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Abstract
Chloroplast genome diversity in cork oak (Quercus suber) is characterised by the occurrence of haplotypes that are akin 
to those found in other Mediterranean oak species, particularly in Q. ilex and Q. rotundifolia, suggesting the possible pres-
ence of an introgressed chloroplast lineage. To further investigate this pattern, we reconstructed chloroplast haplotypes by 
sequencing four chloroplast markers (cpDNA), sampled across 181 individuals and 10 taxa. Our analyses resulted in the 
identification of two diversified chloroplast haplogroups in Q. suber, corresponding to a geographically widespread lineage 
and an Afro-Iberian lineage. Time-calibrated phylogenetic analyses of cpDNA point to a Miocene origin of the two haplo-
groups in Q. suber, suggesting that the Afro-Iberian lineage was present in cork oak before the onset of glaciation periods. 
The persistence of the two haplogroups in the western part of the species distribution range may be a consequence of either 
ancient introgression events or chloroplast lineage sorting, combined with different fixation in refugia through glaciation 
periods. Our results provide a comprehensive insight on the origins of chloroplast diversity in these ecologically and eco-
nomically important Mediterranean oaks.
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Introduction

Cork oak (Quercus suber L., Fagaceae) is an evergreen 
tree species native to the western Mediterranean region 
where it has considerable economic importance (Aronson 
et al. 2009; Vessella et al. 2017). Its geographical distri-
bution has been shaped by glaciation cycles (López de 
Heredia et al. 2007a; Vessella et al. 2015), similarly to 
other European tree species (Bagnoli et al. 2016; de Dato 
et al. 2020; Petit et al. 2002). Quercus suber is not only 
a dominant climax forest species in many natural settings 
across its distribution range, but also a vital element in 
managed tree-grassland agro-systems known as “mon-
tado” or “dehesa,” together with Q. rotundifolia   Lam. 
These agro-systems are the main source of commercial 
cork but also provide grazing grounds for livestock (Rolo 
and Moreno 2019) and harbour significant levels of biodi-
versity (Lopez-Sanchez et al. 2016).

Quercus suber has a significant regional importance for 
the primary sector, and has been the subject of numerous 
studies, for example on population structure (Pina-Martins 
et al. 2019; Ramírez-Valiente et al. 2010; Soto et al. 2007; 
Vanhove et al. 2021), adaptation (Modesto et al. 2014; 
Pina-Martins et al. 2019; Vanhove et al. 2021), hybridisa-
tion (Belahbib et al. 2001; Burgarella et al. 2009; López 
de Heredia et al. 2020; Staudt et al. 2004) and biogeogra-
phy (López‐de‐Heredia et al. 2005, 2007a; Lumaret et al. 
2005; Magri et al. 2007; Simeone et al. 2018; Vila-Viçosa 
et al. 2020).

Intraspecific genetic diversity in Q. suber can be consid-
ered moderate to low and reflects a weak structure along 
a longitudinal axis (Pina-Martins et al. 2019), but specific 
regions, in particular along the southern margins of its 
distribution range, are known to harbour higher levels of 
genetic diversity (Sousa et al. 2022). Genetic studies in Q. 
suber have analysed both nuclear data (Burgarella et al. 
2009; López de Heredia et al. 2020; Pina-Martins et al. 
2019; Vanhove et al. 2021) and chloroplast data (cpDNA), 
which can be informative in population-level studies of 
terrestrial plant groups. The chloroplast genome is non-
recombinant, usually maternally inherited and haploid, 
meaning that chloroplast DNA variants, or haplotypes, 
should become more rapidly fixed within populations, i.e. 
have a shorter coalescence time, compared to nuclear (dip-
loid) allelic variants (Mariac et al. 2014; Petit and Ven-
dramin 2007). Thus, chloroplast genomic data may provide 
insights on recent demographic and hybridisation events 
(López de Heredia et al. 2020; Pham et al. 2017).

Chloroplast haplotypes in Q. suber have been investi-
gated using RFLP and PCR–RFLP markers (Jiménez et al. 
2004; López‐de‐Heredia et al. 2005, 2007a, b; Lumaret 
et al. 2005; Lumaret and Jabbour-Zahab 2009), micros-
atellites (Magri et al. 2007) and sequence data (Belahbib 

et al. 2001; López de Heredia et al. 2020; Simeone et al. 
2018). The different types of data have shown the pres-
ence of two or more haplogroups, which have been inter-
preted as the result of introgression events, possibly with 
adaptive influence, between Q. suber and other oak spe-
cies (Jiménez et al. 2004; Lumaret and Jabbour-Zahab 
2009; López de Heredia et al. 2017), as a consequence 
of isolation and subsequent expansion from glacial refu-
gia (López de Heredia et al. 2007a; Lumaret et al. 2005) 
or as a product of Miocene plate tectonics (Magri et al. 
2007). Reconstructing haplotype patterns from multiple 
chloroplast sequences and sampling broadly across the 
distribution range of Q. suber may bring new insights and 
enable a stronger resolution of haplotype diversity and 
distribution in this species, compared to earlier inferences 
made from RFLPs, microsatellites and single chloroplast 
regions. The main questions to address are whether chlo-
roplast haplotype diversity in Q. suber is geographically 
structured, and whether it reflects ancient diversification 
or was instead shaped mostly by hybridisation events with 
other Quercus L. species. In addition, haplotype sequence 
data analysis may show which regions harbour the most 
genetic diversity in the chloroplast genome.

Here we expand the data set of Costa et al. (2011) based 
on three chloroplast intergenic regions (trnL-F, trnS-psbC 
and trnH-psbA) by sampling additional populations and 
by including the matK gene, which is considered a reliable 
marker for retrieving chloroplast phylogenies (Hochbach 
et al. 2018). The matK gene has been proposed as a bar-
code marker for plants (CBOL Plant Working Group. 2009) 
and has indeed been tested as a barcode marker for genus 
Quercus (Piredda et al. 2011; Simeone et al. 2013). We con-
duct diversity and phylogenetic analyses on our expanded 
dataset with the objective of generating a detailed characteri-
sation of chloroplast diversity and its geographical distribu-
tion across the distribution range of Q.suber. We compare 
our results with earlier analyses of Q. suber cpDNA and use 
a time-calibrated analysis to elaborate on the origin of Q. 
suber chloroplast genome diversity.

Materials and methods

Sampling and DNA sequencing

Samples of Quercus suber (subgenus Cerris, sect. Cerris) 
originated from 26 sites representing the entire natural range 
of the species. A map showing all sampling sites and the 
natural distribution of Q. suber was generated based on Cau-
dullo et al. (2017) (Fig. 1).

Diversity measures were estimated at a regional level by 
combining sites of each country. Leaf material was sam-
pled in situ from natural stands in eight sites in Portugal 
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(Gerês, Serra da Estrela, Serra de São Mamede, Serra da 
Arrábida, Serra de Monchique, Serra do Buçaco, Azeitão 
and Serra de Sintra). The remaining samples (Portugal: 
São Brás de Alportel; Spain: Cataluña, Montes de Toledo, 
Haza del Lino, Sierra de Aracena, Sierra Morena, Sierra 
de Guadarrama; Italy: Puglia, Lazio, Sicily; France: Var, 
Landes, Corsica; Algeria: Forêt des Guerbès; Tunisia: 
Mekna, Fernana; Morocco: Taza, Kenitra) were obtained 
from a cork oak provenance trial (FAIR I CT 95 0202) 
established in 1998 at Herdade Monte da Fava (Santiago 
do Cacém, Portugal; 8°7′ W, 38°00′ N) as part of the Euro-
pean Forest Genetic Resources Programme (EUFORGEN; 
Varela 2003). Samples from nine additional Quercus 
species (subgenus Cerris, sect. Ilex: Q. coccifera L., Q. 
ilex L., Q. rotundifolia; sect. Cerris: Q. cerris L.; sub-
genus Quercus, sect. Quercus: Q. canariensis Willd., Q. 
faginea Lam., Q. lusitanica Lam., Q. pyrenaica Willd.; 
sect. Lobatae: Q. rubra L.) and from an outgroup species 
in the Fagaceae (Castanea crenata Siebold & Zucc.) were 
also sampled. Quercus rotundifolia is often considered a 
subspecies of Q. ilex (e.g. López de Heredia et al. 2007a). 
Here we follow the classification of the Plants of the World 
index (https://​powo.​scien​ce.​kew.​org) that places Quercus 
ilex subsp. rotundifolia (Lam.) O.Schwarz ex Tab.Morais 
in synonymy under Q. rotundifolia Lam. All these oak 
species have native distribution ranges that overlap with 

the natural distribution of Q. suber, except for Q. rubra, 
which is introduced in Europe. All leaf material, corre-
sponding to 181 samples, was stored at −80 °C until DNA 
extraction. Sampled taxa and sampling sites, with the cor-
responding site codes, are presented in Table 1.

Leaf tissue was manually ground using liquid nitrogen 
and genomic DNA was extracted with the DNeasy Plant 
Mini Kit (Qiagen) following the manufacturer’s protocol. 
Four chloroplast markers (intergenic spacer regions trnL-
F, trnS-psbC, trnH-psbA and the matK gene, in part) were 
amplified by PCR in a final volume of 25 μL with the follow-
ing conditions: denaturation step at 94 °C (5’’); 30 cycles of: 
denaturation at 94 °C (20’’), annealing at 65 °C (for cpDNA 
intergenic spacers) or 55 °C (for matK) (30’’), extension at 
72 °C (40’’); final extension step at 72 °C for 7 min. Primer 
pairs were obtained from earlier publications (matK: Cué-
noud et al. 2002; trnH-psbA: Kress et al. 2005;  trnL-F: 
Taberlet et al. 1998; trnS-psbC: Nishizawa & Watano 2000). 
Amplified PCR products were verified by gel electrophore-
sis and purified with SureClean (Bioline). Sequencing of 
PCR products was done using the BigDye v3.1 chemistry 
(Applied Biossystems,USA), in house, on an ABI prism 
310 automated sequencer, and by outsourcing to Macrogen 
(South Korea). Sequences were edited with Sequencher 
v4.0.5 (Gene Codes Corporation).

Fig. 1   Map of sampling sites. Map showing the natural distribution of Quercus suber (grey) and the location of sampling sites (black circles). 
For each site, the presence of haplotypes of either haplogroup is indicated by green (suber I) and orange (suber II) squares

https://powo.science.kew.org
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Alignment, diversity estimates and phylogenetic 
analyses

Four individual matrices (matK, trnH-psbA, trnL-F, 
trnS-psbC) were aligned using the software MAFFT v. 
7.2 (Katoh and Standley 2013), using a gap penalty of 
1 and a maximum of 10 iterative refinements (mafft –op 

1.0 –maxiterate 10). The four chloroplast marker align-
ments were concatenated using the script catfasta2phyml.
pl (https://​github.​com/​nylan​der/​catfa​sta2p​hyml).

The package “pegas” (v. 1.1; Paradis 2010) imple-
mented in R v. 3.6.3 (R core Team 2013) was used to 
estimate the number of haplotypes, haplotype and nucleo-
tide diversity, and to test for demographic change using 

Table 1   Sampling

List of sampled taxa, taxon/site acronyms, sampling sites, number of samples per site, country and site geo-
graphic coordinates

Taxon Acronym Sampling site N samples Country Coordinate

Castanea crenata CCR_VRL VilaReal 1 Portugal 41° 17’ N 7° 44’ W
Quercus cerris QCE_ITA Greve in Chianti 1 Italy 43º 35’ N 11º 18’E
Quercus canariensis QCA_LIS Lisboa 1 Portugal 38º 45’ N 9º 17’W
Quercus coccifera QCO_CAS Cascais 4 Portugal 38º 72’ N 9º 09’W
Quercus faginea QFA_ARR​ Serra da Arrábida 1 Portugal 38º 50’ N 9º 03’W
Quercus ilex QIL_FRA Narbonne 2 France 43º 09' N 3º 03’E
Quercus lusitanica QLU_NEG Negrais 1 Portugal 38º 52’ N 9º 17’W
Quercus pyrenaica QPY_EST Serra da Estrela 1 Portugal 40º 32' N 7º 51'W
Quercus rotundifolia QRO_ARR​ Serra da Arrábida 5 Portugal 38º 50’ N 9º 03’W

QRO_EDS Ermidas do Sado 3 Portugal 38º 00' N 8º 07'W
QRO_EST Serra da Estrela 4 Portugal 40º 32' N 7º 51'W
QRO_FAT Fátima 1 Portugal 39º 37' N 8º 40'W
QRO_SSM Serra de São Mamede 9 Portugal 39º 23' N 7º 22'W

Quercus rubra QRU_LIS Lisboa 1 Portugal 38º 45’ N 9º 09’W
Quercus suber QSU_MEK Mekna 5 Tunisia 36º 57' N 8º 51'E

QSU_FER Fernana 5 Tunisia 36º 35' N 8º 32'E
QSU_ALG Forêt de Guerbès 8 Algeria 36º 54' N 7º 15'E
QSU_TAZ Taza 5 Morocco 34º 12' N 4º 15'W
QSU_KEN Kenitra 5 Morocco 34º 05' N 6º 35'W
QSU_GUA​ Sierra de Guadarrama 5 Spain 40º 31' N 3º 45'W
QSU_TOL Montes de Toledo 5 Spain 39º 22' N 5º 21'W
QSU_HDL Haza del Lino 5 Spain 36º 50' N 3º 18'W
QSU_MOR Sierra Morena 4 Spain 38º 24' N 4º 16'W
QSU_ARA​ Sierra de Aracena 5 Spain 37º 54’ N 6º 44’W
QSU_CAT​ Cataluña 5 Spain 41º 51' N 2º 32'E
QSU_VAR Var 3 France 43º 08'  N 6º 15'E
QSU_LAN Landes 5 France 43º 45' N  1º 20'W
QSU_COR Corsica 3 France 41º 37' N  8º 58'E
QSU_PUG Puglia 5 Italy 40º 34' N 17º 40'E
QSU_LAZ Lazio 5 Italy 42º 25' N 11º 57'E
QSU_SIC Sicily 3 Italy 37º 07' N 14º 30'E
QSU_GER Gerês 5 Portugal 41º 40' N 8º 10'W
QSU_EST Serra da Estrela 5 Portugal 40º 32' N 7º 51'W
QSU_BUC Serra do Buçaco 10 Portugal 40º 22' N 8º 21'W
QSU_SIN Serra de Sintra 5 Portugal 38º 45’ N 9º 25'W
QSU_ARR​ Serra da Arrábida 10 Portugal 38º 50’ N 9º 03’W
QSU_AZT Azeitão 10 Portugal 38º 30' N 9º 02'W
QSU_SSM Serra de São Mamede 5 Portugal 39º 23' N 7º 22'W
QSU_SBA São Brás de Alportel 5 Portugal 37º 20' N 7º 56'W
QSU_MON Serra de Monchique 10 Portugal 37º 19’ N 8º 34’W

https://github.com/nylander/catfasta2phyml
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Tajima’s D (Tajima 1989) and R2 (Ramos-Onsins and 
Rozas 2002).

Maximum-parsimony (MP) trees were inferred from the 
cpDNA alignment using the program TNT v 1.1 (Goloboff 
et al. 2008) and a “traditional search” on the Phylogeny.
fr server (http://​www.​phylo​geny.​fr/). Branch support was 
estimated from a standard bootstrapping with 1000 rep-
licates. Substitution models were inferred for the concat-
enated cpDNA alignment using jModelTest v. 2.1 (Darriba 
et al. 2012) with three substitution schemes and Akaike 
Information Criterion (AIC) calculations. A maximum-
likelihood (ML) full bootstrap analysis of each alignment, 
with 1000 replicates, was run on RaxML v. 8.2.4 (Stama-
takis 2014) using the best-fitting models inferred with AIC 
(concatenated matrix: GTR) and the gamma model of rate 
heterogeneity.

A reduced cpDNA alignment with only one sequence 
per haplotype (46 sequences) was analysed on BEAST v 
2.6.7 (Bouckaert et al.2014), under the GTR substitution 
model and a discrete four category gamma model of site 
rate heterogeneity. A prior was defined for the monophyly 
of genus Quercus. A lognormal prior on the TMRCA for the 
genus was set with a mean in real space of 56E6 (Hipp et al. 
2020) and a stdev of 0.05. A relaxed lognormal clock model 
was applied, with a lognormal prior for ucldmean (mean 
[real space] = 1.8E-9; stdev = 0.05; adapted from Sousa 
et al. 2014) and a gamma prior for ucldstdev (α = 0.5396, 
β = 0.3819). The Yule model was chosen as the tree prior, 
and a gamma prior (alpha = 0.001, beta = 1000) was used for 
“birthrate”. The analysis ran for 100E6 MCMC generations 
on the CIPRES Science gateway (Miller et al. 2011). The 
run was validated using Tracer v 1.7.2., and all parameters 
had ESS > 200 after a 10% burnin. A maximum clade cred-
ibility tree and branch support values were obtained with 
TreeAnnotator v 2.6.7.

A haplotype parsimony network was built from the con-
catenated cpDNA data set with the R package “pegas” and 

the “haploNet” function, which uses the uncorrected P or 
Hamming distance and pairwise deletion of missing data.

Results

Analyses of cpDNA sequence data

The concatenated matrix of cpDNA from 181 samples has 
2006 base-pairs (bp) in length (matK: 897 bp; trnH-psbA: 
478 bp; trnL-F: 381 bp; trnS-psbC: 250 bp), of which 46 are 
parsimony-informative sites (matK:12; trnH-psbA:18; trnL-
F: 8; trnS-psbC:8), and contains 17 indels corresponding to 
52 positions with gaps. The largest indel has 11 bp, and 7 
indels have 1 bp.

Indels were not coded prior to analyses, i.e. gaps were 
considered as missing data. This data set, that includes ten 
sampled Quercus lineages and the outgroup, comprised 46 
haplotypes. Among the 146 Q. suber samples, 29 haplo-
types were found. Of these, nine (31%) were singletons, i.e. 
occurred in a single sample. The most frequent haplotype 
(XVIII) was found in 25 samples from Spain, France and 
Italy. The second most frequent haplotype (XXII) was found 
in 23 samples from Portugal. Haplotype II was found to be 
shared by Q. canariensis, Q. faginea and Q. pyrenaica, 
which is in accordance with earlier findings (Petit et al. 
2002). The full list of samples and corresponding haplotypes 
is presented in Online Resource 1.

Results of haplotype diversity estimates for Q. suber are 
presented in Table 2.

The countries with most haplotypes found were Portu-
gal (12), Spain (6) and Italy (5). Haplotype diversity ranged 
from 0 (Tunisia) to 0.83 (Portugal). The highest nucleotide 
diversity was found in Morocco (0.005). Tajimas’D statistic 
was negative in all sites except for Portugal, with significant 
values in Algeria, France and Italy, whereas the lowest sig-
nificant values of the R2 test were found in France and Italy.

Table 2   Haplotype diversity in Quercus suber 

Number of samples per country (n), number of haplotypes (n hap.), list of haplotypes, haplotype diversity (h), nucleotide diversity (π), and 
values of Tajima’s (D) and Ramos-Onsins and Rozas (R2) tests. P values are marked with * for p < 0.05, ** for p < 0.01 and (**) for p < 0.01 
assuming that D follows a beta distribution after rescaling

Country n n hap list of haplotypes h π D R2

Tunisia 10 1 XLVI 0 0 NA NA
France 11 2 XVIII, XXXVII 0.5090909 0 −3.058243** 0**
Algeria 8 3 XIX, XX, XXI 0.6785714 0.004493851 −1.742331(**) 0.121503
Morocco 10 3 XLII, XLIII, XLIV 0.6444444 0.00507775 −1.428886 0.1247222
Italy 13 5 XXXIX, XXXVII, XVIII, XL, XLI 0.7564103 0.0001428831 −2.653312** 0.09025723*
Spain 29 6 XVIII, XXXI, XXXII, XXXIII, XXXIV, XXXV 0.6305419 0.003984574 −0.3558388 0.1149667
Portugal 65 12 XLV, XXII, XXIII, XXIV, XXIX, XXV, XXVI, 

XXVII, XXVIII, XXX, XXXVI, XXXVIII
0.8288462 0.004531428 0.01553798 0.1055695

http://www.phylogeny.fr/
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In parsimony analyses of the complete data set of 181 
individuals, 20 trees were retained after 157,888,177 rear-
rangements. The complete maximum parsimony consensus 
tree is shown in Online Resource 2, and a reduced MP con-
sensus tree inferred from one sequence of each haplotype is 
shown in Fig. 2.

Taxa belonging to section Quercus, namely Q. canarien-
sis (QCA), Q. faginea (QFA), Q. pyrenaica (QPY), which 
share the same haplotype (II), and Q. lusitanica (QLU), form 
a fully supported clade (BS = 100). The placement of Q. 
rubra (QRU) as sister to the remainder of the ingroup is also 
supported (BS = 100), as is the grouping of the two Q. coc-
cifera (QCO) haplotypes. Samples belonging to Q. suber are 
recovered in two distinct clades: a supported clade (BS = 88 
in MP analyses) comprising solely Q. suber lineages from 
all countries and corresponding to 13 haplotypes (henceforth 
referred to as the suber I group); an unsupported clade com-
prising Q. suber samples from Portugal, Spain, Morocco and 
Algeria, corresponding to 16 haplotypes (henceforth referred 
to as the suber II group), in which Q. ilex haplotypes appear 
nested in Q. suber lineages. Relationships among Q. suber 

haplotypes are largely unresolved, particularly within the 
suber I group. The two most frequent haplotypes (XVIII, 
XXII) are included in the suber I clade. Relationships 
between haplotypes from different taxa are not supported, 
except for the placement of Q. cerris (QCE) as sister to the 
suber I group (BS = 92 in MP analyses).

The time-calibrated analysis of the reduced cpDNA 
alignment using BEAST (Fig. 3) also recovers two Q. suber 
clades, both with full support (PP = 1.0), and Q. cerris fully 
supported as sister to the suber I group. A clade composed 
of three Q. rotundifolia haplotypes (XII, XIII, XIV) and the 
two Q. coccifera haplotypes (IV, V) is also fully supported. 
Full support was also obtained for the group comprising 
all Quercus haplotypes except Q. rubra and Q. rotundifolia 
haplotype XI.

Branches between the two suber haplogroups are mostly 
unsupported. Node height estimates place the root of genus 
Quercus at 55.25 Myr (height 95% HPD: 49,804,501.61; 
60,605,566.97). The split between Q. cerris and Q. suber 
is estimated at 21.1 Myr (height 95% HPD: 8,957,266.84; 
35,020,741.65). The age of the suber I group is estimated at 

Fig. 2   Phylogenetic reconstruction of Quercus suber haplotypes 
under parsimony. Tree showing the phylogenetic reconstruction pro-
duced by a parsimony analysis of the chloroplast sequence data using 
TNT. This simplified tree is derived from the strict consensus clad-
ogram of 20 most parsimonious trees (Online Resource 2) by merging 
all tips corresponding to the same haplotype (46 haplotypes). Haplo-

type numbers are presented in roman numerals. Tip labels show full 
acronyms for Q. suber, Q. rotundifolia and Q. ilex samples but are 
shortened for other taxa. Q. suber haplotypes are highlighted in green 
(suber I) and orange (suber II). Branches with bootstrap support equal 
or greater than 80 in at least one of the analyses (maximum parsi-
mony and maximum likelihood) are marked with*
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16.49 Myr (height 95% HPD: 6,483,671.34; 28,170,912.6), 
whereas the age of the suber II group is estimated to be 23.24 
Myr (height 95% HPD: 11,615,111.29; 36,610,615.62).

The parsimony haplotype network built with the uncor-
rected P distance and showing the different taxa is presented 
in Fig. 4.

Quercus suber haplotypes appear divided into two groups, 
separated by intermediate Q. rotundifolia haplotypes and the 
Q. cerris haplotype. The suber I group, comprising 13 Q. 
suber haplotypes, is separated from the Q. cerris haplotype 
by seven evolutionary steps (mutations). The suber II group, 
comprising 12 Iberian and north African Q. suber haplotypes 
and the Q. ilex haplotype, is separated from Q. rotundifolia 
by seven steps. Haplotypes in both suber groups are separated 
by 1–3 steps, except in one case in the suber II group, where 
six steps separate two of the haplotypes. Six steps separate a 
group formed by three Q. rotundifolia haplotypes and the two 
Q. coccifera haplotypes, the latter at a distance of seven steps 
from the closest Q. rotundifolia haplotype.

Discussion

Our analyses agree with earlier findings that revealed the 
existence of two main chloroplast haplogroups in Q. suber 
(Jiménez et al. 2004; López de Heredia et al. 2005, 2007a, 
b, 2020; Lumaret et al. 2005; Lumaret and Jabbour-Zahab 
2009; Simeone et al. 2018). We identify a widespread 
group, suber I, and a western group, suber II, which is only 
present in the Iberian Peninsula and NW Africa. Group 
suber I appears as sister to Q. cerris in all trees, which is 
in accordance with the taxonomic treatment and with the 
phylogeny of genus Quercus, that place Q. suber in section 
Cerris (Denk et al. 2017; Hipp et al. 2020; Hubert et al. 
2014; Zhou et al. 2022), i.e. closest to Q. cerris than to any 
of the other Quercus species sampled herein. Suber I may 
correspond to what has been considered the primary chlo-
roplast lineage in Q. suber, and referred to as the “suber” 
chloroplast lineage, as opposed to the “ilex” chloroplast 

Fig. 3   Time-calibrated phylogenetic reconstruction of Quercus suber 
haplotypes. Tree showing the phylogenetic reconstruction produced 
by a time-calibrated analysis of the 46 haplotypes in BEAST2. The 
inferred tree is scaled to geological time in units of million years 

(Myr). Branch support values represent posterior probabilities. Hap-
lotype numbers are presented in roman numerals. Q. suber haplotypes 
are highlighted in green (suber I) and orange (suber II). Pli Pliocene; 
Ple Pleistocene
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lineage (Lumaret et al. 2005; Simeone et al. 2018). Suber 
II appears either unresolved (MP and ML trees) or nested 
within Q. rotundifolia, without support (BEAST tree), and 
is separated from suber I, in the haplotype network, by six 
intermediate haplotypes of Q. rotundifolia and Q. cerris. 
This pattern raises questions on the origin and persistence 
of the two Q. suber chloroplast lineages, which could be 
explained by two biological scenarios. The first would be 
incomplete lineage sorting, meaning that Q. suber retained 
two ancestral chloroplast lineages within its distribution 
range. The second would be ancient introgression between 
Q. suber and Quercus sect. Ilex. Both these processes have 
been invoked to explain haplotype diversity in Quercus 
sect. Cerris (Simeone et al. 2018). Our analyses show an 
ancient origin of both Q. suber chloroplast lineages but 
also the presence of different haplogroups in Quercus sect. 
Ilex, as well as a lack of support for relationships between 
the two sections. These results are compatible with a sce-
nario of incomplete lineage sorting, i.e. the persistence of 
ancestral chloroplast lineages within both Q. suber and Q. 
rotundifolia, but do not negate the possibility that haplo-
types in suber II derive from introgression events between 

Q. suber and Q. rotundifolia/Q. ilex, as these two species 
were not sampled across their entire range, and a more 
complete sampling may have shown a pattern more indica-
tive of hybridisation.

The recovery of the Q. ilex haplotype nested within suber 
II confirms the existence of genetic exchange between Q. 
ilex and Q. suber. Hybridisation between these two species 
has been widely described (Belahbib et al. 2001; López de 
Heredia et al. 2017; Lumaret et al. 2009) and Q. suber is 
considered to be the paternal donor in most cases (Belahbib 
et al. 2001; López de Heredia et al. 2020), although some 
authors do not recognise a directional hybridisation pattern 
in these two taxa (Burgarella et al. 2009; López de Heredia 
et al. 2017; Lumaret et al. 2009). The observed pattern sug-
gests that the Q. ilex haplotype is derived from a Q. suber 
haplotype present in a diversified suber II group. However, 
both Q. ilex and Q. rotundifolia are not broadly sampled in 
our data set, and a putative introgression event where Q. 
ilex is the paternal donor is likely to be uncommon. The 
parsimony haplotype network supports the hypothesis of 
suber II originating through introgression, as the two Q. 
suber chloroplast groups are separated by intermediate 

Fig. 4   Haplotype parsimony network. Statistical parsimony network 
(TCS) of haplotypes constructed from the chloroplast sequence data 
set using the R package “pegas”. Haplotype numbers are presented in 

roman numerals. Quercus suber haplotypes are highlighted in green 
(suber I) and orange (suber II). Dashes on each link represent evolu-
tionary steps between haplotypes
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haplotypes of Q. rotundifolia. However, haplotype network 
reconstruction is not robust to small changes in our data set. 
It was observed that the simple removal of Q. cerris and of 
parsimony-informative site 458, for example, results in a 
network showing the two suber haplotype groups connected, 
without intermediate haplotypes from other taxa (Online 
Resource 3).

Age estimates obtained under a relaxed clock recover 
the origin of Quercus at c. 55 Myr, in accordance with ear-
lier analyses that placed the origin of the genus at 55–56 
Myr (Hipp et al. 2020; Hubert et al. 2014). The option for 
a relaxed clock was considered appropriate given the inclu-
sion of different Quercus species and the outgroup. Crown 
age estimates for the two suber haplotype groups and for the 
Q. suber/Q. cerris clade point to the late Oligocene/early 
Miocene, and are thus compatible with the dates proposed 
by Magri et al. (2007) for the diversification of Q. suber 
haplotypes. Our age estimates have a large margin of error, 
as indicated by the height posterior density (HPD) intervals, 
and must be considered as only an approximation. Neverthe-
less, these estimates suggest that the two haplotype lineages 
were present in Q. suber well before the Pleistocene, and 
therefore that putative introgression events with Q. ilex/Q. 
rotundifolia (Jiménez et al. 2004; Lumaret and Jabbour-
Zahab 2009) originating suber II haplotypes would likely 
have occurred before glaciations associated with that epoch.

If the suber II haplogroup was indeed acquired through 
modern introgression between Q. suber and Q. ilex/Q. rotun-
difolia, the latter corresponding to seed-bearing donors, then 
all sampled suber II haplotypes in our trees would have to be 
derived from multiple unsampled Q. ilex or Q. rotundifolia 
haplotypes. Ancient introgression between Q. suber and an 
ancestral lineage in Quercus sect. Ilex, during the Miocene, 
could nevertheless be a valid possibility, assuming that both 
lineages were already well differentiated, although the Q. 
coccifera/Q. ilex haplotype split is estimated at c.9 Myr in 
our analysis (Hipp et al. 2020 estimated the species split at 
c.10 Myr), and is thus more recent than the suber II group. 
The hypothesis of ancient reticulations explaining the pres-
ence of different chloroplast lineages in Quercus sects. Cer-
ris and Ilex has been postulated earlier (e.g. Simeone et al. 
2016, 2018). These reticulations may have occurred as mul-
tiple independent events, and haplotypes would have become 
fixed due to genetic drift associated with demographic 
changes. However, our current sampling of Quercus sect. 
Ilex is insufficient to fully verify the hypothesis of ancient 
reticulation events originating the two distinct haplogroups.

An alternative explanation for the observed pattern would 
be incomplete sorting of chloroplast lineages in Q. suber. 
Manos et al. (1999) hypothesised the persistence of cpDNA 
polymorphisms through the diversification of Quercus, 
and highlighted the lack of a clear discriminating signal of 
Quercus plastid data at infrageneric level. Li et al. (2022) 

have reported long-term persistence of ancestral chloroplast 
lineages in East Asian oaks. Lumaret et al. (2005) also pre-
dicted the existence of two native Q. suber haplogroups, 
rather than a native and an introgressed lineage, and Sime-
one et al. (2009) postulated that sharing of ancestral cpDNA 
polymorphisms in sect. Cerris is highly probable.

Besides Q. suber, one of the hypothetical maternal donors 
under the introgression scenario, Q. rotundifolia, does not 
possess a single chloroplast lineage either. This pattern is 
consistent with the findings of Simeone et al. (2016) who 
reported a non-monophyly of plastomes in Quercus sect. 
Ilex, which was attributed to a combination of incomplete 
lineage sorting and putative introgression. Vitelli et  al. 
(2017) also identified different lineages in Quercus sect. Ilex 
which followed a clear geographical structuring. Samples 
of Q. rotundifolia do not cluster together in our phyloge-
netic analyses, and indeed display a pattern that is compat-
ible with the retention of different chloroplast lineages. For 
example, three Q. rotundifolia haplotypes (XII, XIII, XIV) 
form a supported clade with the Q. coccifera haplotypes (IV, 
V) in the BEAST tree (Fig. 3), and are readily identified in 
the haplotype network (Fig. 4). These haplotypes may corre-
spond to what Simeone et al. (2016) named the “EuroMed” 
lineage of sect. Ilex plastomes.

Persistence of ancestral polymorphisms is a product of 
both rapid diversification and large effective population sizes 
(Pamilo and Nei 1988; Maddison and Knowles 2006). If 
ancestral Q. suber populations experienced rapid growth 
before a single chloroplast lineage could be fixed through-
out the entire species range, then the two haplogroups could 
have persisted without major constraints for long periods. 
Diversification in Quercus species has been related to eco-
logical opportunity due to a mid-Miocene temperature 
decrease (Graham 2011; Hipp et al. 2020), which may have 
promoted population expansion as well as speciation. Large 
effective population sizes throughout the Miocene may have 
enabled the retention of different chloroplast lineages up to 
the Pleistocene, when glaciation cycles caused range con-
tractions in tree species north of the Mediterranean, that 
affected Q. suber (López de Heredia et al. 2007a; Vessella 
et al. 2015). Range contractions and decreased effective 
population sizes during glaciation periods would in theory 
have favoured the fixation of polymorphisms and chloroplast 
lineages. To explain the persistence of the two suber haplo-
groups, assuming they both have an ancestral origin, perhaps 
a vicariance process must be invoked. Vicariance could have 
resulted from contraction, during Pleistocene glacial max-
ima, into disconnected refugia in which either haplogroup, 
suber I or II, would become fixed. The geographical distri-
bution of the suber II group may support the hypothesis of 
a separation of the two lineages, since Q. suber haplotypes 
in this group were only found in the Iberian Peninsula and 
northwestern Africa, whereas suber I is found throughout the 
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distribution range of the species. Haplotypes of the suber II 
group may have become fixed in refugia located in the Ibe-
rian Peninsula and northwestern Africa (see Vessella et al. 
2015), and post-glacial secondary contact between formerly 
isolated populations holding either suber I o II would then 
have allowed for the coexistence of the two haplogroups in 
these regions. Alternatively, new areas of suitable habitat 
for Q. suber may have become available around southern 
refugia, as hypothesised by Vesella et al. (2015), allowing 
for the maintenance of a large effective population and the 
presence of the two haplogroups. The current presence of 
the two lineages in the Iberian Peninsula and northwestern 
Africa but not in the remaining distribution range could be 
explained by the generally larger effective sizes of Q. suber 
populations in these regions, more recent colonisation of 
the northern and eastern parts of the species distribution 
range and low dispersal of suber I seeds across the Pyrenees, 
although a degree of adaptive leverage of either haplogroup 
cannot be excluded (see Pham et al. 2017 and López de 
Heredia et al. 2017). Regarding cpDNA diversity among 
regions, Algeria, Morocco, Spain, Italy and Portugal stand 
out as having large haplotype diversity and more than one 
private haplotype. Values of Tajima’s D statistic were gener-
ally negative, with statistical significance in France and Italy. 
This deviation from neutrality indicates recent population 
expansion. Like other Mediterranean tree species, Q.suber 
is known to have expanded northwards after contracting dur-
ing the last glaciation period (López de Heredia et al. 2007a; 
Vessella et al. 2015), and signal of population expansion 
should therefore be detectable, particularly in the northern 
part of the Q. suber distribution range, where post-glacial 
colonisation is likely to be more recent.

Conclusions

We identified two cpDNA haplogroups within the distribu-
tion range of Q. suber, in agreement with earlier studies on 
Q. suber chloroplasts. One of these haplogroups occurs only 
in the Iberian Peninsula and northwestern Africa, while the 
other is present across the species range. Age estimates point 
to a Miocene diversification of both haplogroups, suggest-
ing a scenario involving the retention of ancient chloroplast 
lineages or the occurrence of ancient introgression events 
between Q. suber and Q. sect. Ilex. Differential fixation of 
these chloroplast lineages in refugia and recent population 
expansion may explain their persistence through glaciation 
periods and their present-day geographical distribution. Our 
results highlight the complexity of chloroplast genealogies 
in Q. suber, Q. ilex and Q. rotundifolia, and suggest that 
obtaining more data, such as whole chloroplast sequences, 

may be required to fully understand the processes behind 
chloroplast diversity in these Mediterranean oak species.
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