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Abstract
We study liveness and model checking problems for broadcast networks, a system
model of identical clients communicating via message passing. The first problem that
we consider is Liveness Verification. It asks whether there is a computation such that
one clients visits a final state infinitely often. The complexity of the problem has been
open. It was shown to be P-hard but in EXPSPACE. We close the gap by a polynomial-
time algorithm. The latter relies on a characterization of live computations in terms
of paths in a suitable graph, combined with a fixed-point iteration to efficiently check
the existence of such paths. The second problem is Fair Liveness Verification. It asks
for a computation where all participating clients visit a final state infinitely often. We
adjust the algorithm to also solve fair liveness in polynomial time. Both problems can
be instrumented to answer model checking questions for broadcast networks against
linear time temporal logic specifications. The first problem in this context is Fair
Model Checking. It demands that for all computations of a broadcast network, all
participating clients satisfy the specification. We solve the problem via the Vardi–
Wolper construction and a reduction to Liveness Verification. The second problem is
Sparse Model Checking. It asks whether each computation has a participating client
that satisfies the specification. We reduce the problem to Fair Liveness Verification.
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1 Introduction

Parameterized systems consist of an arbitrary number of identical clients that commu-
nicate via somemechanism like sharedmemory ormessage passing [4]. Parameterized
systems appear in various applications. In distributed algorithms, a group of clients has
to form a consensus [35]. In cache-coherence protocols, coherence has to be guaran-
teed for data shared among threads [15].Developing parameterized systems is difficult.
The desired functionality has to be achieved not only for a single system instance but
for an arbitrary number of clients that is not known a priori. The proposed solutions
are generally tricky and sometimes buggy [3], which has lead to substantial interest
in parameterized verification [8], verification algorithms for parameterized systems.

Broadcast networks are a successful model in parameterized verification [5,7,9,
10,16,17,22,25,26,29,43]. A broadcast network consists of an arbitrary number of
identical finite-state automata communicating via passing messages. We call these
clients since they reflect the interaction of a single client in the parameterized system
with its environment. When a client sends a message (by taking a send transition), at
the same time some clients receive the message (by taking a corresponding receive
transition). A client ready to receive a message may ignore it, and it may be the case
that no one receives it.

What makes broadcast networks interesting is the surprisingly low complexity of
their verification problems. Earlier works have concentrated on safety verification.
In the coverability problem, the question is whether at least one participating client
can reach an unsafe state. The problem has been shown to be solvable in polynomial
time [16]. In the synchronization problem, all clients need to visit a final state at the
same time. Although seemingly harder than coverability, it turned out to be solvable
in polynomial time as well [28]. Both problems remain in P if the communication
topology is slightly restricted [5], a strengthening that usually leads to undecidability
results [5,17].

The focus of our work is on liveness verification and model checking. Liveness
properties formulate good events that should happen during a computation. To give an
example, one would state that every request has to be followed by a response. In the
setting of broadcast networks, liveness verification was studied in [17]. The problem
generalizes coverability in that at least one client needs to visit a final state infinitely
many times. The problem was shown to be solvable in EXPSPACE by a reduction to
repeated coverability in Petri Nets [23,27]. The only known lower bound, however, is
P-hardness [16].

Ourmain contribution is an algorithm that solves the liveness verification problem in
polynomial time. It closes the gap.We also address a fair variant of liveness verification
where all clients participating infinitely often have to see a final state infinitely often,
a requirement known as compassion [40]. We give an instrumentation that compiles
away compassion and reduces the problem to finding cycles. By our results, safety
and liveness verification have the same complexity, a phenomenon also observed in
other models [22,24,29,30].

At the heart of our liveness verification algorithm is a fixed-point iteration termi-
nating in polynomial time. It relies on an efficient representation of computations. We
first characterize live computations in terms of paths in a suitable graph. Since the
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graph is of exponential size, we cannot immediately apply a path finding algorithm.
Instead, we show that a path exists if and only if there is a path in some normal form.
Paths in normal form can then be found efficiently by the fixed-point iteration.

Our results yield efficient algorithms formodel checkingbroadcast networks against
linear time temporal logic (LTL) specifications [39]. Formally, we consider two vari-
ants of model checking, like for liveness verification. The first variant incorporates
a notion of fairness. Given a broadcast network and a specification, it demands that
in each computation, all clients satisfy the specification. The second variant asks for
each computation having at least one client satisfying it. We solve both problems by
employing the Vardi–Wolper construction [44] and by applying the aforementioned
fixed-point iteration for liveness verification. The results show that the given broadcast
network only contributes a polynomial factor to the running time needed for model
checking.

The paper at hand is an extension of the conference version [12]. It features a new
section, namelySect. 5, showinghowmodel checkingproblems for broadcast networks
can be solved by applying the fixed-point iteration for liveness verification. More
precise, the section introduces two model checking problems and presents algorithms
along with their time analyses. Moreover, we provide a full version of the paper [13],
including all missing proofs.

1.1 Related work

Broadcast networks [17,25,43] were introduced to verify ad hoc networks [34,42].
Ad hoc networks are reconfigurable in that the number of clients as well as their com-
munication topology may change during the computation. If the transition relation is
compatible with the topology, safety verification has been shown to be decidable [32].
Related studies do not assume compatibility but restrict the topology [31]. If the depen-
dencies among clients are bounded [37], safety verification is decidable independent
of the transition relation [45,46]. Verification tools turn these decision procedures into
practice [20,38]. D’Osualdo and Ong suggested a typing discipline for the commu-
nication topology [21]. In [5], decidability and undecidability results for reachability
problems were proven for a locally changing topology. The case when communication
is fixed along a given graphwas studied in [1]. Topologies with bounded diameter were
considered in [18]. Perfect communication where a sent message is received by all
clients was studied in [25]. Networks with communication failures were considered in
[19]. In [7], a variant of broadcast networks was considered where the clients follow a
local strategy. Probabilistic broadcast networks were studied in [6]. By a closer obser-
vation, one can find that membership inP for the liveness verification problem can also
be deduced from a result given in [6]. The corresponding result concerns the complex-
ity of a parity game on broadcast networks. The idea is to construct a suitable Vector
Addition Systems with states (VASS) and to employ an algorithm of Kosaraju [36] to
find a cycle with zero effect.While this requires some non-trivial machinery likeVASS
and linear programming [36], our algorithm is comparably simple and tailored to the
problem. Algorithmically, we rely on a fixed-point iteration which is easier to imple-
ment into model-checking tools and has an improved time-complexity. Moreover, our
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abstraction via paths and corresponding normalformsmight be of independent interest
in (liveness) verification for further parameterized systems. Our fixed-point iteration
is inspired by the algorithm for the synchronization problem given in [28]. One can
consider our algorithm as a generalization of this result.

Broadcast networks are related to the leader-contributor model. It has a fixed leader
and an arbitrary number of identical contributors communicating via shared mem-
ory. The model was introduced in [29]. When leader and contributors are finite-state
automata, the corresponding reachability problem is NP-complete [26]. In [10,14],
the authors took a parameterized complexity look at this problem and proved it
fixed-parameter tractable. Liveness verification for the model was studied in [22].
The authors show that repeated reachability is NP-complete. The parameterized com-
plexity of the problem was considered in [11]. Networks with shared memory and
randomized scheduler were studied in [9]. For a survey of parameterized verification
we refer to [2,8].

2 Broadcast networks

Weintroduce themodel of broadcast networks of interest in this paper.Our presentation
avoids an explicit characterization of the communication topology in terms of graphs.
A broadcast network is a concurrent system consisting of an arbitrary but finite number
of identical clients that communicate by passing messages to each other. Formally,
it is a pair N = (D, P). The domain D is a finite set of messages that can be used
for communication. A message a ∈ D can either be sent, !a, or received, ?a. The
set Ops(D) = {!a, ?a | a ∈ D} captures the communication operations a client can
perform. For modeling the identical clients, we abstract away the internal behavior and
focus on the communication with others via Ops(D). With this, the clients are given
in the form of a finite state automaton P = (Q, I , δ), where Q is a finite set of states,
I ⊆ Q is a set of initial states, and δ ⊆ Q × Ops(D) × Q is the transition relation.
We extend δ to words in Ops(D)∗ and write q

w−→ q ′ instead of (q, w, q ′) ∈ δ.
During a communication phase in N , one client sends a message that is received

by a number of other clients. This induces a change of the current state in each client
participating in the communication.We use configurations to display the current states
of the clients. A configuration is a tuple c = (q1, . . . , qk) ∈ Qk , k ∈ N. We use Set(c)
to denote the set of client states occurring in c. To access the components of c, we
use c[i] = qi . As the number of clients in the system is arbitrary but fixed, we define
the set of all configurations to be CF = ⋃

k∈N Qk . The set of initial configurations
is given by CF0 = ⋃

k∈N I k . The communication is modeled by a transition relation
among configurations. Let c′ = (q ′

1, . . . , q
′
k) be another configuration with k clients

and a ∈ D a message. We have a transition c
a−→N c′ if the following conditions hold:

(1) there is a sender, an i ∈ [1..k] such that qi !a−→ q ′
i , (2) there is a number of receivers,

a set R ⊆ [1..k] \ {i} such that q j
?a−→ q ′

j for each j ∈ R, and (3) all other clients

stay idle, for all j /∈ R ∪ {i} we have q j = q ′
j . We use idx(c

a−→N c′) = R ∪ {i} to
denote the indices of clients that contributed to the transition. Note that it may well
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be the case that R = ∅. This means that all clients, except from the sender, ignore the

sent message. For i ∈ idx(c
a−→N c′), we let pri (c

a−→N c′) = c[i] !a/?a−−−→ c′[i] be the
contribution of client i . If i /∈ idx(c

a−→N c′), we set pri (c
a−→N c′) = ε.

We extend the transition relation to words w ∈ D∗ and write c
w−→N c′. Such

a sequence of consecutive transitions is called a computation of N . Note that all
configurations appearing in a computation have the same number of clients. We write
c →∗

N c′ if there is a word w ∈ D∗ with c w−→N c′. If |w| ≥ 1, we also use c →+
N c′.

Where appropriate, we skip N in the index. The definition of idx can be extended to
computations by combining all clients that contribute to one of the transitions.We also
extend the definition of pri to computations by appending the individual contributions
to transitions.

We are interested in infinite computations, sequences π = c0 → c1 → · · · of
infinitely many consecutive transitions. Such a computation is called initialized, if
c0 ∈ CF0. We use Inf(π) = {i ∈ N | ∃∞ j : i ∈ idx(c j → c j+1)} to denote the set of
clients that participate in the computation infinitely often. Let F ⊆ Q be a set of final
states. Then we let Fin(π) = {i ∈ N | ∃∞ j : c j [i] ∈ F} represent the set of clients
that visit final states infinitely often.

3 Liveness

We consider the liveness verification problem for broadcast networks. Given a broad-
cast network N = (D, P) with P = (Q, I , δ) and a set of final states F ⊆ Q, the
problem asks whether there is an infinite initialized computation π in which at least
one client visits a state from F infinitely often, Fin(π) �= ∅.

Liveness Verification
Input: A broadcast network N = (D, P) and final states F ⊆ Q.
Question: Is there an initialized computation π with Fin(π) �= ∅?
Liveness Verificationwas introduced asRepeated Coverability in [17]. The problem

is known to be P-hard, due to [16]. Our main contribution is a matching polynomial-
time algorithm which allows for deducing completeness.

Theorem 1 Liveness Verification is P-complete.

Key to our algorithm is the following lemma which relates the existence of an
infinite computation to the existence of a finite one.

Lemma 1 There is a computation c0 → c1 → · · · visiting states in F infinitely often
if and only if there is a computation c0 →∗ c →+ c with Set(c) ∩ F �= ∅.
If there is a computation of the form c0 →∗ c →+ c with Set(c) ∩ F �= ∅, then
c →+ c can be iterated infinitely often to obtain an infinite computation visiting F
infinitely often. In turn, in any infinite sequence from Qk one can find a repeating
configuration (pigeon hole principle). This in particular holds for the infinite sequence
of configurations containing final states.
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Our polynomial-time algorithm for Liveness Verification looks for an appropriate
reachable configuration c that can be iterated. The difficulty is that we have a parame-
terized system, and therefore the number of configurations is not finite. Our approach
is to devise a finite graph in which we search for a cycle that mimics the cycle on c.
While the graph yields a decision procedure, it will be of exponential size and a naive
search for a cycle requires exponential time. We show in a second step how to find a
cycle in polynomial time.

The graph underlying our algorithm is inspired by the powerset construction for the
determinization of finite state automata [41]. The vertices keep track of sets of states
S that a client may be in. Different from finite-state automata, however, there is not
only one client in a state s ∈ S but arbitrarily (but finitely) many. As a consequence,
a transition from s to s′ may have two effects. Some of the clients in s change their
state to s′ while others stay in s. In that case, the set of states is updated to S′ =
S ∪ {s′}. Alternatively, all clients may change their state to s′, in which case we get
S′ = (S \ {s}) ∪ {s′}.

Formally, the graph of interest isG = (V ,→G). Vertices are tuples of sets of states,
V = ⋃

k≤|Q| P(Q)k . The parameter k will become clear in a moment. To define the
edges, we need some more notation. For S ⊆ Q and a ∈ D, let

post?a(S) = {r ′ ∈ Q | ∃r ∈ S : r ?a−→ r ′}

denote the set of successors of S under transitions receiving a. The set of states in S
where receives of a are enabled is denoted by

enabled?a(S) = {r ∈ S | post?a({r}) �= ∅}.

There is a directed edge V1 →G V2 from vertex V1 = (S1, . . . , Sk) to vertex
V2 = (S′

1, . . . , S
′
k) if the following three conditions are satisfied: (1) there is an index

j ∈ [1..k], states s ∈ S j and s′ ∈ S′
j , and an element a from the domain D such

that s
!a−→ s′ is a send transition. (2) For each i ∈ [1..k] there are sets of states

Geni ⊆ post?a(Si ) and Killi ⊆ enabled?a(Si ) such that

S′
i =

{
(Si\Killi ) ∪ Geni , for i �= j,

(Uj\Kill j ) ∪ Gen j ∪ {s′}, for i = j

whereUj is either S j or S j \ {s}. (3) For each index i ∈ [1..k] and state q ∈ Killi , the
intersection post?a(q) ∩ Geni is non-empty.

Intuitively, an edge in the graphmimics a transition in the broadcast networkwithout
making explicit the configurations. Condition (1) requires a sender, a component j
capable of sending a message a. Clients receiving this message are represented by
(2). The set Geni consists of those states that are reached by clients performing a
corresponding receive transition. These states are added to Si . As mentioned above,
states can get killed. If, during a receive transition, all clients move to the target state,
the original state will not be present anymore. We capture those states in the set Killi
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and remove them from Si . Condition (3) is needed to guarantee that each killed state
is replaced by a target state. Note that for component j we add s′ due to the send
transition. Moreover, we need to distinguish whether state s gets killed or not.

The following lemma relates a cycle in the constructed graph with a cyclic compu-
tation of the form c →+ c. It is crucial for our result.

Lemma 2 There is a cycle ({s1}, . . . , {sm}) →+
G ({s1}, . . . , {sm}) in G if and only if

there is a configuration c with Set(c) = {s1, . . . sm} and c →+ c.

The lemma explains the restriction of the nodes in the graph to k-tuples of sets of
states, with k ≤ |Q|. We explore the transitions for every possible state in c, and there
are at most |Q| different states that have to be considered. We have to keep the sets of
states separately to make sure that, for every starting state, the corresponding clients
perform a cyclic computation.

Proof We fix some notations that we use throughout the proof. Let c ∈ Qn be any
configuration and s ∈ Set(c). By Posc(s) = {i ∈ [1..n] | c[i] = s} we denote the
positions of c storing state s. Given a second configuration d ∈ Qn , we use the set
Targetc(s, d) = {d[i] | i ∈ Posc(s)} to represent those states that occur in d at the
positions Posc(s). Intuitively, if there is a sequence of transitions from c to d, these
are the target states of those positions of c storing s.

Consider a computation π = c →+ c with Set(c) = {s1, . . . , sm}. We show that
there is a cycle ({s1}, . . . , {sm}) →+

G ({s1}, . . . , {sm}) in G. To this end, assume π is
of the form π = c → c1 → · · · → c� → c. Since c → c1 is a transition in the
broadcast network, there is an edge

({s1}, . . . , {sm}) →G (Targetc(s1, c1), . . . ,Targetc(sm, c1))

in G where each state si gets replaced by the set of target states in c1. Applying this
argument inductively, we get a path in the graph:

({s1}, . . . , {sm}) →G (Targetc(s1, c1), . . . ,Targetc(sm, c1))

→G (Targetc(s1, c2), . . . ,Targetc(sm, c2))

→G . . .

→G (Targetc(s1, c), . . . ,Targetc(sm, c)).

Since Targetc(si , c) = {si },we found the desired cycle.
For the other direction, let a cycle σ = ({s1}, . . . , {sm}) →+

G ({s1}, . . . , {sm}) be
given.We construct from σ a computation π = c →+ c in the broadcast network such
that Set(c) = {s1, . . . , sm}. The difficulty in constructing π is to ensure that at any
point in time there are enough clients in appropriate states. For instance, if a transition

s
!a−→ s′ occurs, we need to decide on how many clients to move to s′. Having too few

clients in s′ may stall the computation at a later point: there may be a number of sends
required that can only be obtained by transitions from s′. If there are too few clients in
s′, we cannot guarantee the sends. The solution is to start with enough clients in any
state. With invariants we guarantee that at any point in time, the number of clients in
the needed states suffices.
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Let cycle σ be V0 →G V1 →G · · · →G V� with V0 = V� = ({s1}, . . . , {sm}).
Further, let Vj = (S1j , . . . , S

m
j ). We will construct the computation π over config-

urations in Qn where n = m · |Q|�. The idea is to have |Q|� clients for each of
the m components of the vertices Vi occurring in σ . To access the clients belong-
ing to a particular component, we split up configurations in Qn into blocks, intervals
I (i) = [(i − 1) · |Q|� + 1 .. i · |Q|�] for each i ∈ [1..m]. Let d ∈ Qn be arbitrary.
For i ∈ [1..m], let Bd(i) = {d[t] | t ∈ I (i)} be the set of states occurring in the i th
block of d. Moreover, we blockwise collect clients that are currently in a particular
state s ∈ Q. Let the set Posd(i, s) = {t ∈ I (i) | d[t] = s} be those positions of d in
the i th block that store state s.

We fix the configuration c ∈ Qn . For each component i ∈ [1..m], in the i th block
it contains |Q|� copies of the state si . Formally, Bc(i) = {si }. Our goal is to construct
the computation π = c0 →+ c1 →+ · · · →+ c� with c0 = c� = c such that the
following two invariants are satisfied. (1) For each j ∈ [0..�] and i ∈ [1..m] we have
Bc j (i) ⊆ Sij . (2) For any state s in a set S

i
j we have |Posc j (i, s)| ≥ |Q|�− j . Intuitively,

(1) means that during the computation π we visit at most those states that occur in the
cycle σ . Invariant (2) guarantees that at each configuration c j there are enough clients
available in these states.

We construct π inductively. The base case is given by configuration c0 = c which
satisfies Invariants (1) and (2) by definition. For the induction step, assume c j is
already constructed such that (1) and (2) hold for the configuration. Our first goal is
to construct a configuration d such that c j →+ d and d satisfies Invariant (2). In a
second step we construct a computation d →∗ c j+1.

In the cycle σ there is an edge Vj →G Vj+1. From the definition of →G we
get a component t ∈ [1..m], states s ∈ Stj and s′ ∈ Stj+1, and an a ∈ D such that

there is a send transition s
!a−→ s′. Moreover, there are sets Gent ⊆ post?a(S

t
j ) and

Killt ⊆ enabled?a(Stj ) such that the following holds:

Stj+1 = (Ut\Killt ) ∪ Gent ∪ {s′}.

Here, Ut is either Stj or S
t
j \ {s}. We focus on t and take care of other components

later. We apply a case distinction for the states in Stj+1.

Let q be a state in Stj+1 \ {s′}. If q ∈ Gent , there exists a p ∈ Stj such that p
?a−→ q.

We apply this transition to |Q|�−( j+1) many clients in the t th block of configuration
c j . If q ∈ Ut \Killt and q not inGent , then certainly q ∈ Ut ⊆ Stj . In this case, we let

|Q|�−( j+1) many clients of block t stay idle in state q. For state s′, we apply a sequence
of sends. More precisely, we apply the transition s

!a−→ s′ to |Q|�−( j+1) many clients
in block t of c j . The first of these sends synchronizes with the previously described
receive transitions. The other sends donot have any receivers. For components different
from t , we apply the same procedure. Since there are only receive transitions, we also
let them synchronize with the first send of a. This leads to a computation τ

c j
a−→ d1

a−→ d2
a−→ . . .

a−→ d |Q|�−( j+1) = d.
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We argue that τ is valid: there are enough clients in c j such that τ can be per-
formed. Focus on component t , the reasoning for other components is similar. Let
p ∈ Set(c j ) = Stj . Note that the equality is due to Invariants (1) and (2). We count the
clients of c j in state p (in block t) needed to perform τ . We need

|Q|�−( j+1) · |post?a(p) ∪ {p, s′}| ≤ |Q|�−( j+1) · |Q| = |Q|�− j

of these clients. The set post?a(p) ∪ {p, s′} appears as a consequence of the case
distinction above: there may be transitions mapping p to a state in post?a(p), it may
happen that clients stay idle in p, and in the case p = s, we need to add s′ for
the send transition. Since |Posc j (t, p)| ≥ |Q|�− j by Invariant (2), we get that τ

is a valid computation. Moreover, note that configuration d satisfies Invariant (2)
for j + 1: for each state q ∈ Stj+1, the computation τ was constructed such that

|Posd(t, q)| ≥ |Q|�−( j+1).
To satisfy Invariant (1), we need to erase states that are present in d but not in Stj+1.

To this end, we reconsider the set Killt ⊆ enabled?a(Stj ). For each state p ∈ Killt , we
know by the definition of →G that post?a(p) ∩Gent �= ∅. Hence, there is a q ∈ Stj+1

such that p
?a−→ q. We apply this transition to all clients in d currently in state p that

were not active in the computation τ . In caseUt = Stj \ {s}, we apply the send s !a−→ s′
to all clients that are still in s and were not active in τ . Altogether, this leads to a
computation η = d →∗ c j+1.

There is a subtlety in the definition of η. There may be no send transition for the
receivers to synchronize with since s may not need to be erased. In this case, we
synchronize the receive transitions of η with the last send of τ .

Computation η substitutes the states in Killt and state s, depending onUt , by states
in Stj+1. But this means that in the t th block of c j+1, there are only states of Stj+1 left.
Hence, Bc j+1(t) ⊆ Stj+1, and Invariant (1) holds.

After the construction of π = c →+ c�, it is left to argue that c� = c. But this is
due to the fact that (1) holds for c� and St� = ({s1}, . . . , {sm}). ��

The graph G is of exponential size. To obtain a polynomial-time procedure, we
cannot just search it for a cycle as required by Lemma 2. Instead, we now show that if
such a cycle exists, then there is a cycle in a certain normal form. Hence, it suffices to
look for a normal-form cycle. As we will show, this can be done in polynomial time.
We define the normal form more generally for paths.

A path is in normal form, if it takes the shape V1 →∗
G Vm →∗

G Vn such that
the following conditions hold. In the prefix V1 →∗

G Vm the sets of states increase
monotonically, Vi � Vi+1 for all i ∈ [1..m − 1]. Here, � denotes the componentwise
inclusion. In the suffix Vm →∗

G Vn , the sets of states decrease monotonically, Vi �
Vi+1 for all i ∈ [m..n − 1]. The following lemma states that if there is a path in the
graph, then there is also a path in normal form. The intuition is that the variants of
the transitions that decrease the sets of states can be postponed towards the end of the
computation.
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Lemma 3 There is a path from V1 to V2 in G if and only if there is a path in normal
form from V1 to V2.

Proof If V1 →∗
G V2 is a path in normal form, there is nothing to prove. For the other

direction, let σ = V1 →∗
G V2 be an arbitrary path. To get a path in normal form,

we first simulate the edges of σ in such a way that no states are deleted. In a second
step, we erase the states that should have been deleted. We have to respect a particular
deletion order to obtain a valid path.

Let σ = U1 →G U2 →G · · · →G U� withU1 = V1 andU� = V2. We inductively
construct an increasing path σinc = U ′

1 →G · · · →G U ′
� with U

′
j � Ui for all i ≤ j .

For the base case, we set U ′
1 = U1. Now assume σinc has already been constructed

up to vertex U ′
j . There is an edge e = Uj →G U j+1 in σ . Since U ′

j � Uj , we can
simulate e on U ′

j : all states needed for execution are present in U ′
j . Moreover, we

mimic e such that no state gets deleted. This is achieved by setting the corresponding
Kill-sets to be empty. Hence, we get U ′

j → U ′
j+1 with U

′
j+1 � U ′

j (no deletion) and
U ′

j+1 � Uj+1 (simulation of e).
The states in V ′

2 = U ′
� that are not in V2 are those states that were deleted along

σ . We construct a decreasing path σdec = V ′
2 →∗

G V2, deleting all these states. To
this end, let V ′

2 = (T1, . . . , Tm) and V2 = (S1, . . . , Sm). An edge in σ deletes sets
of states in each component i ∈ [1..m]. Hence, to mimic the deletion, we need to
consider subsets of Del = ⋃

i∈[1..m](Ti \ Si ) × {i}. Note that the index i in a tuple
(s, i) displays the component the state s is in.

Consider the equivalence relation ∼ over Del defined by (x, i) ∼ (y, t) if and
only if the last occurrence of x in component i and y in component t in the path
σ coincide. Intuitively, two elements are equivalent if they get deleted at the same
time and do not appear again in σ . We introduce an order on the equivalence classes:
[(x, i)]∼ < [(y, t)]∼ if and only if the last occurrence of (x, i) was before the last
occurrence of (y, t). Since the order is total, we get a partition ofDel into equivalence
classes P1, . . . , Pn such that Pj < Pj+1.

We construct σdec = K0 →G · · · →G Kn with K0 = V ′
2 and Kn = V2 as follows.

During each edge K j−1 →G K j , we delete precisely the elements in Pj and do not
add further states. Deleting Pj is due to an edge e = Uk →G Uk+1 of σ . We mimic e
in such a way that no state gets added and set the corresponding Gen sets to the empty
set. Since we respect the order < with the deletions, the simulation of e is possible.
Suppose, we need a state s in component t to simulate e but the state is not available
in component t of K j−1. Then it was deleted before, (s, t) ∈ P1 ∪ · · ·∪ Pj−1. But this
contradicts that s is present in Uk . Hence, all the needed states are available. Since
after the last edge of σdec we have deleted all elements of Del, we get Kn = V2. ��

Using the normal-form result in Lemma 3, we now give a polynomial-time algo-
rithm to checkwhether ({s1}, . . . , {sm}) →+

G ({s1}, . . . , {sm}). The idea is tomimic the
monotonically increasing prefix of the path by a suitable post operator, the monotoni-
cally decreasing suffix by a suitable pre operator, and intersect the two. The difficulty
in computing an appropriate post operator is to ensure that the receive operations are
enabled by sends leading to a state in the intersection, and similar for pre. The solu-
tion is to use a greatest fixed-point computation. In a first Kleene iteration step, we
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determine the ordinary post+ of ({s1}, . . . , {sm}) and intersect it with the pre∗. In the
next step, we constrain the post+ and the pre∗ computations to visiting only states in
the previous intersection. The results are intersected again, which may remove further
states. Hence, the computation is repeated relative to the new intersection. The thing
to note is that we do not work with standard post and pre operators but with operators
that are constrained by (tuples of) sets of states.

For the definition of the operators, consider C = (C1, . . . ,Cm) ∈ P(Q)m

for an m ≤ |Q|. Given a sequence of sets of states X1, . . . , Xm , we define
postC (X1, . . . , Xm) = (X ′

1, . . . , X
′
m) with

X ′
i = {s′ ∈ Q | ∃s ∈ Xi : s !a−→P↓Ci

s′}
∪ {s′ ∈ Q | ∃s1, s2 ∈ X� : ∃s ∈ Xi : s1 !a−→P↓C�

s2 ∧ s
?a−→P↓Ci

s′} .

Here, P ↓Ci denotes the automaton obtained from P by restricting it to the states Ci .
Similarly, we define preC (X1, . . . , Xm) = (X ′

1, . . . , X
′
m) with

X ′
i = {s ∈ Q | ∃s′ ∈ Xi : s !a−→P↓Ci

s′}
∪ {s ∈ Q | ∃s1, s2 ∈ X� : ∃s′ ∈ Xi : s1 !a−→P↓C�

s2 ∧ s
?a−→P↓Ci

s′} .

The next lemma shows that the (reflexive) transitive closures of these operators can
be computed in polynomial time.

Lemma 4 The closures post+C (X1, . . . , Xm) and pre∗
C (X1, . . . , Xm) can be computed

in polynomial time.

Proof Both closures can be computed by a saturation. For post+C (X1, . . . , Xm), we
keep sets R1, . . . , Rm , each being the post of a component. Initially, we set Ri =
Xi . The defining equation of X ′

i in post+C (X1, . . . , Xm) gives the saturation. One
substitutes Xi by Ri and X� by R� on the right side. The resulting set of states is
added to Ri . This process is applied to each component and repeated until the Ri do
not change anymore, the fixed point is reached.

The saturation terminates in polynomial time.After updating Ri in each component,
we either already terminated or added at least one new state to a set Ri . Since there
are m ≤ |Q| of these sets and each one is a subset of Q, we need to update the sets
Ri at most |Q|2 many times. For a single of these updates, the dominant time factor
comes from finding appropriate send and receive transitions. This can be achieved in
O(|δ|2) time.

Computing the closure pre∗
C (X1, . . . , Xm) is similar. One can apply the above

saturation and only needs to reverse the transitions in the client. ��

As argued above, the existence of a cycle reduces to finding a fixed point. The
following lemma shows that it can be computed efficiently.
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Lemma 5 There is a cycle ({s1}, . . . , {sm}) →+
G ({s1}, . . . , {sm}) if and only if there

is a non-trivial solution to the following equation:

C = post+C ({s1}, . . . , {sm}) ∩ pre∗
C ({s1}, . . . , {sm}) .

Such a solution can be found in polynomial time.

Proof We use a Kleene iteration to compute the greatest fixed point. It invokes
Lemma 4 as a subroutine. Every step of the Kleene iteration reduces the number
of states in C by at least one, and initially there are at most |Q| entries with |Q| states
each. Hence, we terminate after quadratically many iterations.

It is left to prove correctness. Let ({s1}, . . . , {sm}) →+
G ({s1}, . . . , {sm}) be a cycle

inG. By Lemma 3 we can assume it to be in normal form. Let ({s1}, . . . , {sm}) →+
G C

be the increasing part and C →∗
G ({s1}, . . . , {sm}) the decreasing part. Then, C is a

solution to the equation.
For the other direction, let a solution C be given. Since C is contained

in post+C ({s1}, . . . , {sm}) we can construct a monotonically increasing path
({s1}, . . . , {sm}) →+

G C . Similarly, sinceC ⊆ pre∗
C ({s1}, . . . , {sm}), we get a decreas-

ing path C →∗
G ({s1}, . . . , {sm}). Hence, we get the desired cycle. ��

It is yet open on which states s1 to sm to perform the search for a cycle. After all, we
need that the corresponding configuration is reachable from an initial configuration.
The idea is to use the set of all states reachable from an initial state. Note that there
is a live computation if and only if there is one involving all those states. Indeed, if a
state is not active during the cycle, the corresponding clients will stop moving after
an initial phase. Since the states reachable from an initial state can be computed in
polynomial time [16], the proof of Theorem 1 follows. We summarize the algorithm
for liveness verification in Algorithm 1.

Algorithm 1 Liveness Verification
Input: A broadcast network N = (D, P) and final states F ⊆ Q.
Output: True, if there is an initialized computation π with Fin(π) �= ∅. False otherwise.

1: Use the algorithm of [16] to compute the set of reachable states {s1, . . . , sm }.
2: if {s1, . . . , sm } ∩ F = ∅ then
3: return false. // This check is needed according to Lemma 1.
4: end if

5: Set S = ({s1}, . . . , {sm }), C = Qm , and C ′ = ∅. // C is the largest element in P(Q)m .
6: while C �= C ′ do // Computation of the greatest fixed point.
7: Set C ′ = C .
8: Compute C = post+C ′ (S) ∩ pre∗C ′ (S) with the algorithm from Lemma 4.
9: if C = ∅ then
10: return false. // Exclude trivial solution to the equation of Lemma 5.
11: end if
12: end while

13: return true. // Largest fixed point is non-trivial. Computation π exists due to Lemma 5.
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Liveness Verification does not take fairness into account. A client may contribute
to the live computation (and help the distinguished client reach a final state) without
ever making progress towards its own final state.

4 Fair liveness

We study the fair liveness verification problem that strengthens the requirement on the
computation. Given a broadcast networkN = (D, P) with clients P = (Q, I , δ) and
a set of final states F ⊆ Q, the problem asks whether there is an infinite initialized
computation π in which clients that send or receive infinitely often also visit their final
states infinitely often, Inf(π) ⊆ Fin(π). Computations satisfying the requirement are
called fair, a notion that dates back to [40] where it was introduced as compassion or
strong fairness.

Fair Liveness Verification
Input: A broadcast network N = (D, P) and final states F ⊆ Q.
Question: Is there an initialized computation π with Inf(π) ⊆ Fin(π)?

We solve the problem by applying the algorithm from Sect. 3 to an instrumentation
of the given network. Formally, an instance (N , F) of Fair Liveness Verification, is
transformed into a new network NF , containing copies of Q, where Q are the client
states in N . The construction ensures that cycles over Q in NF correspond to cycles
in N where each participating client sees a final state. Such cycles make up a fair
computation. Our main result is:

Theorem 2 Fair Liveness Verification is P-complete.

Hardness follows from [16]. To explain the instrumentation, we need the notion of
a good computation. A computation c1 → c2 → · · · → cn with n > 1 is called good
for F , denoted c1 ⇒F cn , if every client that makes a move during the computation
sees a final state. Formally, if i ∈ idx(c1 →+ cn) then there exists a k ∈ [1..n] such
that ck[i] ∈ F . The following strengthens Lemma 1.

Lemma 6 There is a fair computation from c0 if and only if c0 →∗ c ⇒F c.

Proof If there is a computation of the form c0 →∗ c ⇒F c, then the good cycle
c ⇒F c can be iterated infinitely often to obtain a fair computation.

For the other direction, let a fair computation π starting in c0 be given. Since the
configurations visited by π are over Qk for some k, there is a configuration c that
repeats infinitely often in π . Hence, we obtain a prefix c0 →∗ c.

Let Inf(π) = {i1, . . . , in} be the clients that participate infinitely often in computa-
tion π . By the definition of a fair computation, we have Inf(π) ⊆ Fin(π). This means
that each of the clients in {i1, . . . , in} visits a state from F infinitely often along π .
Hence, for each j ∈ [1..n]we can find a subcomputation π j = c →+ c of π , in which
client i j visits a state from F . Combining all π j yields desired good cycle c ⇒F c. ��

The broadcast network NF is designed to detect good cycles c ⇒F c. The idea is
to let the clients compute in phases. The original state space Q is the first phase. As
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soon as a client participates in the computation, it moves to a second phase given by a
copy Q̂ of Q. From this copy it enters a third phase Q̃ upon seeing a final state. From
Q̃ it may return to Q.

Let the given broadcast network be N = (D, P) with P = (Q, I , δ). We define
NF = (D ∪ {n}, PF ) with fresh symbol n /∈ D and extended client

PF = (Q̄, Ĩ , δ̄) where Q̄ = Q ∪ Q̂ ∪ Q̃.

Note that the initial phase is Q̃. For every transition (q, op, q ′) ∈ δ, we have
(q, op, q̂ ′), (q̂, op, q̂ ′), (q̃, op, q̃ ′) ∈ δ̄. For every final stateq ∈ F wehave (q̂, !n, q̃) ∈
δ̄. Finally, for every state q ∈ Q we have (q̃, !n, q) ∈ δ̄. Configuration c admits a good
cycle if and only if there is a cycle at c in the instrumented network. An initial prefix
can be mimicked by computations within Q̃.

Lemma 7 c0 →∗ c ⇒F c in N if and only if c̃0 →∗ c →+ c in NF .

Proof (Idea)The reasoning for prefixes is simple.By addingor removing !n-transitions
leading from Q̃ to Q, we can turn a prefix c0 →∗ c of N to c̃0 →∗ c of NF and vice
versa. Let a cycle c →+ c inNF be given. Note that in c, all clients are in states from
Q. As soon as a client participates in the cycle, it will immediately move from Q to
Q̂. To return to Q, via Q̃, it needs to see a state from F , resulting in a good cycle
c ⇒F c in N .

For the other direction, let c ⇒F c be a good cycle in N . If a client participates
in it, we simulate its computation on NF . Assume it starts in q ∈ Q. Upon its first
transition, it moves from Q to Q̂. It stays within the states of Q̂ until it sees a state
from F . Note this definitely happens since the assumed cycle is good. After visiting F ,
the client moves to Q̃ via sending n. It continues its computation in Q̃ until it reaches
q̃ . Then, it moves to q by taking an !n-transition. Altogether, this constitutes a cycle
c →+ c in NF . ��

For the proof of Theorem 2, it is left to state the algorithm for finding a computation
c̃0 →∗ c →+ c in NF . We compute the states reachable from an initial state in NF .
As we are interested in a configuration c over Q, we intersect this set with Q. Both
steps can be done in polynomial time. Let s1, . . . , sm be the states in the intersection.
To these we apply the fixed-point iteration from Lemma 5. By Lemma 2, the iteration
witnesses the existence of a cycle over a configuration c ofNF that involves only the
states s1 up to sm .

5 Model checking broadcast networks

We consider model checking for broadcast networks against linear time specifications.
Given a specification, described in linear time temporal logic (LTL) [39], we test
whether all (infinite) computations of a broadcast network satisfy the specification.
Like for liveness verification, we consider two variants of the problem. These differ
in when a computation of a broadcast network satisfies a specification. Fair Model
Checking requires that the individual computations of all clients participating infinitely
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often satisfy the specification. Sparse Model Checking asks for at least one client that
participates infinitely often and satisfies the specification. We show how to solve both
problems by reducing them to Liveness Verification and Fair Liveness Verification
via incorporating the Vardi–Wolper construction [44]. But before we consider the
problems,we recall syntax and semantics of LTL.LetA be a set of atomic propositions.
An LTL formula ϕ over A is defined as follows:

ϕ ::= p ∈ A | ¬ϕ | ϕ ∨ ϕ |Xϕ | ϕ Uϕ.

AnLTL formula consists of propositions and combinations of the samevia negation,
union, next operator X , and until operator U . Semantics is defined in terms of the
satisfaction relation |�. It describeswhen a formula is fulfilled.Wedefine it inductively
along the structure of LTL formulas. Let w ∈ P(A)ω be an infinite word consisting
of sets of propositions and let i ∈ N. We have

w, i |� p iff p ∈ w(i),

w, i |� ¬ϕ iff w, i �|� ϕ,

w, i |� ϕ1 ∨ ϕ2 iff w, i |� ϕ1 or w, i |� ϕ2,

w, i |� Xϕ iff w, i + 1 |� ϕ,

w, i |� ϕ1Uϕ2 iff ∃ j ≥ i : w, j |� ϕ2 and ∀k ∈ [i .. j − 1] : w, k |� ϕ1,

w |� ϕ iff w, 0 |� ϕ.

For model checking broadcast networks against LTL specifications, we need to
define when a network computation satisfies a formula. LetN = (D, P) be a network
with clients P = (Q, I , δ) and let ϕ be an LTL formula. Moreover, let λ : Q → P(A)

be a map associating to each state of P a set of atomic proposition. A computation
σ = q0 → q1 → · · · of P with q0 ∈ I satisfies formula ϕ if λ(σ) |� ϕ. Here,
λ(σ) = λ(q0).λ(q1) . . . ∈ P(A)ω is the infinite word obtained by applying λ to the
whole computation. We also write σ |� ϕ.

For network computations, we consider two notions of satisfaction for LTL formu-
las. Like for liveness, one of the notions incorporates a fairness assumption, the other
one focuses on a single client. An initialized infinite computation π of N satisfies ϕ

under fairness if each client i ∈ Inf(π) satisfies ϕ via its contribution, pri (π) |� ϕ.
We write π |�fair ϕ. Hence, satisfaction under fairness ensures that each client partic-
ipating infinitely often satisfies the specification. An initialized infinite computation
π ofN sparsely satisfies ϕ if there is a client i ∈ Inf(π) that satisfies ϕ, pri (π) |� ϕ.
We denote it by π |�sparse ϕ. In contrast to fairness, a single client satisfying the
specification suffices.

The two notions of satisfaction yield two decision problems: Fair Model Checking
and Sparse Model Checking. We state both in the subsequent sections and develop
algorithms based on the results from Sects. 3 and 4.

123



2218 P. Chini et al.

5.1 Fair model checking

We want to test whether all computations of a broadcast network satisfy a given LTL
formula under the fairness assumption. Formally, a broadcast network N is said to
satisfy an LTL formula ϕ under fairness, written N |�fair ϕ, if for each initialized
infinite computation π we have that π |�fair ϕ. With this notion at hand, we can
formalize the corresponding decision problem Fair Model Checking. Note that we do
not explicitly mention the map λ as part of the input. We assume it to be given with
the broadcast network.

Fair Model Checking
Input: A broadcast network N = (D, P) and an LTL formula ϕ.
Question: Does N |�fair ϕ hold?

Our goal is to prove the following theorem by presenting an algorithm for Fair
Model Checking. Note that the exponential factor in the time estimation only depends
on the size of the formula. The size |N | = max{|D|, |Q|} of the broadcast network
only contributes a polynomial factor.

Theorem 3 Fair Model Checking can be solved in time 2O(|ϕ|) · |N |O(1).

We need to develop an algorithm for checkingN |�fair ϕ. A direct iteration over all
computations π of N along with a test whether π |�fair ϕ is not tractable since there
are infinitely many candidates for π . We rather search for a computation that violates
ϕ. The non-existence of such a computation ensures that N satisfies the formula.
Phrased differently, we have N �|�fair ϕ if and only if there is a computation π of N
with π �|�fair ϕ.

The latter can be reformulated. Let π be a computation with π �|�fair ϕ. Then there
is a client i ∈ Inf(π) that violates ϕ, we have pri (π) |� ¬ϕ. But by definition this
means π |�sparse ¬ϕ. Hence, we obtain that π �|�fair ϕ if and only if π |�sparse ¬ϕ.
The following lemma summarizes the reasoning.

Lemma 8 We haveN �|�fair ϕ if and only if there is an initialized infinite computation
π of N such that π |�sparse ¬ϕ.

Due to Lemma 8 it suffices to find a computation of N that sparsely satisfies ¬ϕ.
We develop an algorithm for this task via two steps. (1) We employ the Vardi–Wolper
construction [44] to build a new broadcast network N¬ϕ such that computations of
N¬ϕ visiting final states infinitely often are computations of N that sparsely satisfy
¬ϕ. (2)Wedecide the existence of the formerwith the fixed-point iteration forLiveness
Verification, developed in Sect. 3.

Step (1) relies on the following well-known characterization of LTL formulas in
terms of automata. The result is crucial for our development since it allows for repre-
senting all words that satisfy a given formula as a language of a Büchi automaton. We
assume familiarity with the notion of Büchi automata [33].

Theorem 4 [44] For any LTL formulaψ overA, one can construct a Büchi automaton
Bψ of size at most 2O(|ψ |) such that for any word w ∈ P(A)ω

w |� ψ if and only if w ∈ L(Bψ).
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Apply Theorem 4 to the formula ¬ϕ of interest. We obtain an automaton B¬ϕ =
(QB, IB, δB , FB) over the alphabet P(A) with states QB , initial states IB , transitions
δB , and final states FB . Further, we assume B¬ϕ to be non-blocking: in each state we
have an outgoing transition on each letter. The language of B¬ϕ consists of exactly
those words in P(A)ω that satisfy ¬ϕ.

In order to obtain computations of N that satisfy ¬ϕ, we have to build a cross
product of P , the clients inN , with B¬ϕ . Intuitively, a computation in the cross product
is then a computation of a client which at the same time satisfies the formula ¬ϕ. The
construction needs to take into account that B¬ϕ is an automaton over a different
alphabet than Ops(D). Let P = (Q, I , δ) be the clients of N and λ : Q → P(A)

the given map. We define the new client P¬ϕ = (Q¬ϕ, I¬ϕ, δ¬ϕ) over Ops(D). The
states are given by Q¬ϕ = Q × QB , the initial states by I¬ϕ = I × IB , transitions
δ¬ϕ are defined by

(q, p)
op−→ (q ′, p′) ∈ δ¬ϕ if q

op−→ q ′ ∈ δ and p
λ(q)−−→ p′ ∈ δB .

We also define a set of final states by F¬ϕ = Q × FB . Then, a computation of P¬ϕ

that visits F infinitely often is a computation of P that satisfies ¬ϕ.
The broadcast network of interest is N¬ϕ = (D, P¬ϕ). It uses P¬ϕ as clients and

yields the desired result: a computation ofN¬ϕ in which a client visits F¬ϕ infinitely
often is a computation of N that sparsely satisfies ¬ϕ.

Lemma 9 There is a computation π of N such that π |�sparse ¬ϕ if and only if there
is a computation π ′ of N¬ϕ with Fin(π ′) �= ∅.

Note that the lemma reasons about initialized infinite computations and Fin(π ′) is
defined via the final states F¬ϕ . Putting Lemmas 8 and 9 together yields a reduction
to Liveness Verification. It is left to test whether there is a computation π ′ of N¬ϕ

in which a client visits F¬ϕ infinitely often. Step (2) decides this by applying the
fixed-point iteration of Sect. 3 to (N¬ϕ, F¬ϕ).

Regarding the complexity stated in Theorem 3, consider the following. By Theorem
4, B¬ϕ has at most 2O(|ϕ|) states and can be constructed in time 2O(|ϕ|). Hence, the
clients P¬ϕ have at most |Q| · 2O(|ϕ|) states. The size of the alphabet is O(|D|).
Constructing new clients P¬ϕ can thus be achieved in time polynomial in 2O(|ϕ|) ·
|N |. The size of N¬ϕ is at most 2O(|ϕ|) · |N |. Since the fixed-point iteration for
solvingLiveness verification runs in polynomial time,weobtain the desired complexity
estimation. It is left to prove Lemma 9.

Proof (Idea) First, let π be an initialized infinite computation of N such that
π |�sparse ¬ϕ. By definition there is a client i ∈ Inf(π) with pri (π) |� ¬ϕ. This
means that the word λ(pri (π)) ∈ P(A)ω satisfies ¬ϕ and thus lies in the lan-
guage L(B¬ϕ). Hence, there is an initialized computation ri of B¬ϕ on the word that
accepts it. Let bi ∈ Qω

B be the sequence of states appearing in ri . Since B¬ϕ is non-
blocking, there is also in initialized computation r j on the word λ(pr j (π)) ∈ P(A)ω,
for each client j �= i . Note that r j is not necessarily accepting. We extract the
sequence of states b j ∈ Qω

B from each r j . Denote by b the vector of all sequences
b = (b1, . . . , bk), where k is the number of clients.
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We combine π with b to obtain a computation π ′ ofN¬ϕ that satisfies Fin(π ′) �= ∅.
Let π(�) ∈ Qk denote �th configuration of π and let π(�, �′) refer to the subcomputa-
tion of π starting in π(�) and ending in π(�′). The idea is to define π ′ by induction and
to join each client of π with the corresponding sequence of states in b. Technically,
this requires maintaining two invariants during the induction: (1) π ′(0, �) is an initial-
ized computation of N¬ϕ . (2) When we project a configuration visited by π ′(0, �) to
Q, we obtain the corresponding configuration of π . We refer to [13] for the detailed
construction. Note that client i visits F¬ϕ infinitely often. Hence, π ′ is the desired
computation.

For the other direction, note that the projection of a computation π ′ of N¬ϕ onto
the states of N provides a proper computation of N . Since Fin(π ′) �= ∅, there is an
i ∈ Fin(π ′) such that λ(pri (π)) ∈ L(B¬ϕ), meaning that pri (π) |� ¬ϕ. Thus, client
i ∈ Inf(π) satisfies ¬ϕ and hence π |�sparse ¬ϕ. ��

5.2 Sparsemodel checking

The second model checking problem that we consider is Sparse Model Checking.
It demands that all computations of a broadcast network sparsely satisfy an LTL
specification. We design an algorithm similar to Fair Model Checking that invokes the
Vardi–Wolper construction to establish a reduction to Fair Liveness Verification. The
latter can then be solved with the algorithm from Sect. 4.

We state the decision problem. To this end, a broadcast networkN is said to sparsely
satisfy an LTL formula ϕ if for each initialized infinite computation π we have that
π |�sparse ϕ. In this case, we write N |�sparse ϕ.

Sparse Model Checking
Input: A broadcast network N = (D, P) and an LTL formula ϕ.
Question: Does N |�sparse ϕ hold?

The following theorem states the main result. Note that the size of the broadcast
network only contributes a polynomial factor.

Theorem 5 Sparse Model Checking can be solved in time 2O(|ϕ|) · |N |O(1).

Like for Fair Liveness Verification it is simpler to find a computation violating the
given specification than checking whether all computations satisfy it. Hence, we give
an algorithm decidingN �|�sparse ϕ. If a computation π ofN does not sparsely saitsfy
ϕ, all clients in Inf(π) will satisfy ¬ϕ. But this means that π |�fair ¬ϕ. We obtain the
following lemma.

Lemma 10 We have N �|�sparse ϕ if and only if there is an initialized infinite compu-
tation π of N such that π |�fair ¬ϕ.

As above, we construct a broadcast networkN¬ϕ with a set of final states F¬ϕ . We
invoke Theorem 4 on ¬ϕ and obtain an automaton B¬ϕ . Now we construct the clients
P¬ϕ as before, as a cross product of P and B¬ϕ . The resulting broadcast network is
N¬ϕ = (D, P¬ϕ). The final states are F¬ϕ = Q×FB . Computations ofN¬ϕ in which
each client thatmoves infinitely often also visits F¬ϕ infinitely often are precisely those
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computations ofN that satisfy ¬ϕ under fairness. The following lemma summarizes
the statement.

Lemma 11 There is a computation π of N such that π |�fair ¬ϕ if and only if there
is a computation π ′ of N¬ϕ with Inf(π ′) ⊆ Fin(π ′).

From Lemmas 10 and 11, we obtain a reduction to Fair Liveness Verification.
Hence, we can apply the algorithm from Sect. 4 to decide the existence of π ′. Since the
algorithm takes only polynomial time, the complexity estimation given in Theorem 5
follows similar to the estimation of Theorem 3.
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