo-
nents:

123

Formal model for inter-component... 1847

Fig. 4 The formalization of the predicate WellDefined and its sub-predicates

o Apps : a set of installed applications,
o Active: a set of pairs of active instances of components together and their com-
ponents.

o IntFilter: a set of pairs of applications with their Intent filters.
o WaitImpInt: a set of implicit Intents still not linked to a matching Intent
filter (i.e. needing Intent resolution).

o IntentResol: a set of pairs of Intents and Intent filters that were found
to match each other.

o AppLauncher: a set of pairs of applications and their launching components.

The notation IComp denotes a component instance. The instance is identified via an
ID, InstId.

The proposed semantics relies on the notion of well-defined system states. The
notion captures system states satisfying realistic Android characteristics. These char-
acteristics ensure states respecting the principles of Android OS. Formally, this notion
is expressed as a predicate (WellDefined) on system states (SysState). Figure 4
shows the formalization of the predicate and its sub-predicates in the proof assistant
Coq [10]. All the predicates assume a state variable s ∈ SysState. To precisely sim-
ulate semantics [18, 23] of Intent APIs, we define some predicates and functions
in Coq. These are presented and described in Table 1.

The following sub-predicates compose the WellDefined predicate:

1. The predicate WaitIntsImp holds for a state s if WaitImpInt links applica-
tions with implicit Intents only.

2. The predicate UsrIntFsDefd holds for a state s if IntFilter links an appli-
cation a to an Intent filter f only if a is included in s and f is included in one of
the components in Manifest a. The predicate guaranties that treated Intent
filters are obtained from installed applications.

123

1848 M. A. El-Zawawy et al.

Table 1 Auxiliary predicates and functions

IsActivity(c) Holds if c is an activity.

IsService(c) Holds if c is a service.

IsBroadCast(c) Holds if c is a broadcast receiver.

ExpInt(i) Holds if i is an explicit Intent.

ImpInt(i) Holds if i is an implicit Intent.

Intent_hasA(i) Holds if the Intent i has a value (rather than None) in its Action field.

Intent_hasD(i) Holds if the Intent i has a value (rather than None) in its Data field.

Intent_hasC(i) Holds if the Intent i has a value (rather than None) in its Category
field.

Intent_hasE(i) Holds if the Intent i has a value (rather than None) in its Extra field.

Intent_hasEV(i, e, v) Holds if the Intent i has the value (e, v) in its Extra field.

IntentF_hasA(f) Holds if the Intent filter f has a value (rather than None) in its
Action field.

IntentF_hasAa(f , a) Holds if the Intent filter f includes the action a in its Action field.

IntentF_hasD(f) Holds if the Intent filter f has a value rather than None in its Data
field.

IntentF_hasDd(f , d) Holds if the Intent filter f includes the data d in its Data field.

IntentF_hasC(f) Holds if the Intent filter f has a value (rather than None) in its
Category field.

IntentF_hasCc(i, c) holds if the Intent filter f includes the category c in its Category field.

CompInApp(c, a) Holds if c is a component in the application a.

InFComp(c, f) Holds if the Intent filter f belongs to the component c.

RetCmpId(c) Returns the identifier CompId of the component c.

SerHasclntSerInt(c) Holds if the component c is a service and the value of its attribute
ClientServer is True.

CompDwnloaded(c, s) Holds if the component c belongs to an application in the state s.

IntFDwnloaded(f , s) Holds if the Intent filter f belongs to an application in the state s.

UsrDefIntF (f , s) Holds if the Intent filter f is defined in any of the components of the
state s.

InsCompNotInState (ic, s) Holds if the component instance ic does not belong to the state s.

3. The predicate NoRepIntFs holds for a state s if an Intent filter can not belong
to two identical components of different apps.

4. The predicate NoRepImpInts holds for a state s if no implicit Intent waiting
for resolution can belong to two different apps.

5. The predicate ExstAppforWatInt holds for a state s if implicit Intents not
having matching components yet belong to system applications. This predicate
guaranties that treated Intents are system ones and no foreign Intents are
leaking data.

6. The predicate RunInsInSysComp holds for a state s if every running instance
ic of a component c has its corresponding component installed.

7. The predicate ResExstIntIntF holds for a state s if the matching between
Intent i and Intent filter f implies two conditions. The first condition is that

123

Formal model for inter-component... 1849

Fig. 5 Intent-related APIs

i is an implicit Intent in an installed application, a1. The other condition is that
f belongs to an installed application, a2.

We later prove that the predicate WellDefined is invariant concerning transition
maps of the semantics [18, 23].

Figure 5 presents APIs that are related to Intents. The formal semantics of the
APIs is presented in the next section and their description is as follows:

o startActivity(i) starts an activity that is determined by the Intent i .
o startService(i) starts a service that is specified by the Intent i .
o sendBroadcast(i) sends a broadcast that is fixed by the Intent i .
o setComponent(i, option cmpId) explicitly sets the component that the
Intent will target.

o setAction (i, option act) sets the attribute Action of the given
Intent.

o setData(i, option dat) sets the attribute Data of the Intent i .
o addCategory(i, cat) adds a category to the list attribute Category of
the Intent i .

o putExtra(i, ef, ev) sets the attributes ef and ev of the Intent i .

These APIs include ones that start a component via an Intent. The APIs also
include ones thatmodify attributes of Intent objects. Therefore, theAPIs are among
the ones most used by Android programmers when using Intents. The behavior
described above for the APIs is based on the official specification by Google [11,
13].

6 Semantic rules

This section presents the semantics of the Android APIs (Fig. 5) most related to
ICC. The semantics is captured by determining pre and post conditions. For each
api ∈ API, a pre-condition expresses the conditions of a system state able to execute
api. However, its post-condition describes the main characteristics of the system
state resulting from executing api. The relationship� denotes the execution of api.
Figure 6 introduces the conditions pre(s) and post(s′) such that api : s � s′.

We first provide a higher level of explanation for intent resolution and then present
its formalization. We then use the formalization in the semantic rules. An Intent
filter passes the action test if the Intent action is one of the filter actions. However,
if the action list of filters is not empty and the Intent has no action included, the
filter passes the test. To pass the category test, Intent categories have to be included
in filter categories. The data element (of Intents and Intent filters) can have

123

1850 M. A. El-Zawawy et al.

Fig. 6 Pre and post conditions of the semantics of intent-related APIs

a MIME data type and a URI structure. The URI has four separate parts: scheme,
host, port, and path. Although these parts are optional, their existence respects linear
dependencies.

The action, category, and data tests of intent resolution are formalized in Table 2.
Rule 1 (R.H.S.) states that a component c resolves an intent i either explicitly or
implicitly. Rule 1 (L.H.S.) states that the explicit resolution occurs when i is explicit
and CmpId of c coincides with that specified in i . Rules 2 states that the implicit
resolution occurs when c includes an intent filter that matches i . That the matching
between an intent and an intent filter includes three tests (data, category, and action) is
formalized in Rule 3 (L.H.S.). The category and action tests are formalized in Rules 3
(R.H.S.) and 2, respectively. The data test is formalized in Rules 4 (R.H.S.), 5, 6, 7, 8,
and 9 . The remaining rules of the figure formalize matching conditions between URL
components of data elements contained in an Intent and an Intent filter.

Examples of applying rules of Table 2 are provided by the implicit Intent and the
intent filter given in the Listings 1 and 2 of Sect. 3. We show some application cases.
Rule 3 (L.H.S.) can be applied as follows: the condition category-default ∈
(Category)∗ f applies because the category DEFAULT belongs to the intent filter.
Also the condition (Category)∗ i ⊆ (Category)∗ f applies because the intent

123

Formal model for inter-component... 1851

Table 2 Formalization of Intent Resolution Rules

hosts no categories that do not belong to the intent-filter tag. Rule 2 is applicable as
the condition

Action i=None ∨ (∃a : Action. (Action i = a) ∧ a ∈ (Action)∗ f)

123

1852 M. A. El-Zawawy et al.

is satisfied through the second part of the “OR” connector. This is so because both the
intent and the intent filter have the action VIEW which is denoted in the rule by a.

In Fig. 6, the precondition of startActivity(i) requires the existence of
a component c that resolves the Intent i . The component has to be an activity
(IsActivity(c)) and installed in the state s (CompDwnloaded(c,s)). The post-
condition of startActivity(i) is the union of the seven sub-conditions stated
in the figure. The descriptions of the subfunctions are as follows:

1. The component instances that were running in s are still running in s′.
2. All pairs of an Intent and an Intent filter linked under IntentResol s, are

also linked under IntentResol s′.
3. This sub-condition determines the state parts that are not affected by executing the

API. Hence these parts are the same under s and s′.
4. If i is explicit, then no intent resolution is necessary to execute the API. Hence

IntentResol s = IntentResol s′.
5. There is an instance ic of the activity c that is running in s′. The instance was

created as a result of executing the API. Therefore, ic does not belong to the state
s.

6. Suppose that an ic′ is running in s′. Then ic′ was running in s or ic = ic′.
7. If i is implicit, then the process of intent resolution was carried on. Therefore

an Intent filter f was found in c such that i matches f . This is recorded in
IntentResol s′.

The semantics of the APIs startService(i) and sendBroadcast(i) are
similar to that of startActivity(i). However, for startService(i) and
sendBroadcast(i), one of the changes is to replace IsActivity(c) with
the convenient function: IsService c or IsBroadCast c. The descriptions
of semantics for setComponent and setAction given in Fig. 6 are simi-
lar to that of startActivity. The semantics of APIs setData(i, dat),
addCategory(i, cat) and putExtra(i, ef, ev) are similar to that of
the API setAction (i, act).

In the following, we prove that the predicate WellDefined is preserved by one-
step execution of any of the APIs of Fig. 5. This means that executing an API starting
from a WellDefined state results in a WellDefined state. The proofs of all
following lemmas and theorems were verified in Coq and their verification is available
online.4 Hence, we only show the proof of Lemma 1.

Lemma 1 1. (WaitIntsImp(s) ∧ API : s � s′) ⇒ WaitIntsImp(s′).
2. (UsrIntFsDefd(s) ∧ API : s � s′) ⇒ UsrIntFsDefd(s′).
3. (NoRepIntFs(s) ∧ API : s � s′) ⇒ NoRepIntFs(s′).

Proof 1. The proof is by induction on the set API. We show only the case where API
= setComponent(i,cid). By assumption, for the state s we have:

∀(a : App)(i : Intent), (WaitImpInt s) a i ⇒ ImpInt(i). (14)

4 https://github.com/maelzawawy/LekInt.

123

https://github.com/maelzawawy/LekInt

Formal model for inter-component... 1853

We need to show the same for the state s′. Therefore we assume

a : App, i ′ : Intent,and (WaitImpInt s′) a i ′. (15)

Now it is enough to show that ImpInt(i ′). For i, i ′, we have i = i ′ or i �= i ′. We
prove the required in both cases:

– Case i �= i ′: by the postcondition of API (sub-condition 3), we conclude

(WaitImpInt s′) a i ′ = (WaitImpInt s) a i ′.

By 15, we have (WaitImpInt s) a i ′. Now by 14, we conclude ImpInt(i)′,
as required.

– Case i = i ′: we have two subcases:
– Case cid �= None: by the postcondition of API (sub-condition 2), we
conclude

¬(WaitImpInt s′) a i .

This is a contradiction to our assumption in 15. Hence the required is
proved.

– Case cid = None: by the postcondition of API (sub-condition 1), we
conclude

CmpId i = None.

By definition of implicit intent, this implies ImpInt(i), which implies
ImpInt(i ′).

2. The proof is by induction on the set API. We show only the case where API =
startService(i). By assumption, for the state s we have:

∀(a : App)(f : IntentFilter), (IntFilter s) a f ⇒
(Apps s) a ∧ (∃c : Comp, (Compf (Manifest a)) c f). (16)

We need to prove the same for the state s′. Hence we assume

a : App, f : IntentFilter, (IntFilter s′) a f . (17)

Now it is enough to show that

(Apps s′) a ∧ (∃c : Comp, (Compf (Manifest a)) c f).

By 17 and the postcondition of API (sub-condition 3), we conclude (IntFilters s) a f . Hence
by 16 we conclude:

(Apps s) a ∧ (∃c : Comp, (Compf (Manifest a)) c f).

By applying the postcondition of API (sub-condition 3) again, we get the required.

123

1854 M. A. El-Zawawy et al.

3. Theproof is by inductionon the setAPI.We showonly the casewhereAPI = putExtra(i,ef,ev).
By assumption, for the state s we have:

∀(a1, a2 : App) (c1, c2 : Comp) (f : IntentFilter), (IntFilter s) a1 f ⇒
(IntFilter s) a2 f ⇒ (Apps s) a1 ⇒ (Apps s) a2 ⇒ (Compf (Manifest a1)) c1 f

⇒ (Compf (Manifest a2)) c2 f ⇒ c1 = c2 ⇒ a1 = a2. (18)

We need to prove the same for the state s′. Hence we assume

(a1, a2 : App), (c1, c2 : Comp), (f : IntentFilter), (IntFilter s′) a1 f ,

(IntFilter s′) a2 f , (Apps s′) a1, (Apps s′) a2,
(Compf (Manifest a1)) c1 f , (Compf (Manifest a2)) c2 f , c1 = c2. (19)

Now it is enough to show that a1 = a2. By the postcondition of API (sub-condition 1), in 19, we
can replace (IntFilter s′) a1 f , (IntFilter s′) a2 f , (Apps s′) a1, and (Apps s′) a2, with
(IntFilter s) a1 f , (IntFilter s) a2 f , (Apps s) a1, and (Apps s) a2, respectively. Then we
get the precondition of implication of 18. Hence, we conclude a1 = a2.

�

Lemma 2 1. (ExstAppforWatInt(s) ∧ API : s � s′) ⇒ ExstAppfor

WatInt(s′).
2. (NoRepImpInts(s) ∧ API : s � s′) ⇒ NoRepImpInts(s′).
3. (RunInsInSysComp(s) ∧ API : s � s′) ⇒ RunInsInSysComp(s′).
4. (ResExstIntIntF(s) ∧ API : s � s′) ⇒ ResExstIntIntF(s′).

The following theorem results from Lemmas 1 and 2 .

Theorem 1 (WellDefined(s) ∧ API : s � s′) ⇒ WellDefined(s′).

7 Semantics utilization

This section employs the semantics presented in the previous section. The semantics
is a base towards formalizing basic and advanced aspects of the Android framework
ICC. Here, we demonstrate the utility of proposed semantics towards developing a
robust Android ICC framework.

Modifying some fields (action, data, category, and extra) in an Intent does not
change the Intent type. However, updating the attribute CmpId possibly change
the Intent type. These facts and similar ones are formalized in the Lemmas 3
and 4 .

Lemma 3 1. (ExpInt(i) ∧ setAction(i,act) : s � s′) ⇒ ExpInt(i).
2. (ImpInt(i) ∧ setAction(i,act) : s � s′) ⇒ ImpInt(i).
3. (ExpInt(i) ∧ setData(i,dat) : s � s′) ⇒ ExpInt(i).
4. (ImpInt(i) ∧ setData(i,dat) : s � s′) ⇒ ImpInt(i).
5. (ExpInt(i) ∧ addCategory(i,cat) : s � s′) ⇒ ExpInt(i).
6. (ImpInt(i) ∧ addCategory(i,cat) : s � s′) ⇒ ImpInt(i).
7. (ExpInt(i) ∧ putExtra(i,ef,ev) : s � s′) ⇒ ExpInt(i).
8. (ImpInt(i) ∧ putExtra(i,ef,ev) : s � s′) ⇒ ImpInt(i).

123

Formal model for inter-component... 1855

Lemma 4 1. ImpInt(i) ∧ cid = None ∧ setComponent(i,cid) : s � s′ ⇒
ImpInt(i).

2. ImpInt(i)∧cid �= None∧setComponent(i,cid) : s � s′ ⇒ ExpInt(i).
3. ExpInt(i)∧cid �= None∧setComponent(i,cid) : s � s′ ⇒ ExpInt(i).

Our proposed semantics does not cache results of Intent resolution process.
Hence, if twoAPIs use the same explicit Intent, the systemwill resolve theIntent
twice. Therefore, the system does not benefit from the first resolution to the second
one. This results in resource wastage which can be handled. Further, such instances
have serious security implications. For example, if the first Intent resolution is
responsible for sensitive data leakage, it will be repeated in the second Intent
resolution.

Before running the Intent resolution process, it is convenient to check whether
a matching component has been found recently. If this is the case, the system should
check whether the component is responsible for a security breach. If there is no his-
tory of security breaches, then the system can declare the component to be a match.
Otherwise, the system runs the Intent resolution process. The proposed updates
can be implemented in our proposed semantics employing the following changes. The
first change is to add the component BadIntResol : Intent×IntentFilter
to the definition of semantic state (SysState). This augmentation, allows a state to
store the history of Intent resolution that led to security breaches. The other change
is to replace Rule 3 (R.H.S.) with the following three rules:

¬(IntentResol s)(i, f) ActionTest(i, f)
CategoryTest(i, f) DataTest(i, f)

IntMatchIntF2(i, f)

(20)

(IntentResol s) i f
¬(BadIntentResol s) i f

IntMatchIntF1(i, f)

(21)

IntMatchIntF1(i, f) ∨ IntMatchIntF2(i, f)

IntMatchIntFmod(i, f)
(22)

With these changes, we can prove that executing Intent APIs such as
startActivity(i) is secure as formalized in Theorem 2. The theorem guar-
antees that executing startActivity(i) for an implicit intent i does not lead to
invoking activities having history of security breaches.

Theorem 2 Suppose API ∈ {startActivity,startService,sendBroad
cast}. Suppose also that ImpInt(i) ∧ API(i) : s � s′. Then there exists
c ∈ Comp, ic ∈ IComp, and f ∈ IntentFilter such that:

1. IsActivity(c) ∨ IsService(c) ∨ IsBroadCast(c),
2. CompDwnloaded(c, s)∧InsCompNotInState(ic, s)∧ (Active s′) ic c∧

InFComp(c, f),
3. (IntentResol s) i f ∧(IntentResol s) i f ⇒¬(BadIntentResol s) i f ,

and

123

1856 M. A. El-Zawawy et al.

4. ¬(IntentResol s) i f ⇒ ActionTest(i, f), CategoryTest(i, f), and
DataTest(i, f).

According to the theorem above the API execution results in an instance ic of a
component c that has an Intent filter f such that the following conditions hold. The
instance ic does not belong to s, but belongs to s′. If f has recently been identified as
a match to i , then c has no history of security breaches. This is formalized using the
condition ¬(BadIntentResol s) i f . If there is no history of matching between
i and f (¬(IntentResol s) i f), then f has passed the action, category, and data
tests.

Executing startActivity creates new instance. In a state s and for an explicit
intent i , the execution of the startActivity(i) API results in an instance ic of
a component c such that the following holds. c is an activity and ic does not belong
to s, but belongs to and is running in s′. The id of c coincides with that specified in
attribute CmpId of i . This is formalized in the following lemma.

Lemma 5 Suppose ExpInt(i) and startActivity(i) : s � s′. Then there
exists c ∈ Comp and ic ∈ IComp such that InsCompNotInState(ic, s) ∧
(Active s′) ic c ∧ CompDwnloaded(c, s) ∧ IsActivity(c) ∧ CmpId i =
RetCmpId(c).

It is not possible to execute sendBroadcast(i) in a state s if i is an implicit
intent that can not be resolved in s. Suppose that in state s, i is an implicit intent
that was not resolved recently. Additionally, suppose that a is the action value of
i . Further, each intent filter in the system does not include a in its action list, it
is not possible to execute the APIs {startActivity(i),startService(i),
sendBroadcast(i)} in the state s. This is formalized in the following lemma,
proof is available in the verification code.

Lemma 6 Suppose that ImpInt(i) ∧ Action i = a ∧ ∀ f ∈ IntentFilter,¬
(IntentResol s) i f , and ∀(c : Comp)(f : IntentFilter), CompDwn
loaded(c, s) ∧ InFComp(c, f) ⇒ act /∈ (Action∗ f). Then ¬pre_start
Activity(i, s)∧¬pre_startService(i, s)∧¬pre_sendBroadcast(i, s).

It is not possible to execute startService(i) in a state s if, i is an
explicit intent pointing to a component that is not installed in s. We assume that in
state s i is an explicit intent. We expect that CmpId field of i does not coincide with
that of any component in s. In such situations, it is not possible to execute the APIs
{startActivity(i),startService(i),sendBroadcast(i)} in the state s.
This is formalized in the following lemma.

Lemma 7 Suppose ExpInt(i) ∧ ∀c ∈ Comp,CompDwnloaded(c, s) ⇒ CmpId
i �= RetCmpId(c). Then ¬pre_startActivity(i, s) ∧ ¬pre_start
Service(i, s) ∧ ¬pre_sendBroadcast(i, s).

Turning an implicit intent i into an explicit one and then executing
startService(i) results in a new service instance in the final state. Suppose
that in a state s, i is an implicit intent. Suppose that cid is the Id of the service c.
Suppose that i is turned into explicit intent via assigning cid to the filed CmpId of i .

123

Formal model for inter-component... 1857

Then executing startService(i) results in a new service instance of c in the final
state. This is formalized in the following Theorem.

Theorem 3 Suppose that ImpInt(i) ∧ setComponent(i,cid) : s � s′ ∧
startService(i) : s′ � s′′. Then there exists c ∈ Comp and ic ∈ IComp
such that: InsCompNotInState(ic, s) ∧ (Active s′′) ic c ∧ IsService(c) ∧
RetCmpId(c) = cid.

ExecutingsendBroadcast(i)withan implicit intent i results in anewBroad-
cast instance matching i . Suppose that in a state s, i is an implicit intent. Suppose
that act is the value of the action property is i . We assume that i was not resolved
recently. Then, executing sendBroadcast(i) results in a new a broadcast instance.
The broadcast of the instance is installed in the initial state which includes a filter that
matches i . This is formalized in the following theorem.

Theorem 4 Suppose ImpInt(i) ∧ Action i = act∧ (∀ f ∈ IntentFilter,¬
(IntentResol s) i f) ∧ sendBroadcast(i) : s � s′. Then there exists c ∈
Comp, f ∈ IntentFilter, and ic ∈ IComp such that: InsCompNotInState
(ic, s) ∧ (Active s′) ic c ∧ CompDwnloaded(c, s) ∧ IsBroadCast(c) ∧
InFComp(c, f) ∧ act ∈ (Action∗ f).

8 Data-leakage aware Intent resolution (DLAIR)

This sectionpresents a newsecurity-aware algorithm (DLAIR) for Intent resolution.
The algorithm relies on the formal model presented in the previous sections of the
paper in addition to LekInt, our lightweight tool that identifies suspicious paths
related to Android app Intents. In this context, LekInt can be thought of as a
security analysis tool for reporting execution paths with Intents that are suspicious
of leaking sensitive user data in Android apps. DLAIR is outlined in Algorithm 1.
DLAIR and the design, implementation, and evaluation of LekInt (as the main
pillar of DLAIR) are presented in the following subsections.

8.1 Design of DLAIR

DLAIR, as listed in Algorithm 1, takes as input an Intent i of the app p. For i ,
the algorithm builds two sets of matching Intent Filters (Good_Filters
and Suspicious_Filters). Theses sets are initialized in steps 1 and 2 of the
algorithm. The set Good_Filters has matching filters of i that are secure and the
set Suspicious_Filters has matching filters of i that are suspicious of leaking
sensitive data. In Step 3, the algorithm checks if i is implicit. Step 4 calls LekInt
that returns a triple [γ, ω, β], where:
1. γ is a Boolean that is 1 if the execution path hosting i is suspicious of leaking

sensitive data,
2. ω specifies the component type targeted by i , and
3. β is the permission required to access the component targeted by i , if the component

is protected by a permission. Otherwise, β is none.

123

1858 M. A. El-Zawawy et al.

Algorithm 1 Data-leakage aware Intent resolution (DLAIR)

Input: An intent i in an application p.
Output: (Good_Filters, Suspicious_Filters).
Steps:

1: Good_Filters ← {};
2: Suspicious_Filters ← {};
3: if Implicit_Intent(i) then
4: [γ, ω, β] ← LekInt(p, i);
5: if γ == 1 then
6: if ω == broadcast then
7: if β ∈ signature permissions then
8: Good_Filters ← { f | f ∈ IntMatchIntFmod (i, f)};
9: else
10: Good_Filters ← { f | f ∈ f sig_perm ∧ f ∈ IntMatchIntFmod (i, f)};
11: if ω ∈ {activity,service} then
12: Good_Filters ← { f | f ∈ f sig_perm ∧ f ∈ IntMatchIntFmod (i, f)};
13: else
14: Good_Filters ← { f | f ∈ IntMatchIntFmod (i, f)};
15: else %(Explicit_Intent(i))%
16: Good_Filters ← { f | f ∈ IntMatchIntF(i, f)};
17: Suspicious_Filters ← { f | f ∈ IntMatchIntF(i, f)} \ Good_Filters;
18: return (Good_Filters, Suspicious_Filters);

Recall that Android allows Intents targeting broadcasts to be protected by permis-
sions. This is not the case for activities and services. Therefore, if ω is broadcast (Step
6), and if β is a signature permission (Step 7), then Step 8 uses our proposed algorithm
of Intent resolution (IntMatchIntFmod) to build the set Good_Filters. If
β is not signature permission or the component type is not a broadcast, then the algo-
rithm secures the matching process by accepting only filters protected by signature
permissions. This is done in Steps 10 and 12. If γ = 0, then there is no need to care
for permissions. This is implemented in Step 14. If i is not implicit, then in Step 16,
the traditional algorithm of Intent resolution (outlined in Fig. 2) is used to find the set
of Good_Filters. In all cases, Step 17 defines Suspicious_Filters as the
set of all filters produced by the traditional algorithm of Intent resolution (outlined in
Fig. 2) minus Good_Filters.

It is necessary to note that DLAIR is not a taint analysis. While taint analysis
is static and aims at fining data leaks, DLAIR is dynamic analysis. Taint analysis
usually is applied once (on one app) at installation time. DLAIR can be realized
as an enrichment of the process of Intent-resolutions. This enrichment aims at
avoiding repetition of insecureIntent-resolutions. HenceDLAIRworks onmultiply
applications simultaneously. While Taint analysis is typically applied as an extra layer
above the Android OS, DLAIR can conveniently be integrated into the Android OS.
Flowdroid [3] is built on the Soot tool [27] which replies on optimizing the Java byte
code of apk files. This optimization increases significantly the rune time of the tool.
Though disabling the optimization part of Soot is possible, the default configuration of
Soot is still not fast enough as realized in many tools, such as Dare [22] and ded [14].
This fact has led researchers to utilize other tools (such as Androguard) as reviewed
in [24]. Accuracy and soundness arguments [19] of Soot are among the challenges not

123

Formal model for inter-component... 1859

APK
Reverse Engineering Manifest Analysis Identifying Component

Classes

Identifying Intent-Suspicious
Paths

Identifying Intent-Suspicious
Pairs of pathsResult

Fig. 7 Overview of LekInt

solved yet [24]. This partially justifies that DLAIR gave better results than Flowdroid
as explained later in detail.

8.2 Design ofLekInt

LekInt is useful as a lightweight technique for testing the security of the execution
path of a given Intent. In this context, an execution path is intent-suspicious if it
contains the following three Dalvik instructions in the following specific order:

o The first instruction defines an intent object,
o The second instruction invokes a source API that reads sensitive data.
o The third instruction invokes a sink API that takes the intent of the first instruction
as an argument.

Figure 7 presents an overview of LekInt which is composed of the following
modules:

– Reverse engineering module: aims at decompiling the apk file to get the manifest
and dex files.

– Manifest analysis module: collects lists of activities, broadcast receivers, and
services. The analysis decide which elements of these lists are protected by per-
missions.

– Identifying Component Classes module: identifies the dex code of classes of
different components used in the app. The following stages use these classes.

– Identifying Intent-Suspicious paths module: investigates paths of methods of com-
ponent classes. Then paths are analyzed to determine which paths are suspicious
according to our definition above. For a suspicious path, the analysis also specifies
whether the third instruction, of intent-suspicious definition, is protected with per-
mission. This can be the case for sink methods such as sendBroadcast. The
analysis also specifies the type of component object (if any) started by the path.

– Identifying Intent-Suspicious Pairs of paths module: discovers more involved pat-
terns on leaking data. This pattern was determined from analyzing results of
state-of-the-art techniques reporting data leakage such as Flowdroid. In this case,
the pattern is composed of two suspicious paths; the first path contains the first and
second instructions of the definition of intent-suspicious paths. This path invokes
another method that includes the second path which contains the third instruction
of definition of intent-suspicious paths. Details specified for the suspicious path
of the previous module are also collected for the two paths of this module.

123

1860 M. A. El-Zawawy et al.

8.3 Implementation ofLekInt

The details of implementing modules of Fig. 7 are as follows:

– The reverse engineering is done using Androguard and produces three objects
a, d, dx .

– The manifest analysis is implemented using several Androugard APIs includ-
ing a.find_tags(’receiver’) to get a list of receiver tags. Similarity
tags of other components can be obtained. The API tag.get(a._ns
(’permission’)) is used to check if the component is protected using a
permission.

– The implementation of Identifying Component Classes relies on the following
APIs to get dex classes of different components: a.get_services() and
dx.get_class_analysis(c.get_name()).

– For the implementation of Identifying Suspicious Intent paths and Identifying
Intent-Suspicious Pairs of paths phases, the paths of methods of components are
built using the APIs basic_blocks.gets() and CurBblock.childs.
The analysis of the collected paths relies on identifying path instructions by the
API block.get_instructions(). The analysis of instructions details uti-
lizes the APIs get_name() and get_operands().

Our list of source and sink APIs were derived from ones used by state-of-the-art
techniques such as Flowdroid. The list includes all common sources and sinks related
to intents and bundles only. This list is available online with our result files. Among
sink APIs in our list are the sends broadcast ones and the send service API.5

8.4 Performance evaluation

This section presents the results of our experiments conducted for evaluatingLekInt.
We got the dataset from a reputable benchmark, namely Andro-Zoo [2]. We down-
loaded a random set of 2000 applications whose sha256 is available online with our
result files. We limited the download to applications that Androzoo obtained from the
Google Play Store. All experiments were done on a Dell (Vostro) device with proces-
sor: Intel(R) Core(TM) i7-3612 QM CPU@ 2.10 GHz, 8.00GB RAM, and Windows
10 (64-bits) operating system. All implementations were written in Python. Table 3
shows the statistics collected for comparing LekInt against Flowdroid [3] as one
of the state-of-the-art techniques that are most common and related to LekInt. We
make all our results and data files available online.6 These files include 2000 text files
produced by LekInt and 1999 text produced by Flowdroid for the applications of
the dataset. The Coq files that include the proofs of our semantics are also available
online.

Our experiments answer the following research questions:

5 https://developer.android.com/reference.
6 https://github.com/maelzawawy/LekInt.

123

https://developer.android.com/reference
https://github.com/maelzawawy/LekInt

Formal model for inter-component... 1861

Table 3 Statistics comparing LekInt against Flowdroid

Aspect LekInt Flowdroid

Number of leaks 49,015 4664

Number of apps with reported leaks 824 425

Total time (in sec) 95,740 149,322

Average time per app (in sec) 47.8 74.6

Number of analyzed classes 150,914 *

Number of activities from manifest 29,564 *

Number of activities from manifest protected with permissions 30 *

Number of services from manifest 5165 *

Number of services from manifest protected with permissions 566 *

Number of receivers from manifest 4496 *

Number of receivers from manifest protected with permissions 974 *

Leaks related to Intents starting activities 13707 *

Leaks related to Intents starting services 2761 *

Leaks related to Intents starting broadcast 2574 *

Leak paths using permissions 435 *

The symbol ∗ means that the technique does not provide the statistics

RQ1. Applicability, Effectiveness, and Performance: How does LekInt com-
pare against alternative approaches applicability, discovering suspicious paths
related to Intents, and in performance?

RQ2. Accuracy: How accurate are the results of LekInt against alternative
approaches?

RQ3. Common Component Leaking Data: Is there a specific component that is
targeted most by Intents used in paths leaking data?

RQ4. Permissions: How common is the use of permissions in protecting components
in manifest and in protecting intents in the native code?

Applicability, Effectiveness, and Performance: The applicability of LekInt
is proved by its results obtained for 2000 real-life Android applications. Moreover,
we designed two Android applications that include different patterns of paths leaking
sensitive data. These paths includeIntents that target different types of components.
To cover all possible cases in our applications, some of Intents and components
were protected by permissions and others were not. LekInt succeeded in reporting
all the leaking paths in the example applications. On the other hand, Flowdroid failed
to report leaks in these two applications which we make available online along with
their LekInt and Flowdroid results.

Figure 8 (Right-hand-side) provides comparisons for leaks reported by LekInt
and Flowdroid. The total number of leaks reported by LekInt and Flow-
droid are 49015 and 4664, respectively. It is worth mentioning that Flowdroid
reported more leaks than this number, but we considered only leaks related to
our problem. For example, Flowdroid typically reports leaks in external compo-
nents that are not among the native code of the app under analysis. Examples of

123

1862 M. A. El-Zawawy et al.

Fig. 8 Comparing runtime and reported vulnerabilities in LekInt and Flowdroid

Table 4 Accuracy of LekInt against Flowdroid

Technique True positive False positive True negative False negative

LekInt 26 13 53 8

Flowdroid 13 4 62 21

external components are com.facebook.CampaignTrackingReceiver and
com.google.android.gms.ads.AdActivity. Such leaks were not consid-
ered in our evaluation. The reported number of leaks proves that LekInt is more
effective than Flowdroid.

Figure 8 (Left-hand-side) provides comparisons for running times of LekInt and
Flowdroid. The average running times per application forLekInt and Flowdroid are
47.8 and 74.6 seconds, respectively. This proves that the performance and efficiency
of LekInt are better than that of Flowdroid.

Accuracy: LekInt reported suspicious leaks in 824 apps, while the Flowdroid
reported leaks in 425 apps. We manually checked the results reported for a random
set of 100 apps for measuring the accuracy of LekInt against Flowdroid. Table 4
illustrates the results of our manual investigation.

Compared to LekInt, Flowdroid has higher false-negative and lower false pos-
itive. This is in line with the approximation adopted by LekInt. However, the
efficiency and the high number of true positives reported by LekInt confirm its
accuracy and usefulness.

Common Component for Leaking Data and Permissions Figure 9 answers
research questions 3 and 4. The lower set of bars show that activity compo-
nents collected from manifest files of the dataset are much more than service and
broadcast-receiver components. However, a high percentage (21%) of these broadcast
components are protected by permissions against 0.1% only for activity components.
This is clear from the middle set of bars of the figure. The abbreviation MC in the y
axis stands for manifest components. For some leaking paths, LekInt was able to
determine the type of component targeted by the Intent of the path. The upper set of
bars of Fig. 9 shows that 72% of these paths targeted activities. Therefore it is com-

123

Formal model for inter-component... 1863

Fig. 9 Comparing statistics collected byLekInt for different types ofAndroid components and for leaking
paths protection by permissions

mon to use activities rather than other types of components to leak data. Only 0.8% of
the paths leaking data were protected by permissions. This supports the logic of our
suggested algorithm for Intent resolution DLAIR. This is so because DLAIR tends to
trust Intents protected by permissions.

Use Cases: For some apps of our data set Flowdroid did not report any leaks but
our technique LekInt did. Some of these apps have the following details:

1. The first app has an execution path in the activity named “TiActivity”. The path
leaks data in a sequence of instructions that start another activity. The source API,
in this case, is getIntent and the sink API is putExtra.

2. The second app has a leaking execution path that uses an Intent to start the activity
“FuturePaymentConsentActivity”. The source API in this case isgetIntent and
the sink API is putExtra.

3. The third app has a leaking path in its activity named “BaseFragmentActivity”.
The path uses an Intent to start a service.

Also for our designed app (available online with results) LekInt discovered all the
inserted patterns of leaks but Flowdroid did not.

Author Contributions All authors participated equally.

Funding Open access funding provided by The Science, Technology &; Innovation Funding Authority
(STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Data availability The details of the dataset and results of our experiments are available online on: https://
github.com/maelzawawy/LekInt.

Declarations

Animal research (Ethics) Not applicable.

Consent to participate (Ethics) Not applicable.

123

https://github.com/maelzawawy/LekInt
https://github.com/maelzawawy/LekInt

1864 M. A. El-Zawawy et al.

Consent to publish (Ethics) Consent to submit and publish has been received explicitly from all co-authors.

Plant reproducibility Not applicable.

Clinical Trials Registration Not applicable.

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aafer Y, Du W, Yin H (2013) Droidapiminer: Mining api-level features for robust malware detection
in android. In: International conference on security and privacy in communication systems. Springer,
pp 86–103

2. AllixK,BissyandéTF,Klein J, LeTraonY (2016)Androzoo: collectingmillions of android apps for the
research community. In: 2016 IEEE/ACM 13thWorking Conference onMining Software Repositories
(MSR). IEEE, pp 468–471

3. Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Le Traon Y, Octeau D, McDaniel P (2014)
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps. Acm Sigplan Notices 49(6):259–269

4. Barros P, Just R, Millstein S, Vines P, Dietl W, Ernst MD, et al (2015) Static analysis of implicit
control flow: resolving java reflection and android intents (t). In: 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, pp 669–679

5. Betarte G, Campo J, Gorostiaga F, Luna C (2017) A certified reference validation mechanism for the
permission model of android. arXiv preprint arXiv:1709.03652

6. Betarte G, Campo J, Luna C, RomanoA (2016) Formal analysis of android’s permission-based security
model. Sci Ann Comput Sci 26(1):27

7. Bornstein D (2008) Dalvik vm internals. In: Google I/O developer conference, vol 23, pp 17–30
8. Burd B, Mueller JP (2020) Android application development all-in-one for dummies. Wiley, Hoboken
9. Chin E, Felt AP, Greenwood K, Wagner D (2011) Analyzing inter-application communication in

android. In: Proceedings of the 9th international conference on Mobile systems, applications, and
services. ACM, pp 239–252

10. Chlipala A (2013) Certified programming with dependent types: a pragmatic introduction to the Coq
proof assistant. MIT Press, Cambridge

11. Developers A (2011) What is android? Dosegljivo: http://www.academia.edu/download/30551848/
andoid-tech.pdf

12. Developers A. Developer guides: Application fundamentals. https://developer.android.com/guide/
components/fundamentals.html. Accessed in 2021

13. Developers A. Developer guides: Intents and intent filters. https://developer.android.com/guide/
components/intents-filters.html. Accessed in 2021

14. Enck W, Octeau D, McDaniel PD, Chaudhuri S (2011) A study of android application security. In:
USENIX security symposium, vol 2

15. Faruki P, Bharmal A, Laxmi V, Ganmoor V, Gaur MS, Conti M, Rajarajan M (2015) Android security:
a survey of issues, malware penetration, and defenses. IEEE Commun Surv Tutor 17(2):998–1022

16. Feizollah A, Anuar NB, Salleh R, Suarez-Tangil G, Furnell S (2017) Androdialysis: analysis of android
intent effectiveness in malware detection. Comput Secur 65:121–134

17. Hall SP, Anderson E (2009) Operating systems for mobile computing. J Comput Sci Coll 25(2):64–71

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1709.03652
http://www.academia.edu/download/30551848/andoid-tech.pdf
http://www.academia.edu/download/30551848/andoid-tech.pdf
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/guide/components/intents-filters.html

Formal model for inter-component... 1865

18. Li Y, Yao F, Lan T, Venkataramani G (2016) Sarre: semantics-aware rule recommendation and enforce-
ment for event paths on android. IEEE Trans Inf Forensics Secur 11(12):2748–2762

19. Livshits B, Sridharan M, Smaragdakis Y, Lhoták O, Amaral JN, Chang BYE, Guyer SZ, Khedker UP,
Møller A, Vardoulakis D (2015) In defense of soundiness: A manifesto. Commun ACM 58(2):44–46

20. Meier R (2012) Professional Android 4 application development. Wiley, Hoboken
21. Nimodia C, Deshmukh H (2012) Android operating system. Softw Eng 3(1):10
22. OcteauD, Jha S,McDaniel P (2012) Retargeting android applications to java bytecode. In: Proceedings

of the ACM SIGSOFT 20th international symposium on the foundations of software engineering, pp
1–11

23. Payet E, Spoto F (2014) An operational semantics for android activities. In: Proceedings of the ACM
SIGPLAN 2014 Workshop on Partial Evaluation and Program Manipulation, pp 121–132

24. Reaves B, Bowers J, Gorski SA III, Anise O, Bobhate R, Cho R, Das H, Hussain S, Karachiwala H,
Scaife N et al (2016) * droid: Assessment and evaluation of android application analysis tools. ACM
Comput Surv (CSUR) 49(3):1–30

25. Schmerl B, Gennari J, Cámara J, Garlan D (2016) Raindroid-a system for run-time mitigation of
android intent vulnerabilities

26. Tang J, Cui X, Zhao Z, Guo S, Xu X, Hu C, Ban T, Mao B (2017) Nivanalyzer: A tool for automati-
cally detecting and verifying next-intent vulnerabilities in android apps. In: 2017 IEEE International
Conference on Software Testing, Verification and Validation (ICST). IEEE, pp 492–499

27. Vallée-Rai R, Co P, Gagnon E, Hendren L, Lam P, Sundaresan V (2010) Soot: a java bytecode opti-
mization framework. In: CASCON First Decade High Impact Papers, pp 214–224

28. Wognsen ER, Karlsen HS, Olesen MC, Hansen RR (2014) Formalisation and analysis of dalvik byte-
code. Sci Comput Program 92:25–55

29. Xu K, Li Y, Deng RH (2016) Iccdetector: Icc-based malware detection on android. IEEE Trans Inf
Forensics Secur 11(6):1252–1264

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Formal model for inter-component communication and its security in android
	Abstract
	1 Introduction
	2 Related work
	3 Background
	4 Threat model
	5 Semantic states
	6 Semantic rules
	7 Semantics utilization
	8 Data-leakage aware Intent resolution (DLAIR)
	8.1 Design of DLAIR
	8.2 Design of mathcalLekmathcalInt
	8.3 Implementation of mathcalLekmathcalInt
	8.4 Performance evaluation

	References

