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Abstract
In the hyperarid Atacama Desert, water availability plays a crucial role in allowing plant survival. Along with scant rainfall, 
marine advective fog frequently occurs along the coastal escarpment fueling isolated mono-specific patches of Tillandsia 
vegetation. In this study, we investigate the lipid biomarker composition of the bromeliad Tillandsia landbeckii (CAM plant) 
to assess structural adaptations at the molecular level as a response to extremely arid conditions. We analyzed long-chain 
n-alkanes and fatty acids in living specimens (n = 59) collected from the main Tillandsia dune ecosystems across a 350 km 
coastal transect. We found that the leaf wax composition was dominated by n-alkanes with concentrations (total average 
160.8 ± 91.4 µg/g) up to three times higher than fatty acids (66.7 ± 40.7 µg/g), likely as an adaptation to the hyperarid envi-
ronment. Significant differences were found in leaf wax distribution (Average Chain Length [ACL] and Carbon Preference 
Index [CPI]) in the northern zone relative to the central and southern zones. We found strong negative correlations between 
fatty acid CPI and n-alkane ACL with precipitation and surface evaporation pointing at fine-scale adaptations to low mois-
ture availability along the coastal transect. Moreover, our data indicate that the predominance of n-alkanes is reflecting the 
function of the wax in preventing water loss from the leaves. The hyperarid conditions and good preservation potential of 
both n-alkanes and fatty acids make them ideal tracers to study late Holocene climate change in the Atacama Desert.
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Introduction

The Atacama Desert is considered to be one of the oldest 
and most arid deserts on Earth and is an extreme habitat for 
life development (McKay et al. 2003; Hartley et al. 2005). 
The aridity in the Atacama Desert is caused principally by 
cold coastal waters that characterize the Humboldt Current 
and the upwelling of cold deep water to the surface, which 
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creates an atmospheric thermal inversion preventing precipi-
tation along the coastal zone (Houston and Hartley 2003). 
The aridity is intensified by the rain shadow effect of the 
Andean Mountains that blocks the transfer of moisture from 
the Amazon basin (Houston and Hartley 2003; Cereceda 
et al. 2008; Garreaud et al. 2008). As a result, the Atacama 
Desert has a hyperarid core characterized by mean annual 
precipitation lower than 2 mm between 19 and 22°S (Rit-
ter et al. 2019; Voigt et al. 2020). Although the extremely 
low moisture supply to the Atacama Desert is not constant 
and varies geographically (e.g., latitude, distance inland and 
elevation), there is a clear latitudinal trend of the scarce pre-
cipitation increasing toward the north along the hyperarid 
core and over the coastal area (Schulz et al. 2011; Jaeschke 
et al. 2019; Reyers et al. 2021).

Besides infrequent rainfalls, marine advective fog from 
the Pacific Ocean is the most important source of moisture 
along the Atacama Desert (Cereceda et al. 2008; Lobos 
Roco et al. 2018; Schween et al. 2020; Del Río et al. 2021). 
Frequent coastal fog events are generally considered to be 
restricted to distances of up to a few kilometers from the 
coast and elevations of about 100–1200 m (Caviedes 1973; 
Prohaska 1973; García et al. 2021; Del Río et al. 2021). 
Beyond these elevations, hyperarid conditions limit the 
growth and survival of plants on the landscape and extensive 
areas without any vegetation exist, especially in the hyper-
arid core of Atacama Desert (Arroyo et al. 1988; Rundel 
and Dillon 1998; Schulz et al. 2011; Knief et al. 2020; Mer-
klinger et al. 2020). Orographic fog oases are common along 
this coast and allow the development of unique plant com-
munities (called lomas) of surprisingly high biodiversity in 
northern Chile and southern Peru (Rundel et al. 1991; Pinto 
et al. 2006; Merklinger et al. 2020). Fog corridors are une-
qually distributed and the hills are often isolated from each 
other by large expanses of barren landscape (García et al. 
2021). Among these hill formations, the “Tillandsiales” 
hills stand out with its unique vegetation communities spe-
cialized for living in the Atacama Desert. The dominant 
species of this type of formation is Tillandsia landbeckii 
Phil. (Bromeliaceae family), one of 15 species of the genus 
Tillandsia, that survive in such extremely arid conditions 
by developing specialized adaptations for water collection 
(Rundel et al. 1997; Rundel and Dillon 1998; Pinto et al. 
2006; Latorre et al. 2011). Of these 15, only three species 
are present in the coastal Atacama Desert of northern Chile: 
T. landbeckii, T. marconae Till & Vitek and rarely T. vire-
scens and T. capillaris Ruiz & Pavon (Rundel and Dillon 
1998; Schulz et al. 2011; Merklinger et al. 2020). The geo-
graphic distribution of T. landbeckii extends from southern 
Peru to the Coquimbo region in Chile (31.65°S) (Smith and 
Downs 1977; Till 1992) and is restricted to the occurrence 
and elevation of fog belts (Oka and Ogawa 1984; Ono 1986).

Most Tillandsia plants are growing epiphytically on 
sandy surfaces, rocks or other plants, while some species 
even grow unrooted (i.e., epiarenic) on bare sand (Run-
del et al. 1997; Rundel and Dillon 1998). The plants have 
no functional root system for water uptake therefore, they 
almost exclusively depend on the water and nutrients sup-
plied by coastal fog (Pinto et al. 2006; Westbeld et al. 2009; 
Borthagaray et al. 2010; Gonzalez et al. 2011; Raux et al. 
2020). The water uptake is carried out by highly special-
ized leaf trichomes unique to this plant family, which collect 
fog at night (Benzing et al. 1978; Rundel et al. 1997; Raux 
et al. 2020). The trichome of Tillandsia is formed by a shield 
of dead cells, with an unusually thick outer cell wall and 
located next to a cuticle which sits on top of the dome cell 
(Raux et al. 2020). The cuticle is an efficient and flexible 
barrier (Riederer and Schreiber 2001), constituted by cutine 
which is a structural component of this barrier composed of 
polyesters (Kolattukudy and Espelie 1985; Kunst and Sam-
uels 2003; Jetter et al. 2006) and waxes embedded in the 
cutine. The water permeability of the cuticle determines the 
minimal and unavoidable water loss when the stomata are 
maximally closed during dry periods (Schuster et al. 2016). 
This physiological adaptation to extreme water uptake effi-
ciency is accompanied by assimilation of carbon using Cras-
sulacean Acid Metabolism (CAM) (Benzing et al. 1978). 
CAM metabolism is distinguished by the night time fixation 
of CO2 into malic acid allowing stomata to open only at 
nights when humidity is higher (Osmond et al. 1989; Haslam 
et al. 2003). Although CAM or a flexible C3–CAM mode 
of carbon fixation is known from epiphytic Tillandsia spe-
cies of the coastal desert region (Rundel and Dillon 1998), 
foliar carbon isotope (δ13C) values of Tillandsia landbeckii 
of − 12.5 to − 14.3‰ (Latorre et al. 2011; Jaeschke et al. 
2019) are in the typical narrow range of values correspond-
ing to strong CAM species of bromeliads (Hermida-Carrera 
et al. 2020).

Leaf waxes of higher terrestrial plants are lipids that are 
insoluble in water (Bianchi and Canuel 2011) and contain 
a mixture of homologous series of long chain (> 23 carbon 
atoms) compounds such as fatty acids, n-alkanes, alcohols 
and aldehydes (Kunst and Samuels 2003; Koch and Ensikat 
2008; Tafolla-Arellano et al. 2013). These leaf waxes play 
an important role in plant physiology and ecology, being the 
first zone of protection, contact and interaction with other 
organisms, e.g., herbivores (Müller and Riederer 2005). Leaf 
waxes also have the function of limiting water loss through 
the cuticle, minimizing the exchange of gases (e.g., CO2, O2) 
and water (H2O), acting as a thermoregulator barrier (Jeffree 
2006; Jetter et al. 2006). Waxes also minimize the wettability 
and retention of dust particles and spores, and act as shield 
against insects and UV radiation (Tafolla-Arellano et al. 
2013). The n-alkyl waxes such as fatty acids and long-chain 
alkanes can be characterized by their dominant homologue, 
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total abundance, and distribution (Eglinton and Hamilton 
1967; Sharma et al. 2018; Dragota and Riederer 2009). The 
most common indices to evaluate distribution changes of 
these leaf waxes are the Carbon Preference Index (CPI), 
which measures the relative abundance of chain length 
with even over odd carbon dominance in long chain fatty 
acids or odd over even in n-alkanes (Eglinton and Hamilton 
1967; Sachse et al. 2006) and the average chain length index 
(ACL). Plant wax n-alkanes and fatty acids occur in modern 
and fossil leaves. Both are stable and long-lived molecules 
that can survive in the fossil record and thus serve as valua-
ble biomarkers for past environmental conditions potentially 
encompassing thousands or even millions of years in soils 
and sediments, respectively (Eglinton and Eglinton 2008; 
Bush and McInerney 2013; Diefendorf and Freimuth 2017; 
Finstad et al. 2018).

Previous investigations of Tillandsia plants in northern 
Chile have studied the geographic distribution, genetic diver-
sity, and the variation of stable carbon and nitrogen isotopes 
in their tissues reflecting the variability of water and nutri-
ent supply (Pinto et al. 2006; González et al. 2011; Latorre 
et al. 2011; Jaeschke et al. 2019; Koch et al. 2020; Merk-
linger et al. 2020). However, there are currently no reports 
on the specific composition of leaf waxes (fatty acids and 
n-alkanes) in these plants. The abundance and distribution 
of fatty acids and n-alkanes are important chemometric and 
environmental indicators, since according to their changes 
in abundance and distribution, changes in water availability, 
water stress and taxonomic prevalence can be inferred (Bush 
and McInerney 2013, 2015; Jaeschke et al. 2018; Andrae 
et al. 2019; Struck et al. 2020; Mörchen et al. 2021; Ruiz-
Ruiz et al. 2021). In addition, knowing the detailed composi-
tion of these waxes is the first step to more complex analyses 
such as compound-specific carbon, hydrogen and nitrogen 
isotope analyses, which can provide additional information 
of their photosynthetic metabolism and origin of their water 
source, respectively.

This study quantifies and compares the abundance and 
distribution (CPI and ACL) of leaf waxes, specifically long 
chain n-fatty acids (C24–C34) and n-alkanes (C23–C33) from 
individuals of Tillandsia landbeckii sampled along the 
coastal hyperarid core of Atacama Desert (18.47–21.21°S), 
and correlating with geographic (latitude, elevation, distance 
inland) and environmental (precipitation, temperature, sur-
face evaporation) characteristics. Our comprehensive survey 
of variation among Tillandsia-specific leaf waxes will pro-
vide new insights into unique adaptation strategies for life 
at the dry limit.

Material and methods

Study area and sampling strategy

The northwestern coast of South America is characterized 
by low rainfall and a coastal desert spanning from Peru to 
northern Chile, politically and geographically separated in 
Sechura Desert (Peruvian coast between Piura and Tacna) 
and Atacama Desert (Contreras et al. 2010). The Atacama 
Desert extends west of the central Andes between 15 and 
30°S across southern Peru and northern Chile (Houston 
and Hartley 2003). The coastal Cordillera in northern Chile 
with elevations of approximately 1000–1600 m a.s.l. sepa-
rates the narrow coastal plain from the broad Central Valley. 
The study area is located in the coastal mountain range of 
the Chilean Atacama Desert (Fig. 1). The climate is gener-
ally mild with uniform annual air temperature of 18.9 °C in 
Arica and 18.4 °C in Iquique (Schulz et al. 2011). Annual 
precipitation is extremely low (< 2 mm; Schulz et al. 2011; 
Reyers et al. 2021) and rainfall is largely restricted to austral 
winter (Houston 2006). Summer precipitation becomes more 
dominant in the northern Andean zone accounting for ca. 
30% of annual rainfall at Arica (Houston 2006; Schulz et al. 
2011). Fog occurs frequently along the coastal Cordillera 
when the massive marine Stratocumulus (Sc) cloud deck that 
covers a large portion of the subtropical southeast Pacific 
approaches the coastal cliff (Cereceda et al. 2008; Schween 
et al. 2020; Del Río et al. 2021). Advection of marine Sc air 
masses facilitate fog formation in the morning and evening/
night, while changes in air circulation during the afternoon 
produce thermal stratification that dissipates fog (Muñoz 
et al. 2016; Lobos Roco et al. 2018; Schween et al. 2020). 
The maximum spatial extent of fog typically occurs during 
the winter months from June to August (Del Río et al. 2018; 
Schween et al. 2020).

We examined nine of the largest Tillandsia ecosystems 
(Rundel et al., 1997; Pinto et al. 2006; Latorre et al. 2011; 
Koch et al. 2019) located in the coastal mountains at eleva-
tions of 900–1200 m a.s.l. between Arica and the Rio Loa 
Canyon (ca. 18.5–21.5°S) in March 2017 (Jaeschke et al. 
2019). Tillandsia landbeckii is the predominant species, 
but occasionally, T. virescens, T. capillaris and T. marconae 
coexist, in particular toward the northern range of occur-
rence close to the border with Peru (Rundel et al. 1997; Pinto 
et al. 2006; Merklinger et al. 2020). The communities are 
located at distances to the coast ranging from 3 km at site 
8 (Cerro Chipana) to about 27 km at site 9 located at Que-
brada Rio Loa (Fig. 1; Table 1). They form either dense units 
or sparse and isolated stands on W and SW facing slopes 
directly exposed to fog. Stem and leaf tissue from multiple 
specimens were collected from each Tillandsia landbeckii 
population to cover a range in elevation and assess natural 
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Fig. 1   a Map of the study area showing the locations of the Tilland-
sia fields along the Coastal Cordillera of the Atacama Desert in 
Northern Chile grouped in a northern (#1–3), central (#4–6) and 

southern (#7–9) zone. Photographs of the typical Tillandsia vegeta-
tion on small dunes at b Quebrada Camarones (#3) and c Cerro Oyar-
bide (#5) or attached to rocky surfaces at Cerro Chipana (#8)

Table 1   Location and environmental data of Tillandsia landbeckii 
fields in northern Chile. Precipitation (Precip), temperature (Temp) 
and surface evaporation (Surf evap) are given as climatological 

annual means. Site-averaged stable carbon isotope (δ13C) values of 
Tillandsia landbeckii whole plant material indicative of CAM metab-
olism

a According to Jaeschke et al. (2019)
b Derived from the WRF model (Reyers 2019)

Site Nra Latitude
°S

Longitude °W Elevation (m 
a.s.l.)

Distance 
coast (km)

Precipa,b

(mm/y)
Temp
(°C)b

Surf evap
(mm/y)b

δ13C (‰ VPDB)a

Northern zone
1 18°28′37.6'' 70°04′51.5'' 1000 23.6 1.50 13.7 5.63 − 13.0
2 18°52′31.4'' 70°07′12.9'' 1043 22.4 1.13 16.3 5.71 − 13.4
3 19°04′21.9'' 70°06′26.8'' 1100 20.8 1.05 16.0 5.34 − 13.1
Central zone
4 20°20′08.8'' 70°01′54.3'' 1067 12.7 0.95 15.4 3.65 − 13.3
5 20°31′30.6'' 70°02′43.0'' 1157 15.7 0.66 15.1 3.49 − 14.3
6 20°43′33.7'' 69°58′13.8'' 1014 23.3 0.48 15.0 3.29 − 12.6
Southern zone
7 21°10′40.6'' 70°00′31.3'' 942 10.0 0.53 14.4 4.90 − 13.2
8 21°18′22.7'' 70°01′32.8'' 987 4.5 0.58 13.8 4.76 − 13.9
9 21°24′38.5'' 69°48′33.2'' 1028 27.5 0.51 14.7 3.45 − 12.9



Leaf wax composition and distribution of Tillandsia landbeckii

1 3

Page 5 of 13  8

heterogeneity (Jaeschke et al. 2019). Samples were stored 
in geochemical bags and allowed to air-dry before shipping 
to Germany.

Leaf wax analysis

Plant material was first rinsed with deionized water to 
remove surficial mineral dust and particles and then dried in 
a convection oven at 40 °C. Leaves and stems of each plant 
sample were ground and homogenized. Bulk plant material 
of 59 samples (ca. 1 g) was ultrasonically extracted using a 
mixture of dichloromethane (DCM) and methanol (2:1, v/v), 
three times repeated. The extracts were combined and the 
bulk of the solvent subsequently removed by rotary evapora-
tion under vacuum. The resulting total lipid extracts (TLE) 
were separated into apolar (with n-hexane), and polar (with 
DCM:methanol; 1:1, v/v) fractions using activated silica gel 
chromatography. The apolar fractions containing n-alkanes 
were further separated into saturated and unsaturated com-
pounds over a small column filled with AgNO3-coated silica 
gel (10% w/w) and n-hexane and DCM, respectively. The 
polar fraction was separated into fatty acids and neutrals 
over a aminopropyl column with glacial acetic:diethyl-ether 
(1/24, v/v) and methanol, respectively. The fatty acid frac-
tions were methylated with 500 µL of boron trifluoride in 
methanol, generating fatty acid methyl esters (FAMEs) prior 
to instrumental analysis. n-Alkanes were analyzed at the 
University of Cologne using a gas chromatograph equipped 
with an on-column injector and a flame ionization detector 
(GC-FID; HP 5890 series II) and fatty acids were analyzed 
at the Universidad Católica de la Santísima Concepción 
using a gas chromatograph with a Split/Splitless injector 
and a flame ionization detector (GC-FID 7890A; Agilent 
Technologies).

n‑Alkane and fatty acid indices

The carbon preference index (CPI) was calculated using the 
abundances of odd- and even-numbered chain lengths from 
C23 to C34 for n-alkanes and fatty acids as follows:

The average chain length (ACL) of n-alkanes was calcu-
lated as follows:

 where Cn is the abundance of each n-alkane or fatty acid 
with n carbon atoms for chain lengths from C23 to C34.

CPI (alkanes) = 0.5 ×
[

(Σ even∕Σ odd) + (Σ even∕Σ odd)
]

.

CPI (fatty acids) = 0.5 × [(Σ odd∕Σ even) + (Σ odd∕Σ even)].

ACL23−34 = Σ
(

C
n
× n

)

∕Σ(n)

Environmental data

Estimates on mean annual precipitation and actual surface 
evaporation are derived from a long-term simulation with 
the Weather Research and Forecasting (WRF) regional cli-
mate model v3.9 (Skamarock et al. 2008). The simulation 
covers the period 1982 to 2017 using actual atmospheric 
conditions from the ERA-Interim reanalysis dataset (Dee 
et al. 2011) as boundary conditions and a horizontal resolu-
tion of 10 × 10 km is obtained using a double one-way nest-
ing. A detailed description of the model setup, including 
details to the applied parameterizations, is given in Rey-
ers et al. (2021). WRF simulated precipitation is validated 
against station measurements, and it shows good agreement 
with the rainfall observations particularly for the hyperarid 
core of the Atacama Desert (Reyers et al. 2021). The model 
output has an hourly temporal resolution, such that different 
statistics can be derived, including climatological means as 
used in this study. For each Tillandsia location on land, the 
value from the nearest grid cell was considered for com-
parison. Simulated daily accumulated climate data are freely 
available (Reyers 2019).

Statistical analysis

As the distribution of the data was not normal, we applied a 
Kruskal–Wallis test (non-parametric ANOVA) to estimate 
differences between leaf waxes for geographic zones, abun-
dance and distribution (CPI and ACL) per zones. A Dunn’s 
test was used to determine whether or not there is a statisti-
cally significant difference between the medians of the three 
zones. To assess the effect of environmental and geographic 
parameters on the abundance and distribution of the leaf wax 
compounds, we used a Spearman’s correlation. The software 
Statistica 10.0.228.2 was used for statistical analysis.

Results and discussion

Leaf wax abundance

The leaf wax class dominant in Tillandsia landbeckii are 
n-alkanes (Fig. 2a) with an average concentration three 
times higher than fatty acids considering all the individuals 
analyzed (n = 59). The highest difference among leaf wax 
classes was found in the Central Zone reaching n-alkane 
abundances almost four times higher than fatty acids. There 
are few studies evaluating the composition of different leaf 
wax classes from plants in South America, mainly restricted 
to tropical areas (Jansen et al. 2006; Feakins et al. 2016) 
and temperate forests (Dodd et al. 1998; Rafii and Dodd 
1998; Cifuentes et al. 2020; Cerda-Peña et al. 2020), where 
long chain fatty acids were mostly dominant compared with 
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n-alkanes (Fig. S1). A higher concentration of n-alkanes in 
leaf waxes might confer to Tillandsia landbeckii individuals 
a more hydrophobic wax layer to avoid the loss of water from 
the leaves. In fact, a predominance of leaf wax n-alkanes 
compared with leaf wax fatty acids had been reported in two 
species of plants living in the Gobi Desert, located between 
Mongolia and China (Xu et al. 2020). The n-alkanes are 
produced metabolically from the fatty acids (Kolattukudy, 
1966) and are the most effective wax constituents in reduc-
ing the permeability of cuticule barriers (Kosma et al. 2009; 
Xu et al. 2016). Therefore, the Tillandsia plants could syn-
thesize higher amounts of n-alkanes to minimize water loss 
as an adaptation to extreme drought stress (Xu et al. 2020).

The dominance of n-alkanes is also visible in all three 
sampling zones (Fig. 2b) with the highest difference (almost 
4 times higher) between average amount of both waxes in the 
Central Zone. The average abundance of leaf wax fatty acids 
was 77.1 µg/gdl with a range between 21.4 and 176.9 µg/
gdl in the Northern Zone, an average of 49.5 µg/gdl with a 
range between 10.9 and 117.6 µg/gdl in the Central Zone, 
and in the Southern Zone 65.7 µg/gdl with a range between 
10.2 and 152.9 µg/gdl (Fig. 2b). The average abundance of 
leaf wax n-alkanes in the Northern Zone was 166.5 µg/gdl 
with a range between 80.1 and 305.8 µg/gdl, the Central 
Zone hold an average of 193.8 µg/gdl ranging between 118.9 
and 329.0 µg/gdl, and Southern Zone had 160.2 µg/gdl on 
average ranging between 10.6 and 368.3 µg/gdl (Fig. 2b). 
The statistical analysis (Kruskal–Wallis) did not give any 
significant difference among zones considering both leaf 
waxes (for fatty acids H = 3.2136, p = 0.2005; for n-alkanes 
H = 1.0413, p = 0.5941). The high variability in leaf wax 
abundance within a specific Tillandsia system most likely 
reflects the natural variability related to fine-scale changes 
in moisture supply and thus plant growth and fitness which 
was also observed in the Oyarbide field (Koch et al. 2019, 
2020). In addition, age differences may also account for part 

of the variability as we analyzed not only the youngest leaves 
but the whole plant including leaves and stems.

The total amount of n-alkanes stored in Tillandsia land-
beckii is in the range of those reported for CAM plants of 
southwest Africa (Boom et al. 2014) and shrub vegetation 
(i.e., Poaceae, Cyperaceae, Artemisia spp.) of the Gobi 
Desert (Struck et al. 2020). Concentrations are however 
about 10–30 times lower compared to C3 shrub vegetation 
analyzed in the Paposo region of Chile at ~ 24.5°S, which 
is also affected by fog and slightly higher rainfall amount 
(Mörchen et al. 2021). This may relate to plant species-spe-
cific (i.e., CAM vs. C3 photosynthetic pathway) differences 
in leaf size and leaf wax production, density of stomata vs 
trichomes covering leaves, water use efficiency and drought 
tolerance. In addition, C3 plants can benefit from soil mois-
ture which is in general not available for rootless Tillandsia 
plants (Jaeschke et al. 2019).

Leaf wax distribution

Leaf wax fatty acid CPI values ranged between 2.5 and 11.1 
with significant differences between zones (H = 20.047, 
p = 0.0000). CPI values were considerably lower in the 
Northern Zone (average = 5.1) than in the Central Zone 
(6.6) and Southern Zone average CPI (6.9) (Fig. 3a). CPI 
values of n-alkanes were less variable than those of fatty 
acids ranging between 6.9 and 11.3 with no significant dif-
ferences between zones (H = 2.1090, p = 0.3484) and aver-
ages in Northern Zone of 8.1, in the Central Zone of 8.3, and 
in the Southern Zone of 8.9 (Fig. 3b).

Tillandsia landbeckii is characterized by an almost 
homogenous distribution of the different homologues 
ranging between C23–C31 (n-alkanes) and C24–C32 (fatty 
acids) (Fig. 4). ACL values of fatty acids range between 
24.6 and 30.2 with no significant differences among 
zones (H = 7.2309, p = 0.0269). The ACL mean for the 

Fig. 2   Average abundances of fatty acids (black bars) and n-alkanes 
(grey bars) in fog-affected Tillandsia landbeckii of northern Chile a 
and per zones b along a N-S gradient between Arica and the Rio Loa 
canyon (North n = 13, Central n = 23, South n = 23). The bars show 

mean values ± SD. Statistical analysis (Kruskal–Wallis test) showed 
no significant differences between zones (fatty acids: H = 3.213, 
p = 0.2005, n-alkanes: H = 1.0413, p = 0.5941)
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Northern Zone was 28.7, for the Central Zone 26.9, and 
for the Southern Zone 27.7 (Fig. 3c). Generally, a lower 
range in ACL values was observed for n-alkanes rang-
ing from 26.0 to 28.3 (Fig. 3d), compared to fatty acid 
ACL values. Significant differences were found between 
the Northern Zone (26.7 ACL average) compared to the 
Central and Southern Zones (27.3 and 27.1 ACL average, 
respectively). The n-alkane pattern of Tillandsia land-
beckii was markedly different compared to those reported 
for the shrub vegetation in the Atacama Desert (Mörchen 
et al. 2021), the Gobi Desert (Struck et al. 2020) or for 
CAM plants from arid southwest Africa (Boom et  al. 
2014), and ACL values are below those reported for C3 
or C4 plants compiled by Diefendorf and Freimuth (2017). 

A study by Feakins and Sessions (2010) also showed a 
tendency to longer chain lengths in drought-adapted suc-
culent species peaking at n–C29 to n–C33 and extreme dif-
ferences in abundance and distribution of the individual 
n-alkane homologues. Mörchen et al. (2021) proposed 
that fog-affected plants can be distinguished from rain-
affected plants in the Atacama Desert by their specific 
n-alkane pattern dominated by n–C31. We cannot confirm 
these observations and suggest that the distinct n-alkane 
distribution in Tillandsia is rather typical for this plant 
type using CAM metabolism in this dry and relatively 
cold coastal desert (Table 1).

Fig. 3   Box plots divided by plant wax class for CPI (Carbon Pref-
erence Index) and ACL (Average Chain Length) of fatty acids (a, 
c) and n-alkanes (b, d) for the different geographical zones along 
the Coastal Cordillera (Northern Zone n = 13, Central Zone n = 23, 
Southern Zone n = 23). Each box represents the range of middle 
(50%) of group values, the horizontal line is group mean, and aster-
isk shows significant differences. In panels a and d, significant dif-
ferences were found between Northern Zone and Central and South-
ern Zone based on Kruskal–Wallis test with a H = 20.047, p = 0.0000 

and d H = 14.793, p = 0.0006, respectively, showing differences in 
Northern Zone at both panels based on Dunn test (Qcritic[a] = 2.394; 
Q1,2 = 3.288; Q1,3 = 4.236; Q2,3 = 1.089 and Qcritic[d] = 2.394; 
Q1,2 = 3.724; Q1,3 = 3.022; Q2,3 = 0.895). In panel c, significant dif-
ferences were found between Northern Zone and Central and South-
ern Zone based on Kruskal–Wallis test (H = 7.2309, p = 0.0269), 
and based on Dunn test show differences in the Northern Zone 
with Central Zone, but equal with Southern Zone (Qcritic[c] = 2.394; 
Q1,2 = 2.560; Q1,3 = 1.403; Q2,3 = 1.424)
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Environmental influence on leaf wax abundance 
and distribution

Environmental parameters such as rainfall, temperature 
and relative humidity can affect the composition of higher 
plant leaf wax (Sachse et al. 2006; Hoffmann et al. 2013; 
Bush and McInerney 2015; Jaeschke et al. 2018; Andrae 
et al. 2019). Because of the high intra-system variability 
of Tillandsia plant waxes described above, we use site-
average abundances to better constrain relationships with 

climate parameters along the investigated coastal transect 
(Jaeschke et al. 2019).

The Mean Annual Precipitation (MAP) derived from 
the WRF simulation (Reyers 2019; Jaeschke et al. 2019) 
is extremely low at the study sites (≤1.5 mm/yr). However, 
the highest significant Spearman's Rank correlation coeffi-
cient was observed between latitude and MAP (rs = − 0.726; 
p < 0.001, Table  2), showing a significant decrease in 
moisture content across the investigated transect. It’s well 
known that the main source of moisture at the western coast 

Fig. 4   Average chain length distribution of even fatty acids (a) and odd n-alkanes (b) in fog-affected Tillandsia landbeckii of northern Chile 
(North n = 13, Central n = 23, South n = 23). The bars show mean values ± SD
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of Northern South America is associated to the seasonal 
migration of the Intertropical Convergence Zone (Takahashi 
and Battisti 2007). However, latitude correlates significantly 
and negatively also with actual surface evaporation but to 
a lower degree (rs = − 0.417; p < 0.001). It is important to 
remember that we are talking at very low levels and scarce 
(infrequent) precipitation, thus fog must play a significant 
role as moisture source (Lobos-Roco et al. 2018; Schween 
et al. 2020; Böhm et al. 2021; Del Rio et al. 2021; García 
et al. 2021). A significant and positive trend was observed 
between precipitation and elevation (rs = 0.451; p < 0.001, 
Table 2), which may relate to the higher water content at the 
top of the Sc cloud deck (Cereceda et al. 2008; Latorre et al. 
2011; Jaeschke et al. 2019). However, neither water content 
of the Sc cloud or fog are included in the WRF precipitation, 
which may explain some of the variability seen in our data. 
A promising fog-detecting approach was recently introduced 
by Böhm et al. (2021) and may help to disentangle the influ-
ence of different moisture sources on Tillandsia lomas.

The abundance of leaf wax fatty acids did not show sig-
nificant correlations with any of the climate variables. How-
ever, the n-alkane abundance correlates significantly and 
positively with ACL of n-alkanes (rs = 0.413; p < 0.001) and 
negatively with surface evaporation (rs = − 0.261; p < 0.05). 
Therefore, increasing abundance of n-alkanes are related 
with an increase in abundance of longer chain length of 
n-alkanes. In addition, the low but significant correlation 
with surface evaporation suggests an increase of n-alkanes 
at low moisture conditions. CPI of fatty acids correlates sig-
nificantly with many variables but the highest correlations 
were observed with latitude and precipitation (rs = 0.580; 
p < 0.001 and − 0.562; p < 0.001, respectively), showing 
a clear response to variable moisture content (Table 2; 
Fig. 5). A high CPI is the main characteristic of leaf waxes, 
which must be related to leaf wax production that is not 
visible in the fatty acid abundance. The highest correlation 
of n-alkane CPI values was observed with distance to the 
coast (rs > 0.4; p < 0.001, Table 2). The ACL of the fatty 
acids did not show high significant correlation (Table 2) 

but ACL of the n-alkanes correlates negatively with both, 
precipitation (rs = − 0.416; p < 0.001) and surface evapora-
tion (rs = − 0.485; p < 0.001) (Fig. 5). The latter correlation, 
where lower moisture is related to higher abundance of 
longer carbon chain length of n-alkanes, confirm a direct 
response of the leaf wax distribution (ACL and CPI) to 
moisture gradients. Aridity has been proposed as a driver of 
n-alkane chain length, where drier conditions promote gen-
erally longer chain lengths (Dodd et al. 1998; Feakins and 
Sessions 2010; Hoffmann et al. 2013; Andrae et al. 2019). 
It is thought that under arid and usually warm conditions, 
selective pressures may favor the production of longer, more 
hydrophobic n-alkane chain lengths (Shepherd and Griffiths 
2006; Bush and McInerney 2013). However, opposite trends 
between ACL and aridity have also been found in leaves 
and soils (Hoffmann et al. 2013; Carr et al. 2014; Jaeschke 
et al. 2018). The observed dissimilarities may thus relate to 
genetic or taxonomic differences besides being solely modu-
lated by environmental parameters (Bush and McInerney 
2013; Carr et al. 2014; Andrae et al. 2019; Xu et al. 2020).

Leaf waxes to understand moisture at the dry limits 
of the hyperarid Atacama Desert

Saturated long-chain (> C20) fatty acids are the precursors 
for the biosynthesis of aliphatic cuticular wax components, 
such as primary and secondary alcohols, aldehydes, alkanes, 
ketones and alkyl esters (Kolattukudy 1966). In fact, Kolat-
tukudy (1966, 1967) proposed an elongation–decarboxyla-
tion pathway for alkane biosynthesis. During this pathway, 
the shorter chain fatty acids (< C20) are elongated by the 
stepwise addition of C2 units followed by decarboxylation 
until an appropriate length (C30–C32) is reached. The result-
ing leaf wax n-alkanes then show the typical odd over even 
dominance (Kunst et al. 2006). The leaf wax trends observed 
in this study (Table 2) are related to leaf wax production 
under extremely low moisture conditions where CPI of fatty 
acids and ACL of n-alkanes correlate with moisture avail-
ability (Fig. 5). More studies are required to understand the 

Table 2   Spearman correlation 
matrix between geographic and 
climate variables and Tillandsia 
landbeckii (n = 59) along the 
Coastal Cordillera in northern 
Chile. Significant correlations 
(p ≤ 0.05) in italics and higher 
than 0.4 marked in bold

FA ALK CPIFA CPIALK ACLFA ACLALK Lat Altitude Distance Precip

ALK 0.036
CPIFA 0.008 − 0.071
CPIALK − 0.051 0.104 0.176
ACLFA 0.173 − 0.108 − 0.304 − 0.064
ACLALK − 0.192 0.413 0.286 − 0.264 − 0.189
Latitude 0.007 0.117 0.580 0.100 0.001 0.303
Altitude − 0.059 − 0.094 − 0.256 0.011 0.105 − 0.152 − 0.411
Distance − 0.060 0.161 − 0.384 − 0.425 0.093 0.021 − 0.266 0.051
Precip − 0.064 − 0.100 − 0.562 0.107 0.225 − 0.416 − 0.726 0.451 − 0.066
Surf evap 0.165 − 0.261 − 0.301 0.123 0.231 − 0.485 − 0.417 − 0.034 − 0.235 0.727
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full mechanisms behind this strong relationship with mois-
ture for plants thriving at the dry limit.

Conclusions

This study investigated leaf wax n-alkane and fatty acid dis-
tributions in modern Tillandsia landbeckii plants located in 
isolated patches along the Coastal Cordillera of the Atacama 
Desert to investigate their potential as chemotaxonomic 
markers and dependency on climate. Our results show that 
Tillandsia plants produce more n-alkanes than fatty acids 
in their leaves likely as an expression of enhanced drought 
tolerance. While n-alkane and fatty acid concentrations and 
chain-length patterns are highly variable within a specific 
ecosystem, likely reflecting small-scale changes in mois-
ture availability and natural variability, site-averaged val-
ues show significant correlations with annual precipitation 
and evaporation along the investigated coastal transect. Our 
results indicate sensitive changes in leaf wax composition of 
Tillandsia to subtle differences in climate parameters point-
ing to an adaptive strategy to the extremely arid conditions at 
the molecular level. The Tillandsia-specific chemical finger-
prints can thus provide crucial information on past climate 
variability in the Atacama Desert.
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