
Computing (2021) 103:559–588
https://doi.org/10.1007/s00607-020-00874-x

SPEC IAL ISSUE ART ICLE

A conceptual framework for resilience: fundamental
definitions, strategies andmetrics

Jesper Andersson1 · Vincenzo Grassi2 · Raffaela Mirandola3 ·
Diego Perez-Palacin1

Received: 14 February 2020 / Accepted: 17 November 2020 / Published online: 15 December 2020
© The Author(s) 2020

Abstract
The resilience system property has becomemore andmore relevant, mainly because of
the increasing dependance on a rapidly growing number of software-intensive, com-
plex, socio-technical systems, which are facing uncertainty about changes they are
expected to experience during their life-cycle and ways to deal with them. Method-
ologies for the systematic design and validation of resilience for such systems are
thus highly necessary, and require contributions from several different fields. This
paper contributes to current resilience research by providing a conceptual framework
intended to serve as a common ground for the development of such methodologies. Its
main points are: the identification of the main categories of changes a system should
face; a clear definition of the different facets of resilience one could want to achieve,
expressed in terms of the system dynamics; a mapping of each of these facets to design
strategies that are better suited to achieve it; and the corresponding identification of
possible metrics that can be used to assess its achievement.

Keywords Resilience · Conceptual framework · Strategies and metrics

Mathematics subject classification 68U01 · 68N30 · 68U99

B Raffaela Mirandola
raffaela.mirandola@polimi.it

Jesper Andersson
jesper.andersson@lnu.se

Vincenzo Grassi
vincenzo.grassi@uniroma2.it

Diego Perez-Palacin
diego.perez@lnu.se

1 Linnaeus University, Växjö, Sweden

2 Universitá di Roma Tor Vergata, Rome, Italy

3 Politecnico di Milano, Milan, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-020-00874-x&domain=pdf

560 J. Andersson et al.

1 Introduction

In the last decade, resilience has become an increasingly relevant system prop-
erty, because of the exponential growth (in number and dependence on them) of
socio-technical systems that directly or indirectly may affect users’ well-being. The
unparalleled challenge for system engineers is to provide assurances for the behavior
of such systems, in the face of uncertainties caused by the close interactions with
their users and the environment, and changes they may need to adapt to, triggered by
anticipated and unanticipated events in the system’s environment, in the user needs
and behaviors, and the system itself.

The concept of resilience was coined and developed in psychology to describe
the human ability to cope with a crisis and to recover from it rapidly. Several other
disciplines adopted the term over the years, including system safety [9], medicine [11],
and human organization [3]. Widespread use in different disciplines has resulted in a
situationwhere the term has several, sometimes incompatible or conflicting semantics.
Woods [46] provides a comprehensive analysis of the different nuances of the resilience
term.

If we put the magnifier glass on the ICT domain, we find a plethora of related terms
that originate from different research communities such as the dependability, self-
*, safety, and security communities: for example, resilience, robustness, adaptation,
recovery, absorption, and flexibility, often without crisply defined relationships.

Consequently, it is not always clearwhich system aspect these different terms intend
to capture, whether some are specializations (qualifications) of some other, or if some
of them represent means for attaining a property indicated by another term. All in
all, this causes difficulties for software engineers in the activities required to engineer
resilient socio-technical systems and provide assurances for their behavior. With these
challenges as starting point, the long-term research objective can be stated as:

a methodology for systematic design, generation, and validation of resilient,
software-intensive, socio-technical systems with assurances.

In this article, we report on our first results towards this goal. The main contribution
is a conceptual framework intended to provide support for most development activ-
ities, which creates the right conditions for continued work towards the set research
goal. Its main pillars are: the identification and characterization of the fundamental
change types that affect system resilience; the principled definition of different facets
of resilience, based on a dynamic characterization of resilience and corresponding to
terms that concur with its definition; a mapping of each of these facets to design strate-
gies that are better suited to achieve it; and the corresponding identification of possible
metrics that can be used to assess its achievement. We use a simple case study to give
concrete examples for the main elements characterizing our conceptual framework.
Our contribution leverages the vast body of related work (e.g., [5,23,30,38,45,46]) that
have already contributed to the general discussion on resilience. Many of these papers
provide conceptual frameworks that assist in identifying the current state of the art,
relationships among different approaches, and the promising research avenues.

We organize the paper as follows. In Sect. 2, we detail the objectives for a solution
and identify the research gap. Section 3 introduces the proposed conceptual framework

123

A conceptual framework for resilience: fundamental… 561

and the change types that impact system resilience. In Sects. 4 and 5 we present a
discussion about existing resilience strategies, and a definition of a set of metrics
related to the change types a system has to manage. In Sect. 6 we present the example
case study, while we conclude and discuss future research in Sect. 7.

2 Problem, gap, and objectives for a solution

In this section, following the design science approach we use, we first identify and jus-
tify the problems that we observed. Continuing, we outline the solution we conjecture,
and then describe objectives for this solution.

There are several significant challenges in software development linked to the devel-
opment of recent years towards increasingly complex systems, where people interact
with physical systems and become directly dependent on these systems behaving cor-
rectly and safely. Another trend that adds further complexity is that systems are, to a
greater extent open, that is, they change dynamically during the life cycle.

The biggest challenge for software engineers today is to guarantee that these com-
plex systems are dependable under the invariant that the systems and their environment
change dynamically. Littlewood and Strigini [25] informally define dependability
as a set of system properties “that allows us to rely on a system functioning as
required.” Laprie extends this in his definition of resilience as “dependability when
facing changes.” [23].

Software engineerswho are supposed to provide assurances for a system’s resilience
must take into account all properties that can affect a system’s ability to function as
expected, which means that experts on different properties will be active. The system
design will use experiences and solutions from several different specialty areas, such
as accessibility, security, performance, and reliability, which must be co-designed,
implemented, and verified to provide assurances for correct behavior.

A solution to the problems and challenges outlined above is a methodology for
system resilience. A methodology that:

– leverages specialty areas that contribute to resilience.
– provide support for the complete system life-cycle.
– provide extensive support for architectural reasoning and assurances for the
resilience property.

– support seamless offline and online adaptation and evolution [2].

A first step and objective for this solution is to define a common ground for the
specialty areas. This common ground will enable some key practices in software
engineering that will speed up processes, enable reuse [22] and improve process and
product quality. The objectives for a common ground include:

– a conceptual framework based on the principled definitions of terms that concur
with the resilience definition;

– a characterization of the change types affecting the system resilience;
– a dynamic characterization of resilience in terms of the types of change the system
has to cope with;

– a discussion about strategies to achieve resilience;

123

562 J. Andersson et al.

Fig. 1 Conceptual framework main pillars

– a definition of a set of metrics that can be used to assess the system resilience
according to the different changes the system has to handle, and the goals it intends
to achieve.

To pursue our goal, we contribute in this direction, by distilling and presenting
concepts from the current body of work in a unified and concise way. In particular,
for the definition of our conceptual framework, we use the ideas expressed in [5,23,
38] as our starting point. They are the result of discussions mainly belonging to the
dependability and self-organizing systems communities. In particular, we leverage
Laprie’s definition [23] that defines resilience as an extension of dependability when
facing changes. Besides, we also refer to the general discussion reported in [46].
Outside the ICTdomain, otherworks that have presented clarifyingmodels, conceptual
frameworks and possible metrics for resilience assessment (and that have inspired
some of our contributions) are, for example, [12,19,29,35]. We refer to (and briefly
comment) still other works in the next sections of this paper.

Hereafter, we concisely illustrate themain pillars of the proposed conceptual frame-
work as a roadmap (depicted in Fig. 1) to be applied to understand and evaluate the
system resilience.

We assume that a conventional process of requirements discovery and elicitation
has been applied to obtain a set of system requirements including resilience aspects.
The first step to be undertaken to apply our proposed framework is to identify the
types of changes to which the system must/should be resilient. We propose in Sect. 3
a classification of possible types of changes that lead to a modification of the system
or to a change in the system acceptance criteria. Once the types of changes have been
identified, it is necessary to understand the corresponding kind of resilience that is
expected from the system. A detailed characterization of resilience declined according
to the possible types of changes is presented in Sect. 3. For each type of resilience
is then key understanding possible strategies for enabling that type of resilience in a
system (Sects. 4.1 and 5.1) and metrics and measurements strategies that can be used
for the resilience assessment (Sects. 4.2 and 5.2).

3 A conceptual framework for characterizing resilience in ICT systems

In this section, we introduce and briefly explain terms and concepts that capture
essential aspects of the ICT systems resilience discourse. Using a broad definition of

123

A conceptual framework for resilience: fundamental… 563

resilience as a starting point, we characterize resilience using these terms and concepts
and describe the basic properties of the change types that affect system resilience.

3.1 Basic terms and concepts

Resilience In the following we conform to the Laprie’s definition [23].

Definition Resilience is defined as the persistence of dependability when facing
changes.

This definition refers to the dependability concept, which is a fundament in a con-
ceptual framework elaborated over several years within the dependable computing
community [5]. It defines dependability as: “The ability to deliver service that can
justifiably be trusted.” or, alternatively:“The dependability of a system is the ability
to avoid service failures that are more frequent and more severe than acceptable.”

From these definitions, it is clear that resilience is a broader concept than depend-
ability due to an increase in the number of event types that may affect the system
property. Dependability concerns a system’s ability to deliver satisfactory service in
the presence of “negative” events, such as, faults and even failures. Resilience is more
general as it is concerned with a system’s ability to deliver satisfactory service in the
presence of changes. Changes are not necessarily negative events, for example, in
ubiquitous systems where a continuous change in the number and type of interacting
entities is a rule rather than an exception.

System and Environment By System we mean a broad notion encompassing hard-
ware and software systems, humans, and the physicalworldwith its natural phenomena
in which the software and hardware systems are situated. In the research reported
herein, we focus on ICT systems consisting of hardware and software components.
The systemswe consider are structured systems that consists of a collection of interact-
ing components, where each component by itself constitutes a system. This definition
is recursively applicable until we reach a decomposition level where further decompo-
sition is not relevant for the given context. Besides interacting with other components
that are part of the same system, a system also interacts with systems in the system’s
environment. The observers perspective and context define the system-environment
boundary. The system interacts and affects the environment, and it is in the environ-
ment that observers may evaluate the system effects on it.

System state The system state is the collection of attributes required for describing
a system and its behavior.
Hence, a specific state can be modeled as a vector σ belonging to some n-dimensional
state space Σ . This simplified state notion encompasses parameters and attributes
characterizing both a system and its environment.

State classification An acceptance criterion θ is a set of constraints and relationships
defined on the system state that allows the identification of the subset of the system
state space Σ consisting of all those states where the service delivered by the system

123

564 J. Andersson et al.

Fig. 2 States classification (adapted from [38])

can be considered correct and acceptable according to θ . We call this subset the set of
acceptable states with respect to θ , and denote it by θ(Σ).
In general, a number of acceptance criteria θ0, θ1, . . . , θk could be defined for a given
system, such that θ0(Σ) ⊆ θ1(Σ) ⊆ · · · θk(Σ) ⊆ Σ . The case k ≥ 1 thus allows
considering a series of progressively less stringent acceptance criteria, which can
be used in situations where we want to distinguish different levels of more or less
degraded but still acceptable performance. Otherwise, the case k = 0 represents an
on-off situation, where the system state is either acceptable or not acceptable. For a
comparison, the discussion in [38] assumes k = 1, where θ0(Σ) and θ1(Σ) are called
target space and acceptable space, respectively. On the other hand, the discussion
in [5] basically assumes k = 0, with Σ\θ0(Σ) the set of error states.

To fully characterize the system behavior, we introduce two additional subsets
of Σ , denoted by θs(Σ) and θd(Σ), such that Σ = θk(Σ)

⋃
θs(Σ)

⋃
θd(Σ), and

θx (Σ)
⋂

θy(Σ) = ∅, for any x, y ∈ {k, s, d}, x �= y. Following [38], we call them
the survival space and dead space, respectively.

The survival space θs(Σ) includes all those states where the service delivered by the
system is not acceptable, but for which a sequence of internally or externally initiated
corrective actions exists, which bring the system back to a state σ ∈ θi (Σ), 0 ≤ i ≤ k.
The dead space θd(Σ) includes all states where the delivered service is not acceptable
and that preclude the possibility of returning to an acceptable state. Figure 2 depicts
the state classification.

3.2 A dynamic characterization of resilience

The resilience definition given in the previous subsection (analogously to the depend-
ability definition fromwhich it is derived) is intended to represent a general and global
concept that subsumes several more specific concepts concerning one or more of its
facets. In this section, we answer the question: what dowe expect from a “resilient sys-
tem”? Any answer to this question reflects which incarnation of the different resilience
concepts it originates from. Further, it will require the adoption of different design and

123

A conceptual framework for resilience: fundamental… 565

implementation strategies to achieve resilience and the application of different metrics
for its measurement.

To this end, we revisit the general definition of resilience using the definitions from
the related domains as a prism. Further, we suggest an experimental characterization
of the resilience incarnations in terms of system dynamics defined by state transitions
and state trajectories.

For a start, the considered resilience definition stresses that it is a property strongly
related with the trust we can have in the system ability to remain inside the boundary
of some set θi (Σ), 0 ≤ i ≤ k, despite the occurrence of events, generically called
“changes”, that may challenge this ability. Changes are called “disturbances” in [38],
and “faults” in [5].

We can distinguish two main kinds of change events that may force a system to
cross the boundary of an acceptable states set:

– operational changes: changes that lead to a modification of the system and/or
environment state, denoted as a function δ : Σ → Σ . Examples of this kind of
events could be a change in the load and/or profile of service requests addressed
to a system, a fault of some internal component of the system, the appear-
ance/disappearance of resources in the system environment. Such changes lead
to a border crossing if, given a state σ ∈ θi (Σ), we have δ(σ) /∈ θi (Σ).

– evolutionary changes: changes that lead to a modification of the acceptance crite-
rion, denoted as a function ρ : Θ → Θ , where Θ generically denotes the set of
possible acceptance criteria. Examples of this kind of events could be a change in
the user preferences or requirements, which causes the addition of new criteria,
and/or the removal or modification of old criteria. Such changes lead to a border
crossing if, given a state σ ∈ θi (Σ), we have σ /∈ ρ(θi)(Σ).

We may use these change types to identify several resilience variants. We first
consider resilience with respect to a given set OC of operational changes, which
could affect a system or its environment. Then, we consider resilience with respect to
a given set EC of evolutionary changes.

The proposed resilience classification, with respect toOC and a given set of accep-
tance criteria θ0, θ1, . . . , θk , depends on which kind of border crossing these changes
are able to induce. Besides ideas expressed in [5,38], this classification is also inspired
by the discussion in [46].

Definition A system is robust with respect to OC and an acceptance criterion θi , if
for any δ ∈ OC and σ ∈ θi (Σ), it is δ(σ) ∈ θi (Σ).

This means that a robust system with respect to OC never crosses the boundary
of the set of acceptable states θi (Σ). This property is called “strong robustness” in
[38], and “robustness” (alias “resilience(2)”) in [46]. An illustration of this type of
resilience is given in Fig. 3a.

Definition A system is gracefully degradable with respect to OC and an acceptance
criterion θi , with i < k, if for any δ ∈ OC and σ ∈ θi (Σ), it is δ(σ) ∈ θk(Σ).

Graceful degradability is thus a weaker property with respect to robustness, how-
ever, it retains the idea that the system will always be able to deliver some kind of

123

566 J. Andersson et al.

Fig. 3 Resilience types with acceptable states

Table 1 Resilience with respect to OC

Entering non-acceptable states
No Yes

Degradation No robustness recoverability to best

Yes graceful degradability recoverability

minimally acceptable service and never enter a non acceptable state. This property
is called “weak robustness” in [38], but limited to the case i = 0 and k = 1. It also
partially resembles the “graceful extensibility” (alias “resilience(3)”) in [46]. Figure
3b depicts the states in case of graceful degradability.

Definition A system is recoverable with respect to OC and an acceptance criterion
θi , if for any δ ∈ OC and σ ∈ θi (Σ), it is δ(σ) ∈ θk(Σ) ∪ θs(Σ).

Recoverability thus implies that the system could temporarily enter states where
the delivered service is not acceptable, but has access to sufficient capabilities that
enable it to return to an acceptable state by itself or by external control. This property
is called “adaptivity/adaptability” in [38]. It is also related to the “rebound” (alias
“resilience(1)”) property in [46]. This type of resilience is illustrated in Fig. 4a.

Table 1 summarizes the types of resilience to OC discussed above in terms of tol-
erance to the occurrence of non-acceptable or degraded states. Besides the three main
types of resilience we have identified, the table evidences an additional special case,
where temporarily entering non-acceptable states is considered acceptable provided
that the system is able to recover to the optimal states θ0(Σ).

Let us now consider a given set EC of evolutionary changes. We can distinguish
some different scenarios:

Definition EC is a relaxation of θk , when for any ρ ∈ EC it is:
θk(Σ)

⋂
ρ(θk)(Σ) = θk(Σ).

In this case, a system that is robust/gracefully degradable/recoverable with respect to
a given set of operational changes OC retains the same kind of resilience in the new
scenario generated by the introduction of EC.

123

A conceptual framework for resilience: fundamental… 567

Definition EC is a restriction of θk , when for any ρ ∈ EC it is:
θk(Σ)

⋂
ρ(θk)(Σ) = ρ(θk)(Σ).

In this case, a system that is robust for a given set of operational changes OC loses
this resilience property. It cannot guarantee that it can remain within the boundary of
the narrower set of acceptable states. On the other hand, a system that is gracefully
degradable/recoverable for OC retains the same kind of resilience also for the new
acceptance criteria defined by EC, as it has the built-in capability of maintaining or
returning to states where at least a degraded version of the acceptance criteria defined
by EC holds.

Definition EC is a variation of θk when for any ρ ∈ EC it is:
θk(Σ)

⋂
ρ(θk)(Σ) �= ρ(θk)(Σ) and θk(Σ)

⋂
ρ(θk)(Σ) �= θk(Σ). Therefore, a vari-

ation introduces a partially or totally new set of acceptance criteria.

This implies that at least some of the new acceptable states are outside the borders
of the old set of acceptable states. In the extreme case, all the new states are outside
the borders of the old states, when θk(Σ)

⋂
ρ(θk)(Σ) = ∅. As a consequence, in

this scenario it does not make sense to try to achieve either robustness or graceful
degradation: it is an intrinsic property of this scenario that a given system state that
was acceptable before the change caused by EC is no longer acceptable (not even as
a “degraded” state). The system will thus necessarily experience a permanence in a
non-acceptable state for some time. If the system after some time in this condition
can change its operations and thereby reach and stay within the new set of acceptable
states, the system is resilient to these changes. This behavior resembles recoverabil-
ity discussed above. However, it requires a different kind of capability compared to
recoverability. Recoverability realizes the idea that a system always can bounce back
to a visited condition, while the scenario we are considering requires a system that is
capable of reaching a previously unvisited condition. The following definition intends
to capture this different perspective on resilience.

Definition A system is flexible when it is resilient to EC variations.

This property is similarly called “flexibility” in [38]. It is also related with the
“graceful extensibility” (alias “resilience(3)”) and “sustained adaptability” (alias
“resilience(4)”) properties in [46]. Figure 4b illustrates the system state space in the
case of flexible systems.

We summarize in Table 2 the different perspectives on resilience we have included
in our classification, together with their counterparts in [38,46].

To conclude this characterization of the resilience concept, we note that our dis-
cussion seems to define a hierarchy, with robustness at the top and recoverability and
flexibility at the bottom. We want to point out that this hierarchy is only apparent,
as it actually holds only under the assumption of an invariant set of changes for all
the given definitions; the relative merit of each kind of resilience depends instead on
several factors that include, for example, a trade-off among the cost to stay in degraded
or non-acceptable states, the cost to provide a system that may never enter these states,
and the variety of changes the system is able to cope with. This kind of considerations,

123

568 J. Andersson et al.

Fig. 4 Resilience types that reach non-acceptable states

Table 2 Resilience classification

Our proposal Schmeck et al. [38] Woods [46]

Robustness Strong robustness Resilience(2)/robustness

Graceful degradability Weak robustness Resilience(3)/graceful extensibility

Recoverability Adaptivity/adaptability Resilience(1)

Flexibility Flexibility Resilience(3)/graceful extensibility and
resilience(4)/sustained adaptability

where “cost” could encompass several aspects including economic and human, could
lead designers to consider as more viable and effective an apparently weaker kind of
resilience. Moreover, as pointed out in [46], we should also consider that the over-
provisioning implied by robustness for some set of changes, may lead to increased
vulnerability to other changes not included in the set under consideration.

3.3 Basic properties of change that affect the system resilience

In the previous subsection, we have characterized resilience in terms of inter or intra
state-set transitions, triggered by generic “changes” that affect a system. We want to
make the characterization more precise to facilitate the assessment of resilience. To
this end, we can identify two dimensions, if we study change events from the system
perspective: readiness and persistence. These two dimensions are orthogonal to the
ones discussed in the previous section.

– the readiness of the system to handle a given change; in this case we distinguish
between expected and unexpected changes, and, within the expected, we further
distinguish between handled and unhandled changes;

– the persistence of the impact of a given change on the system; in this case we
distinguish between transient and permanent changes.

Figure 5 depicts this classification of changes. We further discuss how this charac-
terization of changes fits into the resilience characterization introduced above.

123

A conceptual framework for resilience: fundamental… 569

Fig. 5 Changes according to the
their persistence and readiness to
be handled

Expected versus unexpected changes Expected and handled changes are changes
that are part of a system’s “normal” operation, in the sense that the system includes
hardware and software resources that enable it to manage the changes. These changes
include those belonging to the system’s nominal behavior, for example, changes in the
value read within the working range of a sensor, and “undesired” changes, for example
failures. Depending on which design decisions designers make, the system handles
these changes differently. Aligned to the classification presented herein, designers
make the system robust, gracefully degradable, or recoverable concerning the changes.

Expected unhandled changes are those changes that are foreseeable and identified,
but for which no system provisioning is in place to manage them. The consequence
is that if such an event occurs, it is likely it brings the system into an unacceptable
state, either in the survival θs(Σ) or the dead θd(Σ) space. Designers may decide
not to handle some types of changes during the system development. The rationale
for not handling a foreseeable change can be a relatively low occurrence frequency
or complicated and costly techniques to introduce system mechanisms that handle
that change type. The consequence of these decisions is that the system will lack
mechanisms that retain or return the system to an acceptable state automatically. There
may however exist protocols that system operators may follow to return the system
to an acceptable state. If there is a protocol for recovering from an identified change,
then the change moves the system to a state in the survival space. If there is no such
protocol, the change moves the system to a state in the dead space.

If designers do not identify a possible change, it results in possible unexpected
changes at runtime, the so-called surprises [46,47].1 An unexpected changemaymove
the system to any subspace in the state space, acceptable, survival, or dead spaces.
The resilience classification discussed above is not equipped to manage this type of
change as it would require a system that can reason about the effect of situations that it
is unaware of and possibly identify a protocol for returning the system to an acceptable
state. In some cases, the systemmay already be resilient (robust, gracefully degradable
or recoverable, as defined in Sect. 3.2). Apart from these cases, the additional design
and development efforts that are required to make the system able to cope with the
new type of changes can be reduced if the system has been designed and implemented
with a good degree of flexibility, as defined in Sect. 3.2, and as remarked also in
[46] (“graceful extensibility” (alias “resilience(3)”) and “sustained adaptability” (alias
“resilience(4)”) properties).

Permanent versus transient changes Following the distinction of fault persistence
in [5], we can distinguish two types of change. Permanent changes are changes that

1 A possible contribution to the formalization of this concept can be found in [8].

123

570 J. Andersson et al.

do not disappear unless some corrective action takes place. Transient changes are
changes where the system eventually returns to an acceptable state without taking
any action. An example of transient change is a power outage that affects a network
router. When the power comes back, the router returns to function. Another example
is when a software component fails to establish a connection to a database due to
multiple concurrent requests. When the load decreases, the component may connect
to the database. An example of permanent change is the addition of a new system
requirement to be satisfied that is not covered by the existing ones.

When a designer identifies a transient change, the decision of whether handling it or
not is a tradeoff between the cost and occurrence of the effect, and the cost of handling
the change. If the change is unhandled, the system is intrinsically recoverable (as
defined in Sect. 3.2) for the change, with a recovery period duration that corresponds
to the duration of the change, until it disappears. A system should instead always
handle permanent changes; that is, it should to be resilient for such changes.

4 Design strategies and resiliencemetrics for operational changes

We recall from Sect. 3 that by operational changeswemean those changes that modify
the system internal or environment state, thus possibly impairing the system ability
to fulfill a given set of acceptance criteria, which instead remain unchanged. Making
a system resilient to this type of changes introduces many challenges from a design
and implementation perspective. In this section, we discuss strategies for enabling
resilience in a system, and resilience metrics and measurement strategies that can be
used in resilience assessment for operational changes.

4.1 Resilience strategies

There is a general consensus across different research fields (e.g., [12,19,35]) that
strategies aimed at making a system resilient to operational changes can be under-
stood in terms of the following three goals, which can be pursued independently or in
combination:

reduced failure probability: this goal concerns the mitigation of hazards, by pre-
venting the possibility that the occurrence of a change leads to a system failure;
reduced consequences from failures: this goal concerns the containment of the
severity of the negative consequences experienced by a system when a failure
occurs because of some change;
reduced time to recovery: this goal concerns the speed at which a system can
recover from a failure, restoring its performance to some “normal” level.

These goals can be put quite naturally in correspondence with the first three
resilience variants we have identified in Sect. 3, mainly concerning operational
changes: robustness, graceful degradability and recoverability. In the following we
briefly discuss strategies to achieve those three kinds of resilience, highlighting their
relationships with the three goals outlined above.

123

A conceptual framework for resilience: fundamental… 571

Resilience as robustness This property is strictly related with the reduced failure
probability goal. We may achieve it by utilizing redundancy techniques. These often
do not require explicit detection mechanisms for the occurrence of changes or mecha-
nisms that precisely identify the change type (e.g., fault masking using parallel active
redundancy with majority voting).
An alternative strategy is intrinsic algorithmic and structural system properties that
can manage the change within the system’s “normal flow” of events. One example
of such systems is the self-organizing systems [17] that do not require an explicit
mechanism that detects the occurrence of a change.
A third strategy is proactive (self-)adaptation that uses forecasting to anticipate possi-
ble changes before their occurrence and enacts corrective actions that prevent undesired
state changes; as a consequence, these latter techniques do require the identification
of the type of change that will occur.

Resilience as graceful degradability This property is related with the reduced con-
sequences from failures goal. Indeed, this goal can be achieved by trying to keep to a
minimum the “distance” between the “ideal” acceptance criterion θ0 and the “worst”
acceptance criterion θi , i > 0 fulfilled by the system because of its performance degra-
dation after a change occurrence. Also for this kind of resilience, like for robustness,
designers may utilize redundancy techniques to achieve it. These techniques are gen-
erally different from the techniques discussed above for robustness, but they share the
same advantages of not generally requiring explicit detection and identification of a
change occurrence (e.g., a servers cluster that continues to work at reduced capacity
when some server fails, irrespective of the actual cause of server failure).
An alternative strategy is reactive (self-)adaptation that in this instance, identifies the
change that has occurred and adapts the service or service quality. For example, a
video streaming service detects a change in the available bandwidth and reduces the
frame rate to be able to continue the service delivery.

Resilience as recoverability This property is relatedwith the reduced time to recovery
goal. Indeed, this goal can be achieved by minimizing the time possibly spent in
states belonging to θs(Σ), or some θi (Σ), i > 0, before restoring the system to
states in θ0(Σ). The recoverability property is generally achieved utilizing reactive
(self-)adaptation techniques, which span commoditized techniques like checkpoint-
rollback-recovery in database systems and alternative strategies based on, for example,
machine-learningmethodologies to identify a suitable adaptation plan that restores the
system to a correct operational status.

4.2 Resiliencemetrics for operational changes

The critical role resilience plays in ICT systems elevates the importance of metrics
and indicators that provide a quantitative evaluation of resilience. These metrics assist
designers and other decision-making stakeholders in obtaining an understanding of
a system’s resilience status. Hence, they are better prepared to identify, plan, and

123

572 J. Andersson et al.

prioritize activities that improve system resilience. In the past, several efforts have
addressed this area and proposed several approaches.

In the following, we present possible metrics that can be used for system assess-
ment with respect to the three perspectives on resilience discussed above, andwe detail
how their values can be computed when using the reasoning framework in Sect. 3. In
particular, referring to the resilience characterization given in Sect. 3.2, these metrics
are observation-based; that is, they monitor the system’s operational state trajectories.
The trajectories may visit different parts of the system’s state space. With these mech-
anisms in place, we may collect information and express system resilience in terms of
whether or not it has visited some parts of the state space, and if so the duration of the
visit and which states it visited in θi (Σ), for some i ∈ {0, 1, . . . , k}, or in θs(Σ) or
θd(Σ). We point out that all the metrics introduced in the following subsections can be
considered as “descriptors” of the observed state trajectories. If the system dynamics
is modeled by means of some stochastic model, then the proposed metrics are actually
random variables, whose moments or probability distribution can be used as actual
resilience metrics.

4.2.1 Metrics for quantifying the ability to prevent failure

According to the discussion in Sect. 4.1, these metrics are related with the reduced
failure probability goal, and the robustness view of resilience, and are intended to
measure the system ability to prevent disruptive consequences when some change
occurs. Broadly speaking, this property concerns the continuity of the system correct
service. Referring to the resilience literature, this property is referred to as “reduced
failure probabilities” [12], also called “mitigation” [35].

Within our proposed reasoning framework, we give below examples of two possible
metrics of this type, where the former is time-dependent, while the latter can be
considered as a time-independent metric.

A time-dependent “failure prevention”measure Let f1 : Σ →
 be a function that
maps the system state space to the set of real numbers defined as:

f1(σ) =
{
0 if σ ∈ θk(Σ)

1 if σ ∈ (Σ\θk(Σ))
(1)

A “failure prevention” metric can be defined as:

φ(T0, T1) =
∫ T1

T0
f1(σ (t))dt (2)

where the time instants T0 and T1 denote, respectively, the start and stop points for
system observation (it could be T0 = 0 and/or T1 = ∞), and σ (t) denotes the sys-
tem state at time t ∈ (T0, T1). φ(T0, T1) thus measures the time spent in the interval
(T0, T1) in non-acceptable states (i.e. corresponding to a system failure). In partic-
ular, φ(T0, T1) = 0 indicates that the system has not experienced any unacceptable
degradation (failure) in the observation interval (T0, T1).

123

A conceptual framework for resilience: fundamental… 573

In the dependability domain, metrics of this kind are those measuring the system
reliability (e.g., the mean time to failure (MTTF), or the probability of no failure in
some time interval [0, T], where T is the length of the system mission time).

A time-independent “failure prevention” measure Let f2 : Σ2 →
 be a function
mapping pairs of system states to the set of real numbers defined as:

f2(σ1, σ2) =
⎧
⎨

⎩

0 if argmin
i

(σ1 ∈ θi (Σ)) ≥ argmin
j

(σ2 ∈ θ j (Σ))

1 otherwise
(3)

that is, f2(σ1, σ2) returns 1 iff σ1 satisfies more stringent acceptance criteria than σ2,
otherwise it returns 0.

Let us focus on a specific δe ∈ OC, δe : Σ → Σ . According to the definitions
in Sect. 3, δe represents how some disruptive event e changes the state of the system
depending on the current state when the event occurs.

A “failure prevention” metric with respect to event e can be defined as:

γ (σ , e) = f2(σ , δe(σ)) (4)

Indeed, f (σ , δe(σ)) returns 1 if event e has deteriorated the system, i.e, it has
made the system able to satisfy only less restrictive acceptance criteria, and is thus an
indicator of the possible negative impact of event e when the system is in some state
σ .

As an example, in a probabilistic setting, if we denote by p(σ) the probability for
the system of being in state σ (e.g., it could be calculated as the steady state probability
of state σ , or the probability of being in state σ during a specific time interval), then
a possible probabilistic failure prevention metric could be derived from γ (σ , e):

1 −
∑

∀σ∈Σ

γ (σ , e)p(σ) (5)

Indeed, it is the probability that the event e does not degrade the systemperformance,
inwhatever system state it occurs. The greater its value, the greater it can be considered
the system resilience to this event.

4.2.2 Metrics for quantifying the consequences from failure

According to the discussion in Sect. 4.1, thesemetrics are relatedwith the reduced con-
sequences from failures goal, and the graceful degradation view of resilience, and are
intended to measure the system ability to contain or reduce the negative consequences
caused by the occurrence of some change. Broadly speaking, this property concerns
the overall accumulated “quality” (or “degradation”) of the service delivered by the
system. Referring to the resilience literature, this property is referred to as reduced
consequences from failures in [12], “static” resilience in [35], level of recovery in
[19], absorption and adaptation in [29].

123

574 J. Andersson et al.

Within our proposed reasoning framework, we give below examples of possible
metrics for this property. Referring to the dependability domain, metrics of this kind
are those measuring the system performability (e.g., average quality accumulated
in a time interval, assuming that different quality levels are associated with states
in different sets θi (Σ)). To this end, we introduce the following “reward” function
r : Σ →
 defined as:

r(σ) = di if σ ∈ θi (Σ) (6)

with 0 = d0 ≤ d1 ≤ · · · ≤ dk ≤ ds ≤ dd , where each di is a measure of the amount
of suffered degradation when the system is in a state σ ∈ θi (Σ).

Cumulative amount of degradation Let us define Tstart as the timewhen a disruptive
event occurs, and Tend as the time when the system is restored to a fully functional
state.

Let κ(Tstart , Tend) be defined as:

κ(Tstart , Tend) =
∫ Tend

Tstart
r(σ (t))dt (7)

κ(Tstart , Tend) is thus the cumulative amount of degradation in (Tstart , Tend). The
smaller its value, the smaller the overall degradation suffered by the system.

However, κ(Tstart , Tend) does not allow discriminating between a system that, after
a disruptive event occurrence, experiences a very large disruption but then quickly
recovers to a “quasi-normal” state, and a system that instead experiences a milder
disruption but then recovers much more slowly. Depending on the considered domain,
these two different behaviors could be more or less preferable. The following metrics
are intended to help in discriminating between them.

Degradation severity Differently for the previousmetric κ(Tstart , Tend), whichmea-
sures the cumulative (negative) impact of a change, the followingmetrics focus instead
on the peak impact.

A first metric of this kind could be the maximum amount of degradation in
(Tstart , Tend), defined as:

ξ(Tstart , Tend) = max
t∈(Tstart ,Tend)

{r(σ (t))} (8)

Another possible metric of the same kind could be defined as follows. Let g :
Σ ×
 →
 be defined as.

g(σ , d) =
{
0 if r(σ) < d

1 otherwise
(9)

where r() is defined as in Eq. (6).
Then, a disruption severity metric can be defined as:

ζ(Tstart , Tend) =
∫ Tend

Tstart
g(σ (t))dt (10)

123

A conceptual framework for resilience: fundamental… 575

Fig. 6 Examples of different measures related to the recovery time

Indeed, ζ(Tstart , Tend) measures whether (ζ(Tstart , Tend) > 0) or not (ζ(Tstart ,
Tend) = 0) the system experiences a degradation level greater than d after the occur-
rence of a disruptive event.

4.2.3 Metrics for quantifying the recovery time from failure

According to the discussion in Sect. 4.1, thesemetrics are relatedwith the reduced time
to recovery goal, and the recoverability view of resilience, and are intended tomeasure
the system ability in quickly recovering from a failure by going back to the original
state, or at least to a satisfactory enough state. Broadly speaking, this property thus
concerns the system readiness for correct service after the occurrence of a disruptive
event. Referring to the resilience literature, this property is referred to as reduced time
to recovery in [12], “time-based” resilience in [35], recovery time in [19,29].

Within our proposed reasoning framework, we give below examples of possible
metrics for this property. In the dependability domain, metrics of this kind are those
mainly concerned with the system availability (e.g., the mean time to repair (MTTR),2

or the ratio between the time spent in acceptable states with respect to the total length
of the observation interval). We use Fig. 6 to illustrate the metrics we are proposing.
In the figure, θi denotes the acceptance criterion (quality level) the system was able to
fulfill when the failure occurs.

Recovery time to a required functionality (unavailability time) Thismetricmeasures
the time continuatively spent by the system in unacceptable states because of a dis-
ruptive event. Its definition requires the identification of the moment when the system
moves to an unacceptable state (f ail_ini t) and the moment when the system returns
to an acceptable state (f ail_end). Assuming that the disruptive event e occurs at time
T0 and f1() function as defined in (1), we can define the following time instants:

f ail_ini t = argmin
t∈(T0,∞)

f1(σ (t)) = 1 (11)

2 MTTR basically corresponds to the mean value of χ as defined in Eq. (13).

123

576 J. Andersson et al.

Fig. 7 Importance of a
degradation considering severity
of damage and duration in time

and
f ail_end = argmin

t∈(f ail_ini t,∞)

f1(σ (t)) = 0 (12)

Then, the time to recover the system to, at least, an acceptable state can be expressed
as:

χ = f ail_end − f ail_ini t (13)

Figure 6 illustrates this time as χ − unavailabili t y. Note that, because of the
definition of the f1() function in (1), this metric only makes sense for events that
cause a system degradation beyond some acceptable level. For events that only cause
a system degradation that is considered acceptable, it would be f ail_ini t = ∞.

As a special case, if the f1() function in (1) is defined with k = 0 (i.e., such that
f1(σ) = 0 iff σ ∈ θ0(Σ)), then χ measures the time needed to restore the system to
a fully operational state. Figure 6 shows this time as χ − Full Recovery T ime.

Recovery time to previous quality When the resilience study assumes that the effect
of a disruptive event finishes as soon as the system returns to a quality at least as good
as it showed before the event, then a suitable metric for this scenario is:

ψ = argmin
t∈(T0,∞)

{r(σ (t)) ≤ r(σ1)} (14)

where r() is the reward function defined as in Eq. (6) and σ1 is the system state when
the disruptive event occurred. Figure 6 shows this time as recovery to previous quality.

Alternatively, previous recovery times metrics could be slightly modified to mea-
sure the time needed to recover the system to some suitable percentage of the fully
operational state.

4.2.4 Metrics for quantifying a combination of goals

The metrics defined above focuses in isolation on each of the three resilience goals
outlined in Sect. 4.1. When a combination of these goals is pursued, some kind of
“hybrid” metrics could be more adequate to assess the overall system resilience.

As an example of a possible metric of this kind, we define below a metric that
takes into consideration the consequences from failure and recovery time goals. This
metric could be useful when a significant system degradation right after a disruptive
event that is quickly recovered is not considered as problematic as a smaller but

123

A conceptual framework for resilience: fundamental… 577

permanent loss of functionality. Figure 7 graphically depicts such a case, where the
curve height represents the “instantaneous” severity of the degradation, while the
progressive darkening below the curve represents the increasingly more and more
severe damage caused by the system permanence in degraded states. In these cases,
we can compute a metricω by combining the reward r() in Eq. (6) with theψ recovery
time in (14) as:

ω =
∫ ψ

T0
s(t − T0)(r(σ (t)) − r(σ (T0)))dt (15)

where the disruptive event e occurs at time T0 and s :
 →
 is a monotonically
increasing function in [0 . . . ∞).3

5 Design strategies and resiliencemetrics for evolutionary changes

As defined in Sect. 3, evolutionary changes denote changes that lead to a modification
of the acceptance criterion. These changes can possibly result in a change of the set of
acceptable states, where the new set only partially (or even not at all) overlaps with the
old one, implying that the systemwill be in a non-acceptable state for some time. In this
section we mainly focus on this type of evolutionary changes, called EC variations in
Sect. 3.2, and discuss strategies and metrics that can be used when we are interested in
making a system flexible, that is resilient to these variations. As discussed in Sect. 3.2,
resilience to the other types of evolutionary changes (restriction and relaxation) can be
instead put in connection with resilience to operational changes, and can thus be dealt
with using approaches (strategies and metrics) similar to those presented in Sect. 4.

5.1 Resilience strategies

Resilience as flexibility The flexibility property is in many aspects similar to other
software architecture properties like adaptability, changeability, extensibility and sta-
bility, and mainly refers to the system ability to be modified beyond the original
design with acceptable effort, so making it ready, for example, to quickly respond to
new market conditions [13,28,36,37].

Several strategies have been proposed to achieve this property. For instance,
Cossentino et al. [16] define flexibility and extensibility metrics based on classi-
cal coupling and cohesion software properties, and hence suggest the adoption of
well-established software engineering principles and strategies aimed at achieving
the desired level for these properties. Eden and Mens [18] propose a classification of
available design paradigms and design patterns well-aligned with the flexibility met-
rics they define within a reference framework to measure software flexibility. These
paradigms and patterns can thus be exploited to achieve some required flexibility level.
Achieving high flexibility is also one of the goals of the design patterns and develop-
ment practices developed within the software product line approach [39]. Similarly

3 Depending on the importance given to the duration of a degradation, function s(t) might be, for example,
a logarithmic, linear, polynomial function.

123

578 J. Andersson et al.

in [36] it is suggested to keep the system design as parametric as possible, both in
terms of design parameters and change path enablers. These design choices lead to
the definition of possible customization and configuration strategies that depend on
the different goals that the systems intend to achieve.

In general, we can say that when strategies to secure flexibility are in place, they
require that large parts of a system’s behavior change and are verified dynamically.
Such radical behavioral changes require a holistic approach that enables online behav-
ior to utilize offline automated development techniques [2]. The practical implications
of this approach are, however, not sufficiently studied. Three critical factors underlying
its possible application are: model availability, tool-chain automation, and decision-
making criteria and tools. Model-availability and the model-quality are essential for
a successful realization of general flexibility. The automated tool-chain and deci-
sion making mechanisms such as comparisons and reasoning require that the models,
which describe the system, are readily available, accurate, and updated. Flexibility
also requires that the tools that work on the models are fully automated and config-
ured in tool-chains that reflects development workflows. An illustration of one such
tool-chain is a continuous integration-deployment pipeline. We can conjecture that
general flexibility, in some instances, requires updates to the models, tools, and tool-
chains in response to radical changes. Thismeta-adaptation level is currently uncharted
territory in research. The final cornerstone in a general flexibility mechanism is sup-
port for decision-making. Flexibility requires identification of new acceptable states,
generation of correct behavior for the new state-space, and the verification of overall
system behavior. This complex process involves several decision types that require
support from different reasoning and comparisons strategies for evaluating alterna-
tives, ranking, and decision selection. Some initial research effort in this area inspired
by values-based software engineering approaches [10] can be found in [6,24].

5.2 Resiliencemetrics for evolutionary changes

As already pointed out at the beginning of this section, some of the metrics defined in
Sect. 4 for resilience assessment with respect to operational changes, can be applied as
well for resilience assessment with respect to evolutionary changes. In the following
two subsections we first (Sect. 5.2.1) review some of these metrics, highlighting how
they can be adapted for flexibility assessment, and then (Sect. 5.2.2) discuss alternative
metrics and related issues.

5.2.1 Flexibility assessment with metrics from OC scenarios

Metrics for quantifying the ability to prevent failure In an evolutionary change
scenario, a system “failure” occurswhen the occurred changemakes the current system
state no longer acceptable under the new acceptance criterion. A metric analogous to
metric (2) (presented in Sect. 4.2.1) could thus be used to assess for how long the
system will remain in acceptable states despite the new acceptance spaces resulting
from the occurrence of evolutionary changes. Note that if all changes are of relaxation

123

A conceptual framework for resilience: fundamental… 579

type, then the system will surely remain acceptable along all the observation interval,
while this cannot be guaranteed in case of restriction or variation changes.

Metrics for quantifying the recovery time from failure An evolutionary change of
restriction or variation type may move the current state of the system from being well
accepted to the survival space. As an example scenario, we can imagine that some
new regulation is introduced concerning data confidentiality. An IT data management
system obviously continues to keep its operating capabilities as before the change,
but they could be no longer compliant with the new rules. Resilience metrics as those
presented in Sect. 4.2.3 could thus be used to measure the minimum time necessary
to bring the system within the new acceptance space.

5.2.2 Flexibility assessment under deep uncertainty scenarios

Tackling evolutionary changes often implies to consider a wider temporal horizon than
the one related to operational changes. Therefore, it is more likely that the changes
to be faced are of the unexpected type. As a consequence, defining metrics for the
assessment of resilience in these scenarios requires to thoroughly take into account
issues related with uncertain future.

Over the past several years, researchers have started studying the notion of uncer-
tainty inmodelling and analyzing complex systems and the existence of different types
of uncertainty is now widely recognized [4,20,32,34,41,43]. The literature provides
several definitions of uncertainty, most of them classify uncertainties according to
their level (from determinism to complete ignorance), nature (aleatory or epistemic),
and source (model structure, data and parameters, but also changes in the operational
environment, dynamics in the availability of resources, and variations of user goals)
[32,34,42]. One challenge in this context is being able to identify/recognize the pres-
ence of uncertainty in a given system. Some proposals can be found on this theme. For
example, [31] proposes a methodology that guides the software engineers in recog-
nizing the existence of uncertainty. A bayesian approach has been proposed in [8] to
evaluate the presence of uncertainty (called surprise) using a metric that measures the
distance between the prior and the posterior probability distributions. Once the pres-
ence of some type of uncertainty has been recognized, dealingwith it can be associated
to three different paradigms that can be adopted to model the future [26]. In the first
one, (i) the idea is to anticipate the future based on best available knowledge with the
implicit assumption that knowledge can be improved by data collection and surprises
can be included altering the original model. This corresponds to the idea of a clear
enough or deterministic future [42]. In the second paradigm, (ii) the future is treated as
quantifiablewith (combination of) probability distribution and study of the uncertainty
propagation. This corresponds to a level of uncertainty characterised as “statistical”
or probabilistic [42]. The third one (iii) explores multiple possible futures considering
different possible scenarios. This corresponds to a level of uncertainty characterised
as “unknown future” [42]. Following this classification, we can distinguish several
ways in which flexibility can be reached. Figure 3 illustrates the system state space in
case of evolutionary changes. However, there are different ways in which evolutionary
changes can lead to the definition of the new set of acceptable states. Figures 8a, b

123

580 J. Andersson et al.

Fig. 8 Flexibility with modelling paradigms (i) and (ii), adapted from [26]

and 9a illustrate how, starting from a set of acceptable states θ(Σ) a new future set of
acceptable system states can be reached according to paradigms (i), (ii) and (iii) for
modelling the future. Figure 9b, instead, shows how it is possible to combine the three
paradigms to address different sources of uncertainty within a problem.

Given the definition of variation in Sect. 3, with the assumption that ρ(θk) ⊆ θs ,
we can define the following function dist : Θ ×Θ →
 as a possible measure of the
distance between θk and ρ(θk) (but other distance functions could be defined):

dist(θk, ρ(θk)) = in f {dist(x, y)|x ∈ θk, y ∈ ρ(θk)} (16)

With this definition, dist(θk, ρ(θk)) = 0 if θk and ρ(θk) at least partially over-
lap, while it is increasingly greater than zero as the separation between the two sets
increases. By expressing each point x and y in a cartesian coordinates space, the func-
tion dist can be computed for each modelling paradigm. Specifically, for (i) dist is as
defined before,while for paradigm (ii) the value obtainedwith dist will beweighted by
the confidence interval obtained by the adopted probability distribution. For paradigm
(iii), the function dist will be evaluated for each ρ(θk)(Σ). Then, the combination
of the different paradigms will be characterized by the evaluation of dist for every
ρ(θk)(Σ), and each of them will be weighted by the confidence interval obtained by
the adopted probability distribution.

Using the dist() function as a basis for a flexibility metric, we can characterize how
far it can be the new set of acceptable states ρ(θk) that the system is able to reach from
its current state θk , in case of evolutionary changes. The further this set, the greater
the system flexibility is. We point out that this kind of metric is independent of the
change that could actually occur in the future, as it only measure a sort of system
“streachability” property along many possible directions. Thus, it seems well suited
to scenarios characterized by deep uncertainty about the changes that could actually
occur.

With these definitions, the goal of a flexible architecture could be stated as:maxi-
mize dist(θk, ρ(θk)).

Other different approaches can be adopted as well to deal with the uncertainty about
future evolutionary changes [6,24], based on the concepts in [10]. For example, fol-
lowing the approach introduced by Letier et al. [24], it is possible to exploit the concept
of value of information to support the decision making process when different options

123

A conceptual framework for resilience: fundamental… 581

Fig. 9 Flexibility with different modelling paradigms, adapted from [26]

are available, concerning for example possible design decisions. More specifically, to
each evolutionary change introducing a variation of the acceptance criterion it can be
associated a metric like the expected value of information [24], which evaluates the
expected gain in terms of net benefit related to that change with and without additional
information. This metric is complemented with the evaluation of theRisk associated to
the change, evaluated by the loss probability and the probable loss magnitude. In this
context, the goal of a flexible system can be stated as: minimize the Risk associated
to each change of the acceptance criterion.

Alternatively, another possible metric that could be applied is defined in [6], based
on the real options theory developed in the financial domain [27]. An option represents
a choice regarding an investment opportunity (without obligations) under given terms
for a fixed period of time in the future for a tangible (real) asset. A parallel is built
considering a likely future change in a system analogous to buying an option on an
asset, with a price corresponding to the cost of implementing the change. The method
in [6] defines a way to value the flexibility of the system to accommodate the change
taking into account parameters like effort, schedule, budget and so on. This metric can
be used to associate an economical value to each evolutionary change, and the goal of
a flexible system is to be able to minimize it.

6 Case study

In this section we illustrate some of the main concepts introduced in the previous
sections, using to this end examples based on the Znn.com case study [15], showing
possible mutual relationships among the different types of changes (OC and EC) and
the various types of resilience discussed so far.
Znn.com (Fig. 10a) reproduces a news system that delivers multimedia (static and
dynamic) content to its customers. It adopts a web-based client-server architecture,
where a dynamic pool of replicated servers receives content requests from a set of
clients; a load balancer balances the load among servers. One of the main quality
indexes for this system is its response time to client requests, which depends on factors
like the number of servers in the pool, the load generated by clients, the bandwidth and
latency of network connections, and the fidelity of the delivered content with respect
to the original one stored into the system. Another relevant quality index is the system
cost, which depends on the number of used servers.

123

582 J. Andersson et al.

(a)

attribute domain
c.expRspTime N+

s.cost N+

s.load N+

s.fidelity {full, reduced}
s.active {yes, no}

h.bandwidth N+

h.latency N+

p.load N+

(b)

Fig. 10 Znn.com case study

The table in Fig. 10b shows attributes that can concur to the definition of the
Znn.com system state space Σ , for each client c, server s, network connection h and
load balancer p in the system. Besides the attribute names, the table also shows their
domain, where we assume a suitable discretization for real-valued attributes (see [14]).

Given this state space, a possible state-based acceptance criterion could be defined
as:

θ0 = ∀c : c.expRspTime < MaxRspTime0 ∧ ∀s : s.fidelity = f ull (17)

where MaxRspTime0 is a threshold on the experienced response time.
The occurrence of operational changes (OC) affecting the system itself or its envi-

ronment could impair the system ability to remain within the set θ0(Σ). As an example
of these changes, we consider load variations. To this end, we assume that possible
load values are classified into three consecutive intervals: I0 = [0 . . . l0] (normal
load), I1 = [l0 . . . l1] (high load), I2 = [l1 . . . + ∞] (extreme load), and that the
minimum number of servers needed to fulfill θ0 under a normal or high load is N0
or N1, respectively, with N0 < N1. The Znn.com system designers could thus face
some possible different situations.

Situation1: θ0 is a strict requirement In this case noother acceptable states exist beyond
θ0(Σ). According to the discussion in Sect. 3.2, the system should thus bemade robust
with respect to any possible load value. This property can be achieved by introducing
into the system design redundancy techniques (Sect. 4.1), based for example on the
statical overprovisioning of the server pool, or (probably better from a cost viewpoint)
on the proactive scaling-in/out of the number of servers in anticipation of foreseen
load variations. However, cost considerations would probably limit in both cases the
maximum number of servers in the pool, for instance equal to N1. In this case, the
system is robust with respect to θ0 and load variations in the I0 and I1 ranges. For loads
in the I2 range the system is not able to provide acceptable performance; however,
it can return to be acceptable as soon as the load decreases below the l1 threshold.
Hence, the survival space with respect to load variations is θs(Σ) = Σ\θ0(Σ) and
the system is recoverable with respect to any load variation.

The effectiveness of a given solution (e.g. static redundancy or dynamic scaling-
in/out) can be analyzed with respect to the various perspectives and corresponding

123

A conceptual framework for resilience: fundamental… 583

metrics discussed in Sect. 4.2. For instance, the actual system robustness (i.e., ability
to continuously remain within the set θ0(Σ)) can be assessed using metrics (2) or (4),
metric (14) could be used to assess how quickly the system is able to return to an
acceptable state after a peak load that deteriorates its performance, and metric (15)
could be used to assess the consequences of the deterioration.

Situation 2: θ0 is a relaxable requirement TheZnn.com systemdesigners could realize
that the incurred costs to make the system robust with respect to load variations in the
I0 and I1 ranges are too high. A new elicitation phase for system requirements could
then lead to realize that system users highly appreciate its responsiveness, while they
can accept a temporary content fidelity reduction (e.g. text-only instead of multimedia
news) that, from the system viewpoint, allows to process a given load using less
computing power. This leads to an evolutionary change of the system requirements
based on the following relaxation of θ0:

θ1 = ∀c : c.expRspTime < MaxRspTime0 (18)

Then, after realizing that some users of Znn.com are willing to accept a less
responsive system against a compensation in their monthly fee, a further relaxation
could be introduced:

θ2 = ∀c : c.expRspTime < MaxRspTime1 (19)

with MaxRspTime0 <MaxRspTime1. These progressively relaxed acceptance cri-
teria allow to design the Znn.com system as a gracefully degradable system, where
states in θ0(Σ) make all its users fully satisfied, states in θ1(Σ)\θ0(Σ) reduce the
degree of satisfaction of all users, while states in θ2(Σ)\θ1(Σ) partially satisfy only a
subset of the users. States in Σ\θ2(Σ) are not acceptable for any user, but the system
can recover from them after a suitable reduction of the system load. Operationally, the
Znn.com system could be managed according to some reactive self-adaptation tech-
nique, that adjust the number of servers and the delivered content fidelity in response
to load variations, according to some degradation policy (Sect. 4.1). The effectiveness
of the adopted policy in terms of tradeoff between cost reduction and users satisfaction
could be assessed using performability metrics (7), (8), (10) in Sect. 4.2.

Situation 3: Acceptance criteria variation After the Znn.com news system has been
designed as a gracefully degradable system according to the progressively more
relaxed acceptance criteria θ0, θ1 and θ2, the demand emerges of building a special-
ized Znn4Artist.com version for the artists community. Requirements elicitation for
this new version reveals that its prospective users do not care too much about system
responsiveness, but strictly require full quality content delivery. The corresponding
acceptance criterion could thus be stated as:

θ3 = ∀s : s.fidelity = f ull (20)

θ2(Σ) and θ3(Σ) only partially overlap with each other; hence, θ3 can be seen as
the result of a variation EC with respect to θ2, caused by a modification of the user
preferences: states considered acceptable under θ2, albeit in degradedmode (e.g., states

123

584 J. Andersson et al.

where s. f ideli t y = reduced), are no longer acceptable at all under θ3, which instead
allows to accept states not acceptable under θ2 (e.g., states where s.expRspTime >

MaxRspTime1). Hence, the designers of Znn4Artist.com must quite deeply re-
think the θ2-based graceful degradation policy embedded in the managing system of
Znn.com. As discussed in Sect. 5.2.1, metrics like those presented in Sect. 4.2.3 could
be used to measure the effort required to this end.

7 Discussion and conclusions

7.1 Discussion

As stated in the introductory part, our goal has been to contribute to the definition of
the fundamental pillars, summarized in Fig. 1, of a conceptual framework that should
underpin any concrete effort towards resilient systems design and development.

We remark that our framework aims at embodying the big picture of resilient
systems design, and does not go into details of specific aspects, which are instead
investigated by more narrowly focused papers in literature. Hereafter, we discuss
some issues concerning our contribution.

The concept of acceptance criteria θi introduced in Sect. 3 plays a relevant role
in the definition of our conceptual framework. Indeed, it provides the basis for the
idea of partitioning the system state space in subsets representing different degrees of
acceptability, and the consequent definition of the different facets of resilience in terms
of trajectories over these subsets, and of assessment metrics in terms of functions over
sets of states or state trajectories. Each θi is actually an abstract representation of a
set of requirements with respect to which we can assess the resilience of a system.
We do not give details about how these sets of requirements are elicited and specified.
Suggestions about how this abstract concept can be detailed and reified can be found in
work concerning requirements specification for self-adaptive systems (e.g. [7,40,44]).
Indeed, even if self-adaptation is not the only strategy to achieve resilience to changes
(for example, in case of systems using static redundancy), it is undoubtedly one of
the most relevant. For example, our abstract idea of progressively looser acceptance
criteria θi , i = 0, 1, 2, . . . can be mapped to the concept of requirements relaxation in
[44], where a fuzzy logic-based formal semantics is given for this type of evolutionary
change. Different, more goal-oriented ways for specifying “relaxed” requirements are
proposed in [7,40]), together with suitable formal semantics (based on OCLTM and
fuzzy logic, respectively).

The discussion in Sect. 3 mostly assumes a linear ordering among the θi ’s, corre-
sponding to the containment relationships of the sets θi (Σ)’s. As evidenced above,
this can be seen as the result of the progressive application of relaxation (or, in the
opposite direction, restriction) EC to the initial acceptance criterion θ0. In general, one
could think of relaxation EC applied to different parts of the whole set of conditions
(requirements) included in θ0. This would result in different chains of progressively
looser requirements, actually forming a tree rooted at θ0. An example of this can be
found in the case study of Sect. 6, where θ3, rather than a variation of θ2, could also be
seen as a relaxation of θ0 along a different direction with respect to the chain θ0, θ1, θ2.

123

A conceptual framework for resilience: fundamental… 585

In our opinion, this “tree” of acceptance criteria can be mainly seen as the result of
different specializations of a system for different domains, characterized by partially
overlapping set of requirements. As a consequence, our notion of flexibility seems
to us well suited to embrace resilience to this kind of scenarios, as it focuses on the
system ability to face variations in the set of requirements it should fulfill.

We also point out that our conceptual framework refers to intuitive concepts of
states, state trajectories, and metrics based on them. We do not have purposely given
a formal semantics for these concepts, to not get stuck with the details of a specific
formalism and its possible limits. However, we are aware that, in this respect, an
important related body of work exist, concerning the use of formal theories to give a
formally sound semantics to our intuitive concepts, e.g. one of the different flavors of
temporal logics [1,21].

The metrics for resilience assessment we have presented in previous sections, in
particular in Sects. 4.2 and 5.2, are likely to be evaluated under a probabilistic setting,
based on assumptions about a set of possible events that canmodify the system or envi-
ronment state and their corresponding occurrence probabilities. From these underlying
assumptions, the moments or probability distribution of those metrics can be evalu-
ated, thus obtaining indications about the actual system resilience or suggestions about
possible interventions for its improvement.

However,wemust consider that these assumptions are always based on somekind of
limited knowledge that can lead us to imprecisely evaluate the occurrence probability
of some events, or the impact they could have, or to ignore at all events that could
instead actually occur. In other words, the resilience we assess through those metrics
is based on the knowledge we currently have about the system and its environment.

This resilience, and the knowledge underlying it, can be challenged by the occur-
rence of unexpected events, as discussed in Sect. 3.3, where what is not expected can
be the event itself, or its consequences. Indeed, these events, as remarked in [46,47]
where they are named “surprises”, can lead the system to touch or surpass the finite
envelope that always bounds its resilience, because of intrinsic limitations in the avail-
able resources, or because of the limited knowledge of its designers. It is still possible
to take advantage of these unexpected events that challenge the system resilience.
For example, by updating the knowledge that is used to assess system resilience, or
by applying an evolutionary change that updates the system requirements and avoids
damage upon the occurrence of the same type of event, or by evolving the system
functionality—a case where the area of study of antifragile systems [33] could be
applied. An interesting proposal to formalize a concept of surprise within a Bayesian
framework can be found in [8], where a surprise is defined in terms of the distance
between prior and posterior probability distributions. A thorough assessment of the
system resilience must thus include the assessment of the system readiness to face
these surprises. This is particularly challenging, as by definition we have very limited,
if not at all, knowledge about them. Metrics like those discussed in Sect. 5.2.1 aim
at assessing this kind of readiness, thus constituting in our opinion one of the most
interesting avenues of research in the field of system resilience.

123

586 J. Andersson et al.

7.2 Future work

As already discussed, we reported in this paper our first results towards our ultimate
research objective of defining a methodology for systematic design, generation, and
validation of resilient, software-intensive, socio-technical systems with assurances.
Our future work will follow two separate and yet interleaved paths.

On the one hand, we intend to focus on resilience assessment with respect to
evolutionary changes, as it is linked to the unexpected events issues discussed
above, and appears less mature than resilience assessment with respect to operational
changes. From our viewpoint, assessing the systems resilience when facing evolution-
ary changes involves an analysis of the uncertainty about predicting a distant future,
including how much the system engineers know about the alternatives in the future,
their likelihood, and their properties. This research line deserves further investigation
that we plan to pursue also taking advantages from the results coming from different
disciplines with more mature understanding of the topic, like economics and environ-
mental modelling.

On the other hand, we plan to investigate how the proposed conceptual framework
can be exploited to provide support for architectural reasoning and assurances for
the resilience property, taking into account different specialty areas that contribute to
resilience. A further step forward will consist in the definition of a resilience-based
development process that supports the complete system life-cycle, including online
adaptation and evolution.

Acknowledgements This work has been partially supported by the SISMA Italian national research project
(MIUR, PRIN 2017, Contract 201752ENYB) and by ALADINO project (funded by KKS Sweden, n◦
20200117).

Funding Open access funding provided by Politecnico di Milano within the CRUI-CARE Agreement.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. AghaG, PalmskogK (2018) A survey of statistical model checking. ACMTransModel Comput Simul.
https://doi.org/10.1145/3158668

2. Andersson J, Baresi L, Bencomo N, de Lemos R, Gorla A, Inverardi P, Vogel T (2013) Software
engineering processes for self-adaptive systems. Springer, Berlin, pp 51–75

3. Annarelli A, Nonino F (2016) Strategic and operational management of organizational resilience:
current state of research and future directions. Omega 62(C):1–18

4. Ascough J II, Maier H, Ravalico J, Strudley M (2008) Future research challenges for incorporation of
uncertainty in environmental and ecological decision-making. Ecol Model 219(34):383–399

5. Avizienis A, Laprie JC, Randell B, Landwehr CE (2004) Basic concepts and taxonomy of dependable
and secure computing. IEEE Trans Dependable Sec Comput 1(1):11–33

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3158668

A conceptual framework for resilience: fundamental… 587

6. Bahsoon R, Emmerich W (2004) Evaluating architectural stability with real options theory. In: 20th
international conference on software maintenance (ICSM 2004), 11–17 September 2004, Chicago, IL,
USA. IEEE Computer Society, pp 443–447

7. Baresi L, Pasquale L, Spoletini P. Fuzzy goals for requirements-driven adaptation. In: 2010 18th IEEE
international requirements engineering conference, pp 125–134

8. Bencomo N, Belaggoun A (2014) A world full of surprises: Bayesian theory of surprise to quantify
degrees of uncertainty. In: Jalote P, Briand LC, van der Hoek A (eds) 36th international conference on
software engineering, ICSE’14, companion proceedings, Hyderabad, India, May 31–June 07, 2014.
ACM, pp 460–463. https://doi.org/10.1145/2591062.2591118

9. Bergstrom J, van Winsen R, Henriqson E (2015) On the rationale of resilience in the domain of safety:
a literature review. Reliab Eng Syst Saf 141:131–141 (Special Issue on Resilience Engineering)

10. Boehm B, Sullivan K (2000) Software economics: a roadmap. In: Proceedings of the Conference on
The Future of Software Engineering (ICSE ’00). ACM,NewYork, p 319–343. https://doi.org/10.1145/
336512.336584

11. Braithwaite J, Wears R, Hollnagel E (2015) Resilient health care: turning patient safety on its head.
Int J Qual Health Care 27:418–420

12. Bruneau M, Chang SE, Eguchi RT, Lee GC, Rourke TDO, Reinhorn AM, Shinozuka M, Tierney K,
Wallace WA, von Winterfeldt D (2003) A framework to quantitatively assess and enhance the seismic
resilience of communities. Earthq Spectra 19(4):733–752

13. Byrd TA, Turner DE (2000) Measuring the flexibility of information technology infrastructure:
exploratory analysis of a construct. J Manag Inf Syst 17(1):167–208

14. Cámara J, deLemosR,VieiraM,AlmeidaR,VenturaR (2013)Architecture-based resilience evaluation
for self-adaptive systems. Computing 95(8):689–722

15. Cheng S, Garlan D, Schmerl BR (2009) Evaluating the effectiveness of the rainbow self-adaptive
system. In: 2009 ICSE workshop on software engineering for adaptive and self-managing systems,
SEAMS 2009, Vancouver, BC, Canada, May 18–19, 2009. IEEE Computer Society, pp 132–141

16. Cossentino M, Lodato C, Lopes S, Ribino P, Palermo V (2015) Metrics for evaluating modularity and
extensibility in HMAS systems. In: Proceedings of the 2015 international conference on autonomous
agents and multiagent systems, pp 1061–1069

17. Di Marzo Serugendo G (2009) Robustness and dependability of self-organizing systems—a safety
engineering perspective. In: Guerraoui R, Petit F (eds) Stabilization, safety, and security of distributed
systems. Springer, Berlin, pp 254–268

18. Eden A, Mens T (2006) Measuring software flexibility. IEE Proc Softw 153:113–125
19. Erol O, Henry D, Sauser B, Mansouri M (2010) Perspectives on measuring enterprise resilience. In:

2010 IEEE international systems conference, pp 587–592
20. Giese H, Bencomo N, Pasquale L, Ramirez AJ, Inverardi P, Wätzoldt S, Clarke S (2014) Mod-

els@run.time: foundations, applications, and roadmaps, chap. Living with uncertainty in the age of
runtime models. Springer, pp 47–100

21. Konur S (2013) A survey on temporal logics for specifying and verifying real-time systems. Front
Comput Sci 7(3):370–403

22. Krueger CW (1992) Software reuse. ACM Comput Surv 24(2):131–183
23. Laprie JC (2008) From dependability to resilience. In: DSN 2008
24. Letier E, Stefan D, Barr ET (2014) Uncertainty, risk, and information value in software requirements

and architecture. In: 36th international conference on software engineering, ICSE’14, Hyderabad,
India, May 31–June 07, 2014. ACM, pp 883–894

25. Littlewood B, Strigini L (2000) Software reliability and dependability: a roadmap. In: Proceedings of
the conference on the future of software engineering, pp 175–188

26. Maier H, Guillaume J, van Delden H, Riddell G, Haasnoot M, Kwakkel J (2016) An uncertain future,
deep uncertainty, scenarios, robustness and adaptation: how do they fit together? EnvironModel Softw
81:154–164

27. Myers SC (1984) Finance theory and financial strategy. Interfaces 14(1):126–137
28. Naab M, Stammel J (2012) Architectural flexibility in a software-system’s life-cycle: systematic

construction and exploitation of flexibility. In: Proceedings of the 8th international ACM SIGSOFT
conference on Quality of Software Architectures, QoSA, pp 13–22

29. NajarianM, LimGJ. Design and assessmentmethodology for system resiliencemetrics. RiskAnalysis.
Online first. https://onlinelibrary.wiley.com/doi/abs/10.1111/risa.13274

123

https://doi.org/10.1145/2591062.2591118
https://doi.org/10.1145/336512.336584
https://doi.org/10.1145/336512.336584
https://onlinelibrary.wiley.com/doi/abs/10.1111/risa.13274

588 J. Andersson et al.

30. Patriarca R, Bergstrom J, Gravio GD, Costantino F (2018) Resilience engineering: current status of
the research and future challenges. Saf Sci 102:79–100

31. Perez-Palacin D, Mirandola R (2014) Dealing with uncertainties in the performance modelling of
software systems. ACM, pp 33–42. https://doi.org/10.1145/2602576.2602582

32. Perez-Palacin D, Mirandola R (2014) Uncertainties in the modeling of self-adaptive systems: a tax-
onomy and an example of availability evaluation. ACM, pp 3–14. https://doi.org/10.1145/2568088.
2568095

33. Ramezani J, Camarinha-Matos LM (2020) Approaches for resilience and antifragility in collaborative
business ecosystems. Technol Forecast Soc Change 151:119846. https://doi.org/10.1016/j.techfore.
2019.119846

34. Ramirez AJ, Jensen AC, Cheng BHC (2012) A taxonomy of uncertainty for dynamically adaptive
systems. In: Proceedings of the 7th international symposium on software engineering for adaptive and
self-managing systems, SEAMS’12. IEEE Press, Piscataway, NJ, USA, pp 99–108

35. Rose A, Liao SY (2005) Modeling regional economic resilience to disasters: a computable general
equilibrium analysis of water service disruptions*. J Reg Sci 45(1):75–112

36. RossAM,RhodesDH,HastingsDE (2008)Defining changeability: reconciling flexibility, adaptability,
scalability, modifiability, and robustness for maintaining system lifecycle value. Syst Eng 11(3):246–
262

37. Salama M (2018) Architectural stability of self-adaptive software systems. Ph.D. thesis, University of
Birmingham, UK

38. Schmeck H, Müller-Schloer C, Çakar E, Mnif M, Richter U (2010) Adaptivity and self-organization
in organic computing systems. ACM Trans Auton Adapt Syst 5(3):10:1–10:32

39. Software Product Lines (2001) Practices and patterns. Addison-Wesley Longman Publishing Co., Inc.,
Boston

40. SouzaVES, LapouchnianA, RobinsonWN,Mylopoulos J (2011)Awareness requirements for adaptive
systems. In: Proceedings of the 6th international symposium on software engineering for adaptive and
self-managing systems, SEAMS 2011. ACM, New York, NY, USA, pp 60–69

41. van Asselt MBA, Rotmans J (2002) Uncertainty in integrated assessment modelling. Clim Change
54(1):75–105. https://doi.org/10.1023/A:1015783803445

42. WalkerW, Harremoes P, Romans J, van der Sluus J, van Asselt M, Janssen P, KraussM (2003) Defining
uncertainty. A conceptual basis for uncertainty management in model-based decision support. Integr
Assess 4(1):5–17

43. Weyns D, et al (2013) Perpetual assurances for self-adaptive systems. In: de Lemos R, Garlan D,
Ghezzi C, Giese H (eds) Software engineering for self-adaptive systems III. Assurances - international
seminar, Dagstuhl Castle, Germany, December 15–19, 2013, Revised Selected and Invited Papers.
Lecture notes in computer science, vol 9640. Springer, pp 31–63

44. Whittle J, Sawyer P, BencomoN, Cheng BH, Bruel JM (2010) Relax: a language to address uncertainty
in self-adaptive systems requirement. Requir Eng 15(2):177–196

45. Wiig S, Fahlbruch B (2019) Exploring resilience: a scientific journey from practice to theory. Springer
International Publishing, Cham

46. Woods DD (2015) Four concepts for resilience and the implications for the future of resilience engi-
neering. Reliab Eng Syst Saf 141:5–9 (Special Issue on Resilience Engineering)

47. Woods DD (2019) Essentials of resilience, revisited. In: Handbook on resilience of socio-technical
systems, chap. 4. EdwardElgar Publishing, pp 52–65. https://EconPapers.repec.org/RePEc:elg:eechap:
17780_4

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1145/2602576.2602582
https://doi.org/10.1145/2568088.2568095
https://doi.org/10.1145/2568088.2568095
https://doi.org/10.1016/j.techfore.2019.119846
https://doi.org/10.1016/j.techfore.2019.119846
https://doi.org/10.1023/A:1015783803445
https://EconPapers.repec.org/RePEc:elg:eechap:17780_4
https://EconPapers.repec.org/RePEc:elg:eechap:17780_4

	A conceptual framework for resilience: fundamental definitions, strategies and metrics
	Abstract
	1 Introduction
	2 Problem, gap, and objectives for a solution
	3 A conceptual framework for characterizing resilience in ICT systems
	3.1 Basic terms and concepts
	3.2 A dynamic characterization of resilience
	3.3 Basic properties of change that affect the system resilience

	4 Design strategies and resilience metrics for operational changes
	4.1 Resilience strategies
	4.2 Resilience metrics for operational changes
	4.2.1 Metrics for quantifying the ability to prevent failure
	4.2.2 Metrics for quantifying the consequences from failure
	4.2.3 Metrics for quantifying the recovery time from failure
	4.2.4 Metrics for quantifying a combination of goals

	5 Design strategies and resilience metrics for evolutionary changes
	5.1 Resilience strategies
	5.2 Resilience metrics for evolutionary changes
	5.2.1 Flexibility assessment with metrics from OC scenarios
	5.2.2 Flexibility assessment under deep uncertainty scenarios

	6 Case study
	7 Discussion and conclusions
	7.1 Discussion
	7.2 Future work

	Acknowledgements
	References

