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Abstract
For an integer k ≥ 2, let L(k) be the k–generalized Lucas sequence which starts with
0, . . . , 2, 1 (a total of k terms) and for which each term afterwards is the sum of the k
preceding terms. In this paper we assume that an integer c can be represented in at least
two ways as the difference between a k–generalized Lucas number and a power of
b, then using the theory of nonzero linear forms in logarithms of algebraic numbers,
we bound all possible solutions on this representation of c in terms of b. Finally,
combination our general result and some known reduction procedures based on the
continued fraction algorithm, we find all the integers c and their representations for
b ∈ [2, 10], this argument can be generalized to any b > 10.

Keywords Diophantine equations · Lucas sequence · Pillai’s Problem

Mathematics Subject Classification 11D61 · 11B39 · 11D45

Communicated by Ilse Fischer.

B Carlos A. Gomez
carlos.a.gomez@correounivalle.edu.co

Bernadette Faye
bernadette.faye@uadb.edu.sn

Jonathan García
jonathan.garcia.rebellon@univie.ac.at

1 Departement de Mathématiques, UFR SATIC, Université Alioune Diop de Bambey, BP 34,
Bambey, Diourbel, Senegal

2 Faculty of Mathematics, University of Vienna, Kolingasse 14-16, 1090 Wien, Austria

3 Departamento de Matemáticas, Universidad del Valle, Calle 13 No 100-00, Cali, Colombia

4 Research Group ALTENUA: Algebra, Teoría de Números y Aplicaciones, Colciencias Code:
COL0017217, Cali, Colombia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00605-024-01981-z&domain=pdf
http://orcid.org/0000-0003-1126-2973


B. Faye et al.

1 Introduction

Let k � 2 be a fixed integer. We consider the linear recurrence sequence G(k) :=
(G(k)

n )n≥2−k of order k, defined as

G(k)
n = G(k)

n−1 + G(k)
n−2 + · · · + G(k)

n−k for all n ≥ 2,

with the initial conditions

G(k)
−(k−2) = G(k)

−(k−3) = · · · = G(k)
−1 = 0,G(k)

0 = a and G(k)
1 = b.

Observe that if a = 0 and b = 1, then G(k) is nothing that just the k–generalized
Fibonacci sequence or for simplicity, the k–Fibonacci sequence F (k) := (F (k)

n )n≥2−k .
In this case, if we choose k = 2 we obtain the classical Fibonacci sequence (Fn)n .

On the other hand, if a = 2 and b = 1 then G(k) is known as the k–generalized
Lucas sequence L(k) := (L(k)

n )n≥2−k . In the case of k = 2 we obtain the usual Lucas
sequence

(Ln)n≥0 := {2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, . . .}.

Furthermore, it has been proved in [28] that the only powers of 2 in L(k) are

L(k)
0 = 2, L(k)

1 = 1 = 20, L(2)
3 = 4 = 22, L(3)

7 = 64 = 26. (1)

The above sequences are among the several generalizations of the Fibonacci numbers
which have been studied in literature.

Recall the problem of Pillai which states that for each fixed integer c ≥ 1, the
Diophantine equation

ax − by = c, min{x, y} ≥ 2, (2)

has only a finite number of positive solutions {a, b, x, y} [24, 25, 29]. This problem
is still open; however, the case c = 1, is the conjecture of Catalan and was proved
by Mihăilescu [26]. The general problem of Pillai is difficult to solve and this has
motivated the consideration of special cases of this problem. In the past years, several
special cases of the problem of Pillai have been studied. See, for example, [6–8, 10,
11, 13, 16, 21, 22].

Here we look at a similar problem for the terms of the k–Lucas sequence, namely

L(k)
n − bm = c with min{n,m} ≥ 2, b ≥ 2 and c ∈ Z.

For b ≥ 2 fixed integer, we are interested in knowing how many solutions (c, k, n,m)

exist for the above equation, under the non-unitary condition of the multiplicity at
least for c. For this purpose we study the equation
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L(k)
n − bm = L(k)

n1 − bm1 (= c), (3)

with1 n > n1 ≥ 2 and m > m1 ≥ 2.
When b is fixed we bound the solutions for Eq. (3) and present an algorithm that

can be generalized to find all its solutions for any known b, in particular we use it to
obtain all solutions in the cases b ∈ [2, 10]. We present our main results below.

Theorem 1 Let b ≥ 2 be a fixed integer. The solution (k, n,m, n1,m1) of the Dio-
phantine equation (3) with n > n1 ≥ 2,m > m1 ≥ 2 and k ≥ 2, satisfies the
following.

(i) If n ≤ k, then n = max{n,m, n1,m1} and Eq. (3) takes the form

3 · 2n−2 − bm = 3 · 2n1−2 − bm1 (= c) for all k ≥ 2.

Moreover, if b is a power of 2, there are no solutions for b > 4 but there are
solutions for b ∈ {2, 4} of the form

(b, n,m, n1,m1) ∈ {(2,m + 1,m,m,m − 2) , (4, 2m + 1,m, 2m,m − 1)} ,

with m ≥ 3. In another case, let p be the largest odd prime divisor of b, then

n < 9.13 × 1013 p(log p)(log b)4.

(ii) If n ≥ k + 1, then

k < 1.4 × 1044(log b)6 and m − 2 < n < 1.02 × 10545(log b)79.

As a consequence to Theorem 1, we find all the solutions for b ∈ [2, 10] in Corollary
2. The argument of the proof of this numerical result can be extended to find any
solution for fixed b.

Corollary 2 Let b ∈ [2, 10]. The solution (c, k, n,m, n1,m1) of Eq. (3) with n > n1 ≥
2,m > m1 ≥ 2 and k ≥ 2, satisfies the following.

(i) For n ≤ k and b /∈ {2, 4} (the solutions for these cases are in Theorem 1) there
are only solutions

3 · 25−2 − 33 = 3 · 23−2 − 32 = −3, 3 · 27−2 − 34 = 3 · 25−2 − 32 = 15,

3 · 210−2 − 36 = 3 · 26−2 − 32 = 39, 3 · 28−2 − 63 = 3 · 24−2 − 62 = −24.

(ii) For n ≥ k + 1 we obtain for each b the following.

1 Note that since the sequences (L(k)
n )n≥2 and (bm )m≥2 are positive increasing, then n > n1 if and only

if m > m1 in the Diophantine equation (3) and without loss of generality we can assume either one.
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(a) If b = 2, there are only the solutions

L(2)
11 − 28 = L(2)

4 − 26 = −57,

L(3)
6 − 26 = L(3)

2 − 25 = −29,

L(3)
5 − 25 = L(3)

2 − 24 = −13,

L(3)
8 − 27 = L(4)

5 − 25 = L(4)
3 − 24 = L(3)

3 − 24 = −10,

L(2)
10 − 27 = L(2)

5 − 24 = L(2)
2 − 23 = −5,

L(2)
4 − 23 = L(2)

2 − 22 = −1,

L(3)
4 − 23 = L(3)

3 − 22 = 2,

L(3)
6 − 25 = L(3)

5 − 24 = L(2)
5 − 23 = L(2)

4 − 22 = 3,

L(4)
14 − 213 = L(4)

4 − 22 = 8,

L(5)
11 − 210 = L(5)

9 − 24 = 336.

(b) If b = 3,

L(3)
7 − 34 = L(3)

4 − 33 = −17,

L(2)
9 − 34 = L(2)

3 − 32 = −5,

L(2)
7 − 33 = L(2)

5 − 32 = 2,

L(2)
16 − 37 = L(2)

8 − 33 = L(2)
7 − 32 = 20,

L(3)
8 − 34 = L(3)

7 − 33 = 37,

L(2)
14 − 36 = L(2)

10 − 32 = 114,

L(6)
12 − 37 = L(6)

10 − 33 = 709.

(c) For b ∈ {5, 6, 7, 10} there are no solutions and the cases b ∈ {4, 8, 9} are
powers of 2 or 3 so they are already included.

Remark 3 InDiophantine equation (3),we have assumedn > n1 ≥ 2 andm > m1 ≥ 2
preserving the essence of the original problem (2), nevertheless, this could be removed
(replacing 2 by 0) and slight adjustments to the arguments presented here would still
work.

Let us give a brief overview of the strategy used for proving our results. In the proof
of Theorem 1, we distinguished two cases according to n ≤ k and n ≥ k + 1. The
case n ≤ k was treated by a combination of the theory of nonzero linear forms in
logarithms of real algebraic numbers with some elementary arguments on the p–adic
valuations of certain Lucas sequences. For the case n ≥ k + 1, the theory of nonzero
linear forms in logarithms is used several times again, to obtain explicit upper bounds
for the unknowns (k, n,m, n1,m1) depending only on b. The proof of Corollary 2
depends on a combination of Theorem 1 and some known reduction procedures based
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on the continued fraction algorithm. The computation needed for the proof of Theorem
1 and Corollary 2 was done with the Mathematica software.

2 Preliminary results

In this section, we first recall some general properties of the k–generalized Lucas
sequence.

2.1 k–Generalized Lucas numbers

It is known that the characteristic polynomial of the k–generalized Lucas numbers
L(k), namely

�k(x) := xk − xk−1 − · · · − x − 1,

is irreducible over Q[x] and has just one root outside the unit circle. Let α := α(k)
denote that single root, which is located between 2

(
1 − 2−k

)
and 2 (see [14]). This

is called the dominant root of L(k). To simplify notation, in our application we shall
omit the dependence on k of α. We shall use α(1), . . . , α(k) for all roots of �k(x) with
the convention that α(1) := α.

The following appears in [1], responding to a conjecture proposed in [19].

Lemma 1 Let α( j) = ρ j eiθ j with θ j ∈ [0, 2π) for j = 1, . . . , k be all the roots of
�k(x). Then for every h ∈ {0, 1, . . . , k − 1}, there exists j such that

∣∣∣∣θ j − 2πh

k

∣∣∣∣ <
π

k
.

We now consider for an integer k ≥ 2, the function

fk(z) = z − 1

2 + (k + 1)(z − 2)
for z ∈ C, z �= 2k/(k + 1). (4)

In the following lemma, we give some properties of the sequence L(k) which will be
used in the proof of Theorem 1. The items of the following lemma was proved by
Bravo, Gómez and Luca in [4, 5, 18].

Lemma 2 Let k ≥ 2, α be the dominant root of L(k), and consider the function fk(z)
defined in (4). Then,

(a) If 2 ≤ n ≤ k, then L(k)
n = 3 · 2n−2.

(b) αn−1 ≤ L(k)
n ≤ 2αn for all n ≥ 1.

(c) L(k) satisfies the following formula

L(k)
n =

k∑

i=1

(2α(i) − 1) fk(α
(i))α(i)n−1

.
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(d)

∣∣∣L(k)
n − (2α − 1) fk(α)αn−1

∣∣∣ <
3

2
holds for all n � 2 − k. (5)

(e) The inequalities

1

2
< fk(α) <

3

4
and | fk(α(i))| < 1, 2 ≤ i ≤ k

hold. In particular, the number fk(α) is not an algebraic integer.
(f) L(k)

n = 2F (k)
n+1 − F (k)

n .

Next comes another necessary lemma for our work.

Lemma 3 Let k ≥ 2, c ∈ (0, 1) and n < 2ck . Then it is satisfied that

(i) For all n ≥ 2,

L(k)
n = 3 · 2n−2(1 + ζ ′

n), with |ζ ′
n| <

{
4/2(1−c)k; if c ≤ 0.693,

8.1/2(1−c)k; otherwise.

(ii) For all n ≥ k + 2,

L(k)
n = 3 · 2n−2

(
1 − n − k + 4/3

2k+1 + ζ ′′
n

)
, with |ζ ′′

n | < 8/22(1−c)k .

Proof Howard and Cooper proved in [9] that for all k ≥ 2, r ≥ k + 2 and � :=
�(r + k)/(k + 1)� it is satisfied that

F (k)
r = 2r−2 +

�−1∑

j=1

Cr , j 2
r−(k+1) j−2,

where Cr , j := (−1) j
[(r− jk

j

)− (r− jk−2
j−2

)]
. Therefore for k + 2 ≤ r we can write

F (k)
r = 2r−2

(
1 − r − k

2k+1 + ζr

)
, (6)

where

|ζr | ≤
�−1∑

j=2

|Cr , j |
2(k+1) j

<
∑

j≥2

2 r j

2(k+1) j j ! <
2r2

22k+2

∑

j≥2

(r/2k+1) j−2

( j − 2)! <
2r2

22k+2 e
r/2k+1

.

(7)

We now prove each case using Lemma 2 and identity (6).
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(i) By item (a) of Lemma 2 we have that the result is trivial for 2 ≤ n ≤ k. If
n = k + 1, it follows from item (g) of Lemma 2 that

L(k)
k+1 = 2F (k)

k+2 − F (k)
k+1 = 2k+1 − 2k−1 − 2 = 3 · 2k−1(1 − 2−k+2/3)

with |ζ ′
k+1| := 2−k+2/3 < 4/2(1−c)k , so the result is true in this case. When

n ≥ k + 2, by identity (6) and item (g) of Lemma 2 we have that

L(k)
n = 2F (k)

n+1 − F (k)
n

= 2n
(
1 − n + 1 − k

2k+1 + ζn+1

)
− 2n−2

(
1 − n − k

2k+1 + ζn

)

= 3 · 2n−2
(
1 − 3n + 4 − 3k

3 · 2k+1 + 4ζn+1/3 − ζn/3

)
(8)

and since n < 2ck , we get by inequality (7) that

|ζ ′
n| := 3n + 4 − 3k

3 · 2k+1 + 4|ζn+1|/3 + |ζn|/3

<

(
1

2
+ 8e1/2

(1−c)k

3 · 2(1−c)k
+ e1/2

(1−c)k+1

3 · 2(1−c)k+1

)

/2(1−c)k

<

{
4/2(1−c)k, if c ≤ 0.693,

8.1/2(1−c)k, otherwise.

(i i) Since n ≥ k + 2, we have by identity (8) and inequality (7) for r ∈ {n, n + 1} that
L(k)
n = 3 · 2n−2

(
1 − n − k + 4/3

2k+1 + 4ζn+1/3 − ζn/3

)

where

|ζ ′′
n | := 4|ζn+1|/3 + |ζn|/3 <

(
8e1/2

(1−c)k
/3 + e1/2

(1−c)k+1
/6
)

/22(1−c)k

< 8/22(1−c)k .

	

2.2 Notations and terminology from algebraic number theory

We begin by recalling some basic notions from algebraic number theory.
Let η be an algebraic number of degree d with minimal primitive polynomial over

the integers

a0x
d + a1x

d−1 + · · · + ad = a0

d∏

i=1

(x − η(i)),

123



B. Faye et al.

where the leading coefficient a0 is positive and the η(i)’s are the conjugates of η. Then
the logarithmic height of η is given by

h(η) := 1

d

(

log a0 +
d∑

i=1

log
(
max{|η(i)|, 1}

))

.

In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then
h(η) = logmax{|p|, q}. The following are some of the properties of the logarithmic
height function h(·), which will be used in the next sections of this paper:

h(η ± γ ) ≤ h(η) + h(γ ) + log 2,

h(ηγ ±1) ≤ h(η) + h(γ ),

h(ηs) = |s|h(η) (s ∈ Z). (9)

On the other hand, it can be proved that

h(α) = logα/k and h( fk(α)) < 2 log k, for all k ≥ 2. (10)

The logarithmic height of fk(α) satisfies h( fk(α)) < 2 log k. See [17, 18] for details
when k ≥ 3 and the case k = 2 is easily verified computationally.

2.3 Linear forms in logarithms and continued fractions

In order to prove our main result Theorem 1, we need to use several times a Baker–
type lower bound for a nonzero linear form in logarithms of algebraic numbers. There
are many such in the literature like that of Baker and Wüstholz from [3]. We use the
following result by Matveev [25], which is one of our main tools in this paper.

Theorem 4 Let γ1, . . . , γt be positive real algebraic numbers in a real algebraic num-
ber field K of degree D, b1, . . . , bt be nonzero integers with B ≥ max{|b1|, . . . , |bt |},
and assume that

� := γ
b1
1 · · · γ bt

t − 1 (11)

is nonzero. Then

log |�| > −1.4 × 30t+3 × t4.5 × D2(1 + log D)(1 + log B)A1 · · · At ,

and

Ai ≥ max{Dh(γi ), | log γi |, 0.16}, for all i = 1, . . . , t .

During the course of our calculations, we get some upper bounds on our variables
which are too large, thus we need to reduce them. To do so, we use some results from
the theory of continued fractions. Specifically, for a nonhomogeneous linear form in
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two integer variables, we use a slight variation of a result due to Dujella and Pethő (see
[15], Lemma 5a), which itself is a generalization of a result of Baker and Davenport
[2].

For a real number X , we write ||X || := min{|X − n| : n ∈ Z} for the distance from
X to the nearest integer.

Lemma 4 (Dujella, Pethő) Let M be a positive integer, p/q be a convergent of the
continued fraction of the irrational number τ such that q > 6M, and A, B, μ be some
real numbers with A > 0 and B > 1. Let further ε := ||μq|| − M ||τq||. If ε > 0,
then there is no solution to the inequality

0 < |uτ − v + μ| < AB−w,

in positive integers u, v and w with

u ≤ M and w ≥ log(Aq/ε)

log B
.

The above lemma cannot be applied when μ = 0 (since then ε < 0). In this case,
we use the following criterion of Legendre.

Lemma 5 (Legendre) Let τ be real number and x, y integers such that

∣∣∣
∣τ − x

y

∣∣∣
∣ <

1

2y2
. (12)

Then x/y = p j/q j is a convergent of τ . Furthermore, if [a0, a1, a2, . . .] is the con-
tinued fraction of τ , then

∣
∣∣∣τ − x

y

∣
∣∣∣ ≥

1

(a j+1 + 2)y2
. (13)

For the use of the above two lemmaswewill sometimes use the well-known inequality

| log(1 + x)| ≤ 2|x | if |x | ≤ 1/2, for x ∈ R. (14)

Finally, the following lemma is also useful. It is Lemma 7 in [20].

Lemma 6 (Gúzman, Luca) If s � 1, T > (4 s2)s and T > x/(log x)s , then

x < 2sT (log T )s .

3 Case n ≤ k

In this section we prove the first items of Theorem 1 and Corollary 2. When n ≤ k,
equality (3) becomes

3 · 2n−2 − 3 · 2n1−2 = bm − bm1 (15)
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with n > n1 ≥ 2 and m > m1 ≥ 2. To bound the possible solutions of the above
equation we present the following lemma.

Lemma 7 Let a, �, r ∈ Z
+, with a ≥ 3 odd.

(i) If � ≥ ν2(a − 1) and 2� | ar − 1, then 2� | r(a2 − 1)/2.
(ii) If p is the greatest prime divisor of a and a� | 2r − 1. Then a�|ra p−1.

Proof We consider each case.

(i) Since ν2(ar − 1) ≥ � ≥ v2(a − 1), we have that

ν2

⎛

⎝
r−1∑

j=0

a j

⎞

⎠ = ν2

(
ar − 1

a − 1

)
≥ 1.

Moreover, that a is odd implies

r ≡
r−1∑

j=0

a j ≡ 0 (mod 2).

Nowwe note that ur := (ar −1)/(a−1) is a sequence of Lucas with characteristic
polynomial x2 − (a + 1)x + a whose discriminant is � = (a − 1)2. Therefore
2 � a, 2 | � and 2 | r , then from Theorem 1.5 in [29] it follows that

ν2(ur ) = ν2(r) + ν2(u2) − 1

and this implies that

� ≤ ν2(a
r − 1) = ν2

(
r(a2 − 1)/2

)
,

i.e. 2� | r(a2 − 1)/2.
(i i) First we assume that a = pγ for some γ ∈ Z

+. We know that the sequence
ur := 2r −1 is a sequence of Lucas with characteristic polynomial x2 −3x +2
whose discriminant is � = 1 and p � 2. Then by Corollary 1.6 in [29] and as
pγ � | 2r − 1, we obtain that

0 < γ� ≤ νp(ur ) = νp(r) + νp(uτ(p))

≤ νp(r) + logp(uτ(p)) < νp(r) + τ(p) logp 2

< νp(r) + p − 1 = νp(rp
p−1),

where τ(p) is the multiplicative order of 2 modulo p. That is,

pγ � | rpp−1 (16)
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and in particular a� | ra p−1. In general, if a = pγ1
1 · · · pγs

s with p1 < p2 <

· · · < ps primes and
{
γ j
}
1≤ j≤s ⊂ Z

+, we obtain from conclusion (16) that

pγ1�
1 | rpp1−1

1 , . . . , pγs�
s | rpps−1

s ,

then a� | ra ps−1.

	

On the other hand, we see that

3 · 2n−2 > 3 · 2n−2 − 3 · 2n1−2 = bm − bm1 ≥ bm − bm−1

= bm−3b2(b − 1) ≥ 4bm−3

implies (n − 2) log 2 > (m − 3) log 2, therefore n > m − 1 and n ≥ m. Then

max{n1,m1, n,m} = n.

Equation (15) can be factored as

3 · 2n1−2(2n−n1 − 1) = bm1(bm−m1 − 1). (17)

We consider the following cases over b.

3.1 Case b power of 2

Let b = 2t for some t ∈ Z
+. By identity (17) and since m −m1 ≥ 1, n − n1 ≥ 1, we

have that bm1 = 2n1−2. Then, by identity (15)

3 · 2n−2 − 2tm = 3 · 2n−2 − bm = 2n1−1,

so

0 < 2n1−n+1/3 = 1 − 2tm−n+2/3,

where 3 > 2tm−n+2 and n − tm ≥ 1. Therefore

1/3 = 1 − 2−1+2/3 ≤ 1 − 2−(n−tm)+2/3 = 2n1−n+1/3

implies n − n1 = 1. Now identity (17) becomes

2t(m−m1) = bm−m1 = 22

and it follows that t(m − m1) = 2. The above combined with Eq. (17) leads to

3 · 2n−3 = 3 · 2n−2(1 − 2n1−n) = bm(1 − 2t(m1−m)) = 3 · 2tm−2,
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i.e. n = tm + 1. In conclusion, there are infinitely many solutions of the form

(b, n,m, n1,m1) ∈
{
(2,m + 1,m,m,m − 2) ,

(
22, 2m + 1,m, 2m,m − 1

)}

for Eq. (15).

3.2 Case bwith odd prime divisor

Let p be the greatest odd prime divisor of b. First we bound n1 and m1 in terms of b
and n.

• If b be odd. By Eq. (17) we have

2n1−2 | bm−m1 − 1 and bm1−1 | 2n−n1 − 1.

Then by Lemma 7 we get that

n1 ≤ max
{
ν2(b − 1), log2

(
(m − m1)(b

2 − 1)/2
)}

+ 2 < log2
(
2n(b2 − 1)

)
and

m1 ≤ logb(n − n1) + p < p + logb n.

• If b = 2t b′ with t ≥ 1 and b′ > 1 odd. Then from Eq. (17) it follows that
2tm1 = 2n1−2 and

3(2n−n1 − 1) = b′m1(bm−m1 − 1).

So b′m1−1 | 2n−n1 − 1 and by Lemma 7 we obtain

n1 − 2

ν2(b)
= m1 ≤ logb′(n − n1) + p < p + logb/2ν2(b) n.

In any case we conclude that

n1 <
(
p + log2

(
2nb2

))
log2 b and m1 < p + logb/2ν2(b) n. (18)

Now, we see that from identity (15), we have

|�0| :=
∣∣∣∣

bm

3 · 2n−2 − 1

∣∣∣∣ ≤
3 · 2n1−2 + bm1

3 · 2n−2 . (19)

If bm = 3 · 2n−2, we get that 2 < m ≤ ν3(bm) = 1 and this is absurd. Therefore
|�0| �= 0 and we use Theorem 4 with the parameters K = Q, D = 1,

(γ1, γ2, γ3) = (3, 2, b) , (b1, b2, b3) = (−1,−n + 2,m),
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B = n, A1 = log 3, A2 = log 2, A3 = log b. So

− log |�0| < 2.7 × 1011(log n)(log b). (20)

Finally we combine inequalities (18), (19) and (20) to obtain

n < 2 + log2
(
3 · 2n1−2 + bm1

)
− log2 |�0| − log2 3

< max{n1,m1} log2 b + 3.9 × 1011(log n)(log b)

<
(
p + log2

(
2nb2

))
(log2 b)

2 + 3.9 × 1011(log n)(log b)

< 5.63 × 1011 · p(log2 b)3 log n,

then we use the Lemma 6 and we get

n < 9.13 × 1013 p(log p)(log b)4.

Now we summarize what we obtained in the following lemma.

Lemma 8 Given b ≥ 2, the solution (n,m, n1,m1) of Eq. (15) satisfies that

n = max{n,m, n1,m1}.

Moreover, if b is a power of two, there are no solutions for b > 4 but there are solutions
for b ∈ {2, 4} of the form

(b, n,m, n1,m1) ∈ {(2,m + 1,m,m,m − 2) , (4, 2m + 1,m, 2m,m − 1)}

with m ≥ 3. In another case, let p be the largest odd prime divisor of b, then

n < 9.13 × 1013 p(log p)(log b)4.

This completed the proof of the first part of Theorem 1.

3.3 Proof of the first part of Corollary 2

By Lemma 8 we know that

max{n,m, n1,m1} = n < 3.5 × 1016 for b ∈ {3, 5, 6, 7, 9, 10}, (21)

in fact for b ∈ {2, 4} the solutions are given and for b = 8 there are no solutions. Now,
by bounds (18) and (21) we have

2 ≤ n1 ≤ 231 and 2 ≤ m1 ≤ 41.
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So if we assume for a moment that n ≥ 233, by inequality (19) we will have that
|�0| < 1/2, then we apply inequality (14) and arrive at that

9.96 × 1069

2n
≥

⎧
⎪⎨

⎪⎩

∣∣m log2 b − (n − 2) + log2(1/3)
∣∣ ; if b ∈ {5, 7, 9, 10},∣∣(m − 1) log2 3 − (n − 2)

∣∣ ; if b = 3,∣∣(m − 1) log2 6 − (n − 3)
∣∣ ; if b = 6.

So, for b ∈ {5, 7, 9, 10} we use Lemma 4 on the above inequality with the parameters

A := 9.96 × 1069, B := 2, μ := log2(1/3), τ := log2 b, v := n − 2, u := m,

M := 3.5 × 1016 and we obtain

ε ∈ (0.27, 0.425), q ∈ (3.32 × 1017, 5.62 × 1018),

n ≤ 296 for all b ∈ {5, 7, 9, 10}.

For b ∈ {3, 6} we use Lemma 5 with values

τ := log2 b, y := m − 1, x :=
{
n − 2; if b = 3,

n − 3; if b = 6

and assuming before without loss of generality that

log2
(
2 × 9.96 × 1069(m − 1)

)
≤ ⌈ log2

(
2 × 9.96 × 1069(3.5 × 1016 − 1)

) ⌉

= 289 < n

for the hypothesis to be fulfilled, then we get

1

(max0≤ j≤33{a j+1} + 1)(m − 1)2
<

∣∣∣∣log2 b − x

m − 1

∣∣∣∣ <
9.96 × 1069

2n(m − 1)
<

1

2(m − 1)2

where

j = 32, q j := 130441933147714940, max
0≤ j≤33

{a j+1} = 55

and therefore

1

56(3.5 × 1016 − 1)
<

9.96 × 1069

2n

i.e. n ≤ 293. In conclusion

m ≤ n ≤ 296, 2 ≤ n1 ≤ 75 and 2 ≤ m1 ≤ 12 for all b ∈ {3, 5, 6, 7, 9, 10}.
(22)
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Finally a brief computational verification with the help of mathematica for Eq. (15)
on Bounds (22)

∣∣∣∣
∣∣∣∣∣∣
∣

c b n m n1 m1

−3 3 5 3 3 2
15 3 7 4 5 2
39 3 10 6 6 2

−24 6 8 3 4 2

∣∣∣∣
∣∣∣∣∣∣
∣

are the only solutions for this equation with b ∈ {3, 5, 6, 7, 9, 10}. Note that k takes
arbitrary values greater than n in each case.

This concludes the proof of the first part of Corollary 2.

4 Case n ≥ k + 1

4.1 Bounding n in terms ofm and k

We also have that m > m1 ≥ 2, n > n1 ≥ 2 and k ≥ 2.
So, from Lemma 2(b) and (3), we have

αn−3 ≤ L(k)
n−2 ≤ L(k)

n − L(k)
n1 = bm − bm1 < bm, and

2αn ≥ L(k)
n > L(k)

n − L(k)
n1 = bm − bm1 ≥ bm−1, (23)

leading to

(
log b

logα

)
(m − 1) − log 2

logα
< n <

(
log b

logα

)
m + 3. (24)

We note that the above inequality (24) in particular implies that m < n + 2. By
Lemma 2(d) and (3), we get

∣∣∣(2α − 1) fk(α)αn−1 − bm
∣∣∣ =

∣∣∣((2α − 1) fk(α)αn−1 − L(k)
n ) + (L(k)

n1 − bm1)

∣∣∣

=
∣∣∣((2α − 1) fk(α)αn−1 − L(k)

n ) + (L(k)
n1 − (2α − 1) fk(α)αn1−1)

+ ((2α − 1) fk(α)αn1−1 − bm1)

∣∣
∣

<
3

2
+ 3

2
+ 9αn1/8 + bm1

< 5max{αn1, bm1}.
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In the above, we have also used the fact that 1/2 < fk(α) < 3/4 (see Lemma 2(e)).
Dividing through by bm , we get

∣
∣∣(2α − 1) fk(α)αn−1b−m − 1

∣
∣∣ < 5max

{
αn1

bm
, bm1−m

}

< 5max{αn1−n+3, bm1−m}, (25)

where for the right–most inequality in (25) we used (23).
For the left–hand side of (25) above, we apply Theorem 4 with the data: t := 3 and

γ1 := (2α − 1) fk(α), γ2 := α, γ3 := b, b1 := 1, b2 := n − 1, b3 := −m.

We begin by noticing that the three numbers γ1, γ2, γ3 are positive real numbers and
belong to the field K := Q(α), so we can take D := [K : Q] = k. Put

� := (2α − 1) fk(α)αn−1b−m − 1.

To see that � �= 0, observe that imposing � = 0, leads to bm = (2α − 1) fk(α)αn−1.
Conjugating the above relation by some automorphism of the Galois group of the
decomposition field of �k(x) over Q and then taking absolute values, we get that for
any i ≥ 2, we have

bm =
∣
∣∣2α(i) − 1

∣
∣∣
∣
∣∣ fk(α(i))

∣
∣∣
∣
∣∣α(i)

∣
∣∣
n−1

.

But the above relation is not possible since its left-hand side is greater than 8, while
its right-hand side is smaller than 3. Thus, � �= 0.

Since h(γ2) = (logα)/k < (log 2)/k and h(γ3) = log b, it follows that we can
take A2 := log 2 and A3 := k log b. Furthermore, by properties (9) and bounds (10),
we obtain that

h(γ1) ≤ h(α) + h( fk(α)) + log 4 < (log 2)/k + 2 log k

7 + log 4 < 5 log k for all k ≥ 2,

so we can take A1 := 5k log k. Finally, since max{1, n − 1,m} ≤ n + 1, we take
B := n + 1. Then, the left–hand side of (25) is bounded below, by Theorem 4, as

log |�| > −1.4 × 306 × 34.5 × k4(1 + log k)(1 + log(n + 1))(5 log k)(log 2)(log b).

Comparing with (25), we get

min{(n − n1) logα, (m − m1) log b} < 2.73 × 1012k4(log k)2(log n)(log b).

(26)

Now the argument is split into two cases.
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Case 1. min{(n − n1) logα, (m − m1) log b} = (n − n1) logα.
In this case, we rewrite (3) as

∣∣∣(2α − 1) fk(α)αn−1 − (2α − 1) fk(α)αn1−1 − bm
∣∣∣ =

∣∣∣((2α − 1) fk(α)αn−1 − L(k)
n )

+ (L(k)
n1 − (2α − 1) fk(α)αn1−1) − bm1

∣
∣∣

<
3

2
+ 3

2
+ bm1 ≤ bm1+2.

Dividing through by bm gives

∣
∣∣(2α − 1) fk(α)(αn−n1 − 1)αn1−1b−m − 1

∣
∣∣ < bm1−m+2. (27)

Now we put

�1 := (2α − 1) fk(α)(αn−n1 − 1)αn1−1b−m − 1.

We apply again Theorem 4 with the following data

t := 3, γ1 := (2α − 1) fk(α)(αn−n1 − 1), γ2 := α, γ3 := b,

b1 := 1, b2 := n1 − 1, b3 := −m.

As before, we begin by noticing that the three numbers γ1, γ2, γ3 belong to the field
K := Q(α), so we can take D := [K : Q] = k. To see why �1 �= 0, note that other-
wise, we would get the relation (2α − 1) fk(α)(αn−n1 − 1) = bmα1−n1 . Conjugating
this last equation with any automorphism σ of the Galois group of �k(x) over Q such
that σ(α) = α(i) for some i ≥ 2 and then taking absolute values, we arrive at the
equality

6 > |(2α(i) − 1) fk(α
(i))((α(i))n−n1 − 1)| = |bm(α(i))1−n1 | > 8

because b ≥ 2, m > m1 ≥ 2 and n1 ≥ 2, but this is an absurd.
Since

h(γ1) ≤ h((2α − 1) fk(α)) + h(αn−n1 − 1) < 5 log k + (n − n1)
logα

k
+ log 2,

it follows that

kh(γ1) < 6k log k + (n − n1) logα

< 6k log k + 2.73 × 1012k4(log k)2(log n)(log b).

So, we can take A1 := 2.731 × 1012k4(log k)2(log n)(log b). Further, as before, we
take A2 := log 2 and A3 := k log b. Finally, by recalling that m ≤ n + 1, we can take
B := n + 1.
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We then get that

log |�1| > −1.4 × 306 × 34.5 × k3(1 + log k)(1 + log(n + 1))

×(2.731 × 1012k4(log k)2(log n)(log b))(log 2)(log b),

which yields

log |�1| > −1.491 × 1024k7(log k)3(log n)2(log b)2.

Comparing this with inequality (27), we obtain that

(m − m1) log b < 1.5 × 1024k7(log k)3(log n)2(log b)2. (28)

Case 2. min{(n − n1) logα, (m − m1) log b} = (m − m1) log b.
In this case, we write (3) as

∣∣∣(2α − 1) fk(α)αn−1 − bm + bm1

∣∣∣ =
∣∣∣((2α − 1) fk(α)αn−1 − L(k)

n ) + (L(k)
n1

− (2α − 1) fk(α)αn1−1) + (2α − 1) fk(α)αn1−1
∣∣
∣

<
3

2
+ 3

2
+ 9αn1/8 < 2.4αn1 ,

so, by inequality (23), αn−3 < bm − bm1 and we obtain that

∣∣∣(2α − 1) fk(α)(bm−m1 − 1)−1αn−1b−m1 − 1
∣∣∣ <

2.4αn1

bm − bm1

≤ 2.4αn1−n+3 < αn1−n+5.

(29)

The above inequality (29) suggests once again studying a lower bound for the absolute
value of

�2 := (2α − 1) fk(α)(bm−m1 − 1)−1αn−1b−m1 − 1.

We again apply Matveev’s theorem with the following data

t := 3, γ1 := (2α − 1) fk(α)(bm−m1 − 1)−1, γ2 := α, γ3 := b,

b1 := 1, b2 := n − 1, b3 := −m1.

We can again take B := n + 1 and K := Q(α), so that D := k. We also note that, if
�2 = 0, then we would get to the relation (2α − 1) fk(α)αn−1 = bm1(bm−m1 − 1).
With a similar argument to �1 �= 0, we arrive at

3 > |(2α(i) − 1) fk(α
(i))(α(i))n−1| = |bm1(bm−m1 − 1)| ≥ 4
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since b ≥ 2, m1 ≥ 2 and m − m1 ≥ 1, but this is a contradiction. Then, �2 �= 0.
Now, we note that

h(γ1) ≤ h((2α − 1) fk(α)) + h(bm−m1 − 1) < 5 log k + (m − m1) log b + log 2.

Thus,

kh(γ1) < 6k log k + (m − m1)k log b < 2.731 × 1012k5(log k)2(log n)(log b),

and so we can take A1 := 2.731 × 1012k5(log k)2(log n)(log b). As before, we take
A2 := log 2 and A3 := k log b. It then follows from Matveev’s theorem, after some
calculations, that

log |�2| > −1.491 × 1024k8(log k)3(log n)2(log b)2.

From this and inequality (29), we obtain that

(n − n1) logα < 1.5 × 1024k8(log k)3(log n)2(log b)2. (30)

In both Case 1 and Case 2 and from inequations (26), (28) and (30), we have

(m − m1) log b < 1.5 × 1024k7(log k)3(log n)2(log b)2 and

(n − n1) logα < 1.5 × 1024k8(log k)3(log n)2(log b)2. (31)

We now finally rewrite Eq. (3) as

∣∣
∣(2α − 1) fk(α)αn−1 − (2α − 1) fk(α)αn1−1 − bm + bm1

∣∣
∣

=
∣∣∣((2α − 1) fk(α)αn−1 − L(k)

n )

+ (L(k)
n1 − (2α − 1) fk(α)αn1−1)

∣∣∣ < 3.

We divide through both sides by bm − bm1 getting

∣∣∣
∣
(2α − 1) fk(α)(αn−n1 − 1)

bm−m1 − 1
αn1−1b−m1 − 1

∣∣∣
∣ <

3

bm − bm1
≤ 6

bm
. (32)

To find a lower–bound on the left–hand side of (32) above, we again apply Theorem 4
with the data

t := 3, γ1 := (2α − 1) fk(α)(αn−n1 − 1)

bm−m1 − 1
, γ2 := α,

γ3 := b, b1 := 1, b2 := n1 − 1, b3 := −m1.
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We also take B := n + 1 and we take K := Q(α) with D := k. From the properties
of the logarithmic height function, we have that

kh(γ1) ≤ k
(
h((2α − 1) fk(α)) + h(αn−n1 − 1) + h(bm−m1 − 1)

)

< 5k log k + (n − n1) logα + k(m − m1) log b + 2k log 2

< 3.01 × 1024k8(log k)3(log n)2(log b)2,

where in the above chain of inequalities we used the bounds (31). So we can take
A1 := 3.01 × 1024k8(log k)3(log n)2(log b)2, and certainly as before we take A2 :=
log 2 and A3 := k log b. We need to show that if we put

�3 := (2α − 1) fk(α)(αn−n1 − 1)

bm−m1 − 1
αn1−1b−m1 − 1,

then �3 �= 0. To see why �3 �= 0, note that otherwise, we would get the relation

(2α − 1) fk(α)αn1−1(αn−n1 − 1) = bm1(bm−m1 − 1).

Conjugating this equation with the automorphism σ of the Galois group of�k(x) over
Q such that σ(α) = α(i), for some i ≥ 2 and the argument of α(i) is in [0, π/4) for
all k ≥ 12 (which is possible using the Lemma 1 with h = 1) we obtain

|(2α(i) − 1) fk(α
(i))(α(i))

n1−1
((α(i))

n−n1 − 1)| = |bm1(bm−m1 − 1)|,

where

2 > | fk(α(i))(α(i))
n1−1

((α(i))
n−n1 − 1)|

and for the law of cosines we obtain

|2α(i) − 1| =
√

|2α(i)|2 + 1 − 2|2α(i)| cos θ <
√
5 − 4 cos(π/4) < 1.5,

in conclusion

3 > |(2α(i) − 1) fk(α
(i))(α(i))

n1−1
((α(i))

n−n1 − 1)| = |bm1(bm−m1 − 1)| > 4

sincem−m1 ≥ 1,m1 ≥ 2 and b ≥ 2, but this is not true. For k ≤ 11, after making an
appropriate choice i , an exact calculation of the value absolutes of 2α(i) − 1, fk(α(i))

and α(i), show that �1 �= 0.
Then Theorem 4 gives

log |�3| > −1.4 × 306 × 34.5k11(1 + log k)(1 + log(n + 1))

×
(
3.01 × 1024(log k)3(log n)2(log b)2

)
(log 2)(log b),
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which together with inequalities (23) and (32) gives

(n − 3) logα < m log b < 1.645 × 1036k11(log k)4(log n)3(log b)3,

i.e.

n

(log n)3
< 3.421 × 1036k11(log k)4(log b)3. (33)

WeapplyLemma6with the data s = 3, x = n, T = 3.421×1036k11(log k)4(log b)3.
Thus,

n < 23 ·
(
3.421 × 1036k11(log k)4(log b)3

)
(13 log k + 120 log b)3

< 1.94 × 1044k11(log k)7(log b)6.

We then record what we have proved so far as a lemma.

Lemma 9 If (n,m, n1,m1, k) is a solution in positive integers to Eq. (3) with n >

n1 ≥ 2, m > m1 ≥ 2 and k ≥ 2, we then have that

n < 1.94 × 1044k11(log k)7(log b)6.

4.2 An absolute upper bound for k and n on b

First we assume 20.49k ≤ n. Then

k < 3 log n < 3
(
log
(
k11(log k)7

)
+ log

(
1.94 × 1044(log b)6

))

< 3 (14 log k + 144 log b)

< 684(log b)(log k).

Hence, by Lemma 6 with s = 1, x = k, T = 684(log b), we have

k < 2(684(log b))(log(684(log b))) < 1.3 × 104(log b)2 for all b ≥ 2.

In another case n1 < n < 20.49k and we assume without loss of generality that
k ≥ 200. By Lemma 3 with c = 0.49 and r ∈ {n1, n} we get

L(k)
r = 3 · 2r−2 (1 + ζ ′

r

)
, |ζ ′

r | < 4/20.51k for all r ≥ 2; (34)

L(k)
r = 3 · 2r−2

(
1 − r − k + 4/3

2k+1 + ζ ′′
r

)
, |ζ ′′

r | < 8/21.02k for all r ≥ k + 2.

(35)

We need distinguing the following cases.

123



B. Faye et al.

4.2.1 The case 3 · 2n−2 �= bm1
(
bm−m1 − 1

)

Using (34) we can write (3) as

3 · 2n−2 (1 + ζ ′
n

)− bm = 3 · 2n1−2 (1 + ζ ′
n1

)− bm1 . (36)

Then
∣∣∣3 · 2n−2 − bm

∣∣∣ ≤ 3 · 2n−2|ζ ′
n| + 3 · 2n1−2 (1 + |ζ ′

n1 |
)+ bm1

<
3 · 2n
20.51k

(
1 + 2n1−n)+ 3 · 2n1−2 + bm1 .

Dividing throught by 3 · 2n−2 and considering that 2n+1 > 2αn > bm−1 (according
to 23), we conclude

∣
∣∣3−1 · 2−(n−2)bm − 1

∣
∣∣ <

6

20.51k
+ 3b

bm−m1
+ 1

2n−n1

< 7bmax
{
2−0.51k, bm1−m, 2n1−n

}
. (37)

Now we put

�4 := 3−1 · 2−(n−2)bm − 1

and see that it is nonzero analogously to how we obtained that �0 �= 0 in (19). We
apply Theorem 4 on �4 with the datas

t := 3, γ1 := 3, γ2 := 2, γ3 := b, b1 := −1, b2 := −(n − 2), b3 := m.

We note that γ1, γ2, γ3 belong to K := Q, so D := 1. Now, A1 := log 3, A2 := log 2
and A3 := log b. Thus,

log |�4| > −2.4 × 1011(log b)(log n).

This inequality together with inequality (37), lead to

∇ := min
{
0.51k, (m − m1) log2 b, n − n1

}
< 3.5 × 1011(log b)(log n). (38)

If ∇ = 0.51k, we get

k < 6.9 × 1011(log b)(log n). (39)

If ∇ = (m − m1) log2 b, then m − m1 < 2.43 × 1011 log n. We rewriting equality
(36) to obtain

∣
∣∣3 · 2n−2 − bm1

(
bm−m1 − 1

)∣∣∣ ≤ 3 · 2n
20.51k

(
1 + 2n1−n)+ 3 · 2n1−2.
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Then

∣∣∣3−12−(n−2)bm1
(
bm−m1 − 1

)− 1
∣∣∣ <

6

20.51k
+ 1

2n−n1

< 7max
{
2n1−n, 2−0.51k

}
. (40)

We now apply Theorem 4 on

�5 := 3−1 · 2−(n−2) (bm−m1 − 1
)
bm1 − 1

which is nonzero because 3 · 2n−2 �= bm1
(
bm−m1 − 1

)
. Set the datas

t := 3, γ1 := 3−1 (bm−m1 − 1
)
, γ2 := 2, γ3 := b,

b1 := 1, b2 := −(n − 2), b3 := m1.

As before we take K := Q, D := 1 and B = n + 1. Now, A1 := 4(m − m1)(log b),
A2 := log 2 and A3 := log b. Thus,

log |�5| > −8.74 × 1011(m − m1)(log b)
2 log n

> −2.13 × 1023(log b)2(log n)2.

This inequality together with inequality (40), lead to

k < 6.1 × 1023(log b)2(log n)2 (41)

or

n − n1 < 3.1 × 1023(log b)2(log n)2. (42)

If ∇ = n − n1, then n − n1 < 3.5 × 1011(log b)(log n). We rewrite equality (36)
as

∣
∣∣3 · 2n1−2 (2n−n1 − 1

)− bm
∣
∣∣ ≤ 3 · 2n

20.51k
(
1 + 2n1−n)+ bm1 .

Hence,

∣∣∣3 · 2n1−2 (2n−n1 − 1
)
b−m − 1

∣∣∣ <
6

20.51k
2n

bm
+ 1

bm−m1

<
6α3

20.51k

(
2

α

)n
+ 1

bm−m1

< 64max
{
2−0.51k, bm1−m

}
. (43)
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Here we have used (23). Furthermore, given that α > 2(1 − 2−k) and n < 20.49k , we
conclude

(
2

α

)n
<

(
1

1 − 2−k

)n
=
(
1 + 2−k

1 − 2−k

)n
<

(

1 + 2−0.51k+1

20.49k

)20.49k

< e2
−0.51k+1

< 1.3 for all k ≥ 6,

since (1 + z/�)� converges increasingly to ez for all z ∈ R
+ when � → ∞.

Now we make

�6 := 3 · 2n1−2 (2n−n1 − 1
)
b−m − 1.

If �6 = 0 we obtain that 3 · 2n1−2
(
2n−n1 − 1

) = bm so 3m−1 | 2n−n1 − 1 and by
item (i i) of Lemma 7 we conclude that 3m−3 | n − n1, therefore (see (24))

(n − 3)(logα)/ log b < m ≤ 3 + log3(n − n1) < 3 + log3(3.5 × 1011(log b)(log n))

< 3 + 13 log n + 0.4 log b

< 24(log b)(log n)

and using Lemma 6 it follows that

n < 2(57(log b)2)(log(57(log b)2)) < 548(log b)3. (44)

In another case �6 �= 0 and we apply similarly Theorem 4 as for the last �’s, with
the datas: �6, t = 3,

γ1 := 3
(
2n−n1 − 1

)
, γ2 := 2, γ3 := b,

b1 := 1, b2 := n1 − 2, b3 := −m

which leads to

log |�6| > −5.46 × 1011(n − n1)(log b)(log n)

> −1.911 × 1023(log b)2(log n)2.

Comparing this inequality with inequality (43), we arrive at

k < 3.75 × 1023(log b)2(log n)2 (45)

or

m − m1 < 1.912 × 1023(log b)(log n)2. (46)
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Hence, from (39), (41), (42), (44) (45) and (46) we conclude that

n < 548(log b)3 (47)

or

k < 6.1 × 1023(log b)2(log n)2 (48)

or

n − n1 < 3.1 × 1023(log b)2(log n)2 and m − m1 < 1.912 × 1023(log b)(log n)2.

(49)

Assume that (49) is fulfilled. Returning to equality (36) and rearranging it as

∣
∣∣3 · 2n1−2 (2n−n1 − 1

)− bm1
(
bm−m1 − 1

)∣∣∣ <
3 · 2n1 (2n−n1 + 1

)

20.51k

we get

∣∣∣3−1 · 2−(n1−2) (2n−n1 − 1
)−1

bm1
(
bm−m1 − 1

)− 1
∣∣∣ < 12 · 2−0.51k . (50)

Finally, we want to apply Theorem 4 to

�7 := 3−1 · 2−(n1−2) (2n−n1 − 1
)−1

bm1
(
bm−m1 − 1

)− 1.

Note that if �7 = 0, then

3 · 2n−2 − 3 · 2n1−2 = bm − bm1 . (51)

We consider the following cases over n1.

• First, we assume that n1 ≤ k + 1. If in addition n = k + 1 > n1, then combining
Eq. (3) with items (a) and (g) of Lemma 2 together with identity (51), we obtain

3 · 2k−1 − 2 − bm = 3 · 2n1−2 − bm1 = 3 · 2k−1 − bm

i.e. −2 = 0 which is absurd. Otherwise n1 ≤ k + 1 < n and we use a similar
argument adding identity (35) to obtain

3 · 2n−2
(

−n − k + 4/3

2k+1 + ζ ′′
n

)
+ 3 · 2n1−2 =

{
3 · 2n1−2 − 2; if n1 = k + 1,

3 · 2n1−2; if n1 ≤ k.
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Therefore

24

21.02k
> 3|ζ ′′

n | = 1

2k+1

{∣
∣3(n − k) + 4 − 2−n+3

∣
∣ ; if n1 = k + 1,

|3(n − k) + 4|; if n1 ≤ k

>
6

2k+1

but the above can only occur when k ≤ 149 which contradicts the assumption of
the beginning.

• Now we assume that n1 ≥ k + 2 and since n > n1 we can use the same argument
of the previous item but using identity (35) for n and n1. So

3 · 2n−2
(

−n − k + 4/3

2k+1 + ζ ′′
n

)
= 3 · 2n1−2

(
−n1 − k + 4/3

2k+1 + ζ ′′
n1

)

implies that

1

2k+1

∣
∣2n1−n(n1 − k + 4/3) − (n − k + 4/3)

∣
∣ <

12

21.02k

i.e.

2.5

2k+1 ≤ 1

2k+1

∣∣(n − n1) + (1 − 2n1−n)(n1 − k + 4/3)
∣∣ <

12

21.02k

and this only occurs when k ≤ 163, so we get a contradiction.

In conclusion�7 �= 0 and continuing with our apply of Theorem 4, as for the last�’s,
we take t = 3 and

γ1 := 3−1 (2n−n1 − 1
)−1 (

bm−m1 − 1
)
, γ2 := 2, γ3 := b,

b1 := 1, b2 := −(n1 − 2), b3 := m1.

Further

A3 := h(γ3) ≤ h(3) + h(2n−n1 − 1) + h(bm−m1 − 1)

< (n − n1) log 2 + (m − m1) log b + log 12

< 2.15 × 1023(log b)2(log n)2+1.912 × 1023(log b)2(log n)2+ log 12

< 4.1 × 1023(log b)2(log n)2.

Hence

log |�7| > −8.14 × 1034(log b)3(log n)3.

Therefore inequality (50), together with the previous one, leads to

k < 2.303 × 1035(log b)3(log n)3 (52)
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which includes inequality (48). So, by Lemma 9

k < 2.303 × 1035(log b)3
(
log
(
1.94 × 1044k11(log k)7

)
+ 6 log (log b)

)3

< 2.303 × 1035(log b)3 (35 log k + 6 log (log b))3

< 2.303 × 1035(log b)3 (41max{log k, log (log b)})3

therefore

k < 9.45 × 1036(log b)3(log k)3.

Finally, using Lemma 6 with (x, s) := (k, 3) and T := 9.45 × 1036(log b)3, we
conclude that

k < 23 ·
(
9.45 × 1036(log b)3

) (
log
(
9.45 × 1036(log b)3

))3

< 1.4 × 1044(log b)6.

Sustituying this inequality in Lemma 9, we have

n < 1.02 × 10545(log b)79

which includes inequality (47).

4.2.2 The case 3 · 2n−2 = bm1
(
bm−m1 − 1

)

In this case from Eq. (3) we know that 3 · 2n−2 = L(k)
n − L(k)

n1 , so combining this with
Items (a) and (g) of Lemma 2 and the identity (35), it follows that

0 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−2 − 3 · 2n1−2; if n1 ≤ k and n = k + 1,

3 · 2n−2
(

−n − k + 4/3

2k+1 + ζ ′′
n

)
− 3 · 2n1−2; if n1 ≤ k and n ≥ k + 2,

3 · 2n−2
(

−n − k + 4/3

2k+1 + ζ ′′
n

)
− (3 · 2k−1 − 2); if n > n1 = k + 1

or

0 = 3 · 2n−2
(

−n − k + 4/3

2k+1 + ζ ′′
n

)
− 3 · 2n1−2

(
1 − n1 − k + 4/3

2k+1 + ζ ′′
n1

)
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if n > n1 ≥ k + 2. Then we conclude that the case n1 ≤ k and n = k + 1 is an absurd
and the others imply

8

21.02k
>

1

2k+1

⎧
⎨

⎩

∣
∣∣n − k + 4/3 + 2n1−n+k+1

∣
∣∣ ; if n1 ≤ k and n ≥ k + 2,

∣
∣
∣n − k + 4/3 + 2k−n+3(3 · 2k−1 − 2)/3

∣
∣
∣ ; if n > n1 = k + 1

>
3

2k+1

or

12

21.02k
>

1

2k+1

∣
∣∣(n − k + 4/3) + 2n1−n

(
2k+1 − (n1 − k + 4/3)

)∣∣∣

= 1

2k+1

∣∣∣(1 − 2n1−n)(n − k + 4/3) + 2n1−n(n − n1) + 2k+n1−n+1
∣∣∣

>
1.5

2k+1

if n > n1 ≥ k + 2. In any case we obtain a contradiction since we had assumed
k ≥ 200 from the beginning.

In resume, we have the follow result.

Lemma 10 Let n > n1 ≥ 2 and m > m1 ≥ 2, be solutions of (3) with n ≥ k+1, then

k < 1.4 × 1044(log b)6 and m − 1 ≤ n < 1.02 × 10545(log b)79.

This completed the proof of the second part of Theorem 1.

4.3 Proof of the second part of Corollary 2

In this section b ∈ [2, 10] then it is only enough to study the values of b ∈
{2, 3, 5, 6, 7, 10}, since 4, 8 and 9 are powers of 2 or 3.

4.3.1 Case k > 625 and b ∈ {2, 3, 5, 6, 7, 10}.
Combining inequalities (33) and (52) we obtain computationally that

∣∣
∣∣∣
b = 2 3 5 6 7 10
n < 1.6 × 10539 4.4 × 10546 6.4 × 10552 3.5 × 10554 7.4 × 10555 3.9 × 10558

∣∣
∣∣∣

(53)

Also, by Lemma 9 we know that n < 20.49k because we have assumed k > 625.
In Sect. 4.2.2 we saw that if k + 1 ≤ n < 20.49k and 3 · 2n−2 = bm1

(
bm−m1 − 1

)

then Eq. (3) has no solution, so in this section we will always assume that 3 · 2n−2 �=
bm1

(
bm−m1 − 1

)
.
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Therefore, we use inequalities (14) and (37) to obtain2

∣∣(n − 2) logb 2 − m + logb 3
∣∣ < 14bmax

{
2−0.51k, bm1−m, 2n1−n

}
/ log b

≤ 14b

log b
× 2−∇ , (54)

where ∇ is already defined in inequality (38). When b = 2, we have

0.41 <
∥∥log2 3

∥∥ ≤ ∣∣n − m − 2 + log2 3
∣∣ < 41 × 2−∇

and therefore ∇ < 6.644 but we had assumed that ∇ ≥ 9 which is an absurd, so it
only remains that

∇ < 9. (55)

If b ∈ {3, 6}, let c3 := 2 and c6 := 3, so we obtain

∣∣(n − cb) logb 2 − (m − 1)
∣∣ <

14b

log b
× 2−∇ (56)

and using bounds (53) we assume for a moment that

∇ >

{
1823; if b = 3,

1849; if b = 6
> log2

(
14b(2(n − cb))

log b

)
.

Then by Lemma 5 it follows that

1

(ab + 2)(n − cb)2
<

∣∣
∣∣logb 2 − m − 1

n − cb

∣∣
∣∣ <

14b × 2−∇

(n − cb) log b
<

1

2(n − cb)2

where

∣∣∣∣∣
∣∣

b tb qtb+1 ab := max0≤�≤tb+1{a�}
3 1048 4.86 × 10546 3308
6 1070 6.49 × 10554 3308

∣∣∣∣∣
∣∣

(57)

Therefore

∇ <

{
1832; if b = 3,

1859; if b = 6.
(58)

2 Assuming for a moment that ∇ ≥ 9.
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In another case b ∈ {5, 7, 10}, We use Lemma 4, with the parameters

u := n − 2, τ := logb 2, μ := logb 3, v := m,

A := 14b

log b
, B := 2, w := ∇ (59)

and M as in Table (53). Thus we obtain

∣∣∣∣∣
∣∣∣∣∣

b qb εb logB
(
Aqb
εb

)

5 1.0481 × 10554 0.34419 1847
7 6.0928 × 10557 0.12152 1861
10 2.0504 × 10560 0.11046 1870

∣∣∣∣∣
∣∣∣∣∣

By the above table and inequalities (55) and (58), we arrive at

∣∣∣∣
∣
b = 2 3 5 6 7 10
∇ ≤ 9 1832 1847 1859 1861 1870

∣∣∣∣
∣

(60)

Case 1. ∇ = 0.51k. Then
∣∣∣∣∣
b = 2 3 5 6 7 10
k ≤ 17 3592 3621 3645 3649 3666

∣∣∣∣∣
(61)

Case 2. ∇ = (m − m1) log2 b. From inequalities (14) and (40), we know that3

|�5| <
14

log b
× 2−min{n−n1,0.51k},

where

�5 :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n − m1 − 2 + log2
(
3/
(
2m−m1 − 1

)) ; if (m − m1, b) = (m − m1, 2) �= (2, 2),

n − m1 − 2; if (m − m1, b) = (2, 2),

(n − 3) log3 2 − (m1 − 1); if (m − m1, b) = (1, 3),

(n − 5) log3 2 − (m1 − 1); if (m − m1, b) = (2, 3),

(n − 5) log5 2 − m1; if (m − m1, b) = (2, 5),

(n − 3) log7 2 − m1; if (m − m1, b) = (1, 7),

(n − 6) log7 2 − m1; if (m − m1, b) = (2, 7),

(n − 2) logb 2 − m1 + logb
(
3/
(
bm−m1 − 1

)) ; otherwise.

If b = 2 and m − m1 �= 2 we obtain

0.22 <
∥∥log2

(
3/
(
2m−m1 − 1

))∥∥ <
14

log 2
× 2−min{n−n1,0.51k}.

3 Here we assume for a moment that min {n − n1, 0.51k} ≥ 6.
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If b = 2 and m − m1 = 2, we get

1 ≤ |n − m| = |n − m1 − 2| <
14

log 2
× 2−min{n−n1,0.51k}

since 3 · 2n−2 �= bm1
(
bm−m1 − 1

) = 3 · 2m−2 implies n �= m. Therefore

min {n − n1, 0.51k} < 6.521 for b = 2. (62)

If (m − m1, b) ∈ {(1, 3), (2, 3), (2, 5), (1, 7), (2, 7)}, we use Lemma 5 with τ =
logb 2, M as in Table (53) and y < M on

∣∣∣∣logb 2 − x

y

∣∣∣∣ <
14

y log b
× 2−min{n−n1,0.51k}, (63)

where x/y ∈ {(m1−1)/(n−3), (m1−1)/(n−5),m1/(n−5),m1/(n−3),m1/(n−6)}.
Then we assume for a moment that

min {n − n1, 0.51k} >

⎧
⎪⎨

⎪⎩

1821; if b = 3,

1841; if b = 5,

1851; if b = 7

=
⌈
log2

(
28M

log b

)⌉

and obtain

1

(a�b + 2)y2
<

∣∣∣∣logb 2 − x

y

∣∣∣∣ <
14

y log b
× 2−min{n−n1,0.51k} <

1

2y2
,

given that

∣∣∣∣∣
∣∣∣∣

b tb qtb+1 ab := max0≤�≤tb+1{a�}
3 1048 4.86 × 10546 3308
5 1094 9.31 × 10552 5393
7 1107 9.07 × 10555 2038

∣∣∣∣∣
∣∣∣∣

(64)

So

∣∣∣∣
∣

b = 3 5 7
min {n − n1, 0.51k} < 1831.27 1851.9 1860.4

∣∣∣∣
∣

(65)

In another case

(m − m1, b) /∈ {(m − m1, 2), (1, 3), (2, 3), (2, 5), (1, 7), (2, 7)}

123



B. Faye et al.

and we use Lemma 4 with the parameters

u := n − 2, τ := logb 2, μ := logb
(
3/
(
bm−m1 − 1

))
, v := m1,

A := 14

log b
, B := 2, w := min {n − n1, 0.51k} , (66)

M as in Table (53) and m −m1 between 1 and the integer part of bounds (60) divided
by log2 b. Then we obtain

∣∣
∣∣∣∣∣
∣∣∣∣∣∣
∣

b qb ∈ εb ∈ logB
(
Aqb
εb

)
∈

3 [2.8272 × 10547, 5.6237 × 10548] [0.000066516, 0.44354] [1823, 1836]
5 [1.0481 × 10554, 3.3307 × 10554] [0.00010719, 0.47347] [1844, 1856]
6 [6.2120 × 10555, 1.0338 × 10557] [0.0010799, 0.47241] [1850, 1863]
7 [6.0928 × 10557, 6.1836 × 10557] [0.00045702, 0.49322] [1856, 1866]
10 [2.0504 × 10560, 2.1576 × 10560] [0.00093374, 0.48994] [1864, 1873]

∣∣
∣∣∣∣∣
∣∣∣∣∣∣
∣

Thus, the above table together with inequalities (62) and (65), we obtain

∣∣
∣∣∣

b = 2 3 5 6 7 10
min {n − n1, 0.51k} ≤ 6 1836 1856 1863 1866 1873

∣∣
∣∣∣

(67)

Case 3. ∇ = n − n1. From inequalities (14) and (43), we know that4

|�6| <
128

log b
× 2−min{0.51k,(m−m1) log2 b}, (68)

where

�6 :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(n1 − 2) log3 2 − (m − 1); if (m − m1, b) = (1, 3),

(n1 − 2) log3 2 − (m − 2); if (m − m1, b) = (2, 3),

(n1 − 3) log6 2 − (m − 1); if (m − m1, b) = (1, 6),

(n1 − 4) log6 2 − (m − 2); if (m − m1, b) = (2, 6),

(n1 − 2) logb 2 − m + logb
(
3
(
2n−n1 − 1

)) ; otherwise.

If b = 2, by bounds (60) we have n − n1 < 9 and

0.169925 <
∥∥log2

(
3
(
2n−n1 − 1

))∥∥ < |�6| <
128

log 2
× 2−min{0.51k,(m−m1) log2 2},

so

min
{
0.51k, (m − m1) log2 2

}
< 10.1. (69)

4 Here we assume for a moment that min
{
0.51k, (m − m1) log2 b

} ≥ 8.
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If (m − m1, b) ∈ {(1, 3), (2, 3), (1, 6), (2, 6)}, we can use Lemma 5 on inequal-
ity (68) and we will get the results in (57), therefore we get

1

(ab + 2)y2
<

∣∣∣∣logb 2 − x

y

∣∣∣∣ <
128

y log b
× 2−min{0.51k,(m−m1) log2 b} <

1

2y2
(70)

with

x/y ∈ {(m − 1)/(n1 − 2), (m − 2)/(n1 − 2), (m − 1)/(n1 − 3), (m − 2)/(n1 − 4)} ,

assuming only for a moment

min
{
0.51k, (m − m1) log2 b

}
>

⌈
log2

(
256M

log b

)⌉
=
{
1824; if b = 3,

1850; if b = 6

and taking M > y as in Table (53). Then

min
{
0.51k, (m − m1) log2 b

}
<

{
1834.47; if b = 3,

1860.01; if b = 6.
(71)

If (m −m1, b) /∈ {(m −m1, 2), (1, 3), (2, 3), (1, 6), (2, 6)}, we use Lemma 4 with
the parameters

u := n1 − 2, τ := logb 2, μ := logb
(
3
(
2n−n1 − 1

))
, v := m,

A := 128

log b
, B := 2, w := min

{
0.51k, (m − m1) log2 b

}
, (72)

M as in Table (53) and n − n1 between 1 and the values in Table (60). Then

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣

b qb ∈ εb ∈ logB
(
Aqb
εb

)
∈

3 [2.8272 × 10547, 2.0935 × 10549] [0.000064074, 0.44458] [1826, 1840]
5 [1.0481 × 10554, 1.2275 × 10555] [0.00026953, 0.47260] [1847, 1858]
6 [6.2120 × 10555, 1.0338 × 10557] [0.00021938, 0.48645] [1853, 1867]
7 [6.0928 × 10557, 1.2276 × 10558] [0.00025027, 0.49381] [1859, 1870]
10 [2.0504 × 10560, 2.1576 × 10560] [0.00031011, 0.48998] [1868, 1878]

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣

Therefore, the above table and inequalities (69) and (71), imply that

∣∣∣
∣∣

b = 2 3 5 6 7 10
min

{
0.51k, (m − m1) log2 b

} ≤ 10 1840 1858 1867 1870 1878

∣∣∣
∣∣

(73)
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Summarizing, for the bounds (60), (61), (67) and (73), we obtain

∣∣∣∣
∣
b = 2 3 5 6 7 10
k ≤ 19 3607 3643 3660 3666 3682

∣∣∣∣
∣

(74)

or
∣∣∣
∣∣∣∣

b = 2 3 5 6 7 10
n − n1 ≤ 9 1836 1856 1863 1866 1873
m − m1 ≤ 10 1160 800 722 666 565

∣∣∣
∣∣∣∣

(75)

If we assume that bounds (75) are satisfied, then using inequality (50), we obtain
that

|�7| <
24

log b
× 2−0.51k,

where

�7 :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n1 − 3) log3 2 − (m1 − 1); if (b, n − n1,m − m1) = (3, 1, 1),

(n1 − 5) log3 2 − (m1 − 1); if (b, n − n1,m − m1) = (3, 1, 2),

(n1 − 3) log3 2 − (m1 − 2); if (b, n − n1,m − m1) = (3, 2, 1),

(n1 − 5) log3 2 − (m1 − 2); if (b, n − n1,m − m1) = (3, 2, 2),

(n1 − 6) log3 2 − (m1 − 2); if (b, n − n1,m − m1) = (3, 4, 4),

(n1 − 5) log5 2 − m1; if (b, n − n1,m − m1) = (5, 1, 2),

(n1 − 4) log6 2 − (m1 − 2); if (b, n − n1,m − m1) = (6, 4, 1),

(n1 − 3) log7 2 − m1; if (b, n − n1,m − m1) = (7, 1, 1),

(n1 − 6) log7 2 − m1; if (b, n − n1,m − m1) = (7, 1, 2),

(n1 − 3) log7 2 − (m1 − 1); if (b, n − n1,m − m1) = (7, 3, 1),

(n1 − 6) log7 2 − (m1 − 1); if (b, n − n1,m − m1) = (7, 3, 2),

(n1 − 2) logb 2 − m1 + logb
(
3(2n−n1−1)
bm−m1−1

)
; otherwise.

If b = 2, we take n− n1 and m −m1 between 1 and bounds (75) omitting the case

n − n1 = 1 and m − m1 = 2 = n1 − m1

because in this case �7 = 0 and before we had proved that Eq. (3) has no solution if
this occurs. Thus we obtain

0.00282 <

∥
∥∥∥log2

(
3(2n−n1 − 1)

2m−m1 − 1

)∥∥∥∥ <
24

log 2
× 2−0.51k

so

k ≤ 26 for b = 2. (76)
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If (b, n − n1,m − m1) belongs to the set

I := {(3, 1, 1), (3, 1, 2), (3, 2, 1), (3, 2, 2), (3, 4, 4), (5, 1, 2),
(6, 4, 1), (7, 1, 1), (7, 1, 2), (7, 3, 1), (7, 3, 2)} ,

we use Lemma 5 on

∣∣∣∣logb 2 − x

y

∣∣∣∣ <
24

y log b
× 2−0.51k, (77)

with x ∈ {n1 − 3, n1 − 4, n1 − 5, n1 − 6}, y ∈ {m1,m1 − 1,m1 − 2} according to the
corresponding order and M > y as in Table (53). Then assuming for a moment that

k >

⌈(
log2

(
48M

log b

))
/0.51

⌉
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3572; if b = 3,

3611; if b = 5,

3622; if b = 6,

3630; if b = 7,

we obtain

1

(ab + 2)y2
<

24

y log b
× 2−0.51k <

1

2y2

where ab is the same as in data list (57) and (64). Therefore

∣∣∣
∣∣
b = 3 5 6 7
k ≤ 3592 3632 3642 3649

∣∣∣
∣∣

(78)

Then, we use Lemma 4 with the parameters

u := n1 − 2, τ := logb 2, μ := logb

(
3(2n−n1 − 1)

bm−m1 − 1

)
, v := m1,

A := 24

log b
, B := 2, w := 0.51k, (79)

M as in Table (53) and n − n1 and m − m1 from 1 to bounds (75). So

∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣

b qb ∈ εb ∈ logB
(
Aqb
εb

)
∈

3 [2.83 × 10547, 8.94 × 10549] [1.06 × 10−7, 0.445] [1825, 1847]
5 [1.05 × 10554, 3.76 × 10556] [3.64 × 10−7, 0.485] [1846, 1868]
6 [6.21 × 10555, 8.49 × 10558] [6.76 × 10−7, 0.487] [1852, 1872]
7 [6.09 × 10557, 2.69 × 10560] [5.12 × 10−8, 0.494] [1858, 1881]
10 [2.05 × 10560, 3.58 × 10561] [5.50 × 10−7, 0.491] [1866, 1886]

∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣
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Finally, the above table and bounds (74), (76) and (78), imply that

∣∣∣∣∣
b = 2 3 5 6 7 10
k ≤ 26 3621 3662 3670 3688 3698

∣∣∣∣∣
(80)

Now, we had assumed that k > 625 for all b ∈ {2, 3, 5, 6, 7, 10} then for b = 2 we
get a contradiction and conclude that there are no solutions to Eq. (3) when k > 625
and b = 2.

On the other hand for the values of b ∈ {3, 5, 6, 7, 10} we will do one more
cycle of reduction, where bounds (53) have reduced them using inequality (33) with
bounds (80) as follows.

∣∣
∣∣∣
b = 3 5 6 7 10
n < 2.26 × 1086 8.232 × 1086 1.171 × 1087 1.594 × 1087 2.7463 × 1087

∣∣
∣∣∣

(81)

We note that for some previous reductions we use Lemma 5 for b ∈ {3, 5, 6, 7}, then
under the appropriate hypothesis we will always obtain that

1

(ab + 2)y2
<

∣∣
∣∣logb 2 − x

y

∣∣
∣∣ <

1

2y2

for some x, y ∈ Z, where 0 < y < M , M is as in Table (81) and

∣
∣∣∣∣∣∣
∣∣∣∣

b tb qtb+1 ab := max0≤�≤tb+1{a�}
3 184 4.08 × 1086 55
5 177 8.8 × 1086 5393
6 185 4.105 × 1087 55
7 170 4.01 × 1088 197

∣
∣∣∣∣∣∣
∣∣∣∣

(82)

Then we will use in all these cases the lower bound

y

∣∣∣
∣logb 2 − x

y

∣∣∣
∣ >

1

(ab + 2)M
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

7.76277 × 10−89; if b = 3,

2.25166 × 10−91; if b = 5,

1.49819 × 10−89; if b = 6,

3.15253 × 10−90; if b = 7.

(83)

We start by realizing the second cycle of reduction to ∇ using inequality (54). Thus,
reduction (58) becomes using the lower bounds (83) and after another iteration

∇ <

{
298; if b = 3,

301; if b = 6.
(84)
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For the other cases we use Lemma 4 with parameters (59) except that M is taken from
Table (81), so we get

∣∣
∣∣∣∣∣∣
∣∣

b qb εb logB
(
Aqb
εb

)

5 1.1380 × 1088 0.0977842 301
7 4.0119 × 1088 0.419435 301
10 6.7270 × 1088 0.175735 303

∣∣
∣∣∣∣∣∣
∣∣

and obtain

∇ ≤ 303 for all b ∈ {3, 5, 6, 7, 10}. (85)

As in the first reduction cycle, we consider each case over ∇.
If ∇ = 0.51k, then

k ≤ 594 for all b ∈ {3, 5, 6, 7, 10}. (86)

If ∇ = (m − m1) log2 b ≤ 303 then by inequalities (63) and (83) we obtain

∣∣∣∣∣
b = 3 5 7

min {n − n1, 0.51k} < 297 305 301

∣∣∣∣∣
(87)

for (m−m1, b) ∈ {(1, 3), (2, 3), (2, 5), (1, 7), (2, 7)}. In another caseweuseLemma4
with parameters (66) but with M as in Table (81) and get

∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣

b qb ∈ εb ∈ logB
(
Aqb
εb

)
∈

3 [2.5174 × 1087, 1.2996 × 1088] [0.0003591, 0.481619] [295, 307]
5 [1.1380 × 1088, 4.7020 × 1088] [0.00545658, 0.475573] [296, 303]
6 [2.1195 × 1088, 7.0356 × 1089] [0.000840818, 0.496361] [297, 306]
7 [4.0119 × 1088, 1.2080 × 1089] [0.0197481, 0.479736] [298, 303]
10 [6.7270 × 1088, 6.7270 × 1088] [0.00242457, 0.488085] [298, 306]

∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣

So

k ≤ 602 or n − n1 ≤ 307 for all b ∈ {3, 5, 6, 7, 10}. (88)

If ∇ = n − n1 ≤ 303 then similar to the previous case we obtain from inequali-
ties (70) and (83) that

min
{
0.51k, (m − m1) log2 b

}
<

{
300; if b = 3,

302; if b = 6.
(89)
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for (m−m1, b) ∈ {(1, 3), (2, 3), (1, 6), (2, 6)}. In another case we use Lemma 4 with
parameters (72) and obtain

∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣

b qb ∈ εb ∈ logB
(
Aqb
εb

)
∈

3 [2.5174 × 1087, 1.2996 × 1088] [0.000208392, 0.493232] [298, 311]
5 [1.1380 × 1088, 4.7020 × 1088] [0.00180693, 0.480547] [299, 309]
6 [2.1195 × 1088, 7.0356 × 1089] [0.00125949, 0.496717] [300, 310]
7 [4.0119 × 1088, 1.2080 × 1089] [0.00155886, 0.485693] [301, 309]
10 [6.7270 × 1088, 6.2171 × 1089] [0.00599169, 0.493197] [301, 309]

∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣

Therefore

k ≤ 609 or m − m1 ≤ ⌊311/ log2 b
⌋

for all b ∈ {3, 5, 6, 7, 10}. (90)

In conclusion, by bounds (85), (86), (88) and (90) it follows that

k ≤ 609 for all b ∈ {3, 5, 6, 7, 10} (91)

or

n − n1 ≤ 307 and m − m1 ≤ ⌊311/ log2 b
⌋

for all b ∈ {3, 5, 6, 7, 10}.
(92)

Using inequalities (77) and (83) we obtain that

∣∣
∣∣∣
b = 3 5 6 7
k ≤ 582 598 585 590

∣∣
∣∣∣

(93)

for (b, n − n1,m − m1) ∈ I. In another case we use Lemma 4 with data (79) and
obtain

∣
∣∣∣∣∣∣
∣∣∣∣∣
∣∣

b qb ∈ εb ∈ logB
(
Aqb
εb

)
∈

3 [2.52 × 1087, 8.76 × 1089] [9.01 × 10−6, 0.499] [296, 319]
5 [1.14 × 1088, 4.35 × 1089] [0.0000125, 0.498] [298, 313]
6 [2.12 × 1088, 3.56 × 1090] [0.0000201, 0.498] [299, 318]
7 [4.01 × 1088, 6.84 × 1089] [0.0000121, 0.495] [299, 315]
10 [6.73 × 1088, 6.22 × 1089] [0.0000326, 0.499] [300, 314]

∣
∣∣∣∣∣∣
∣∣∣∣∣
∣∣

Finally, comparing bounds (91), (93) and from the above table we conclude that

k ≤ 625 for all b ∈ {3, 5, 6, 7, 10},

but this is a contradiction since from the beginning we assumed k > 625. Therefore,
there are no solutions to Eq. (3) when k > 625 for all b ∈ {3, 5, 6, 7, 10}.
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4.3.2 Case 2 ≤ k ≤ 625 and b ∈ {2, 3, 5, 6, 7, 10}
By Eq. (33) we obtain

∣∣
∣∣∣
b = 2 3 5 6 7 10
n < 6.15 × 1076 2.51 × 1077 8.04 × 1077 1.12 × 1078 1.435 × 1078 2.4 × 1078

∣∣
∣∣∣

(94)

First, we use the inequality (25) to see that

�<1/2 assuming for a moment that ∇1 : =min{(n − n1 − 3) logb α,m − m1}≥7.

Then we use the inequality (14) on � in (25) and dividing by log b on both sides, we
obtain

|�| = ∣∣(n − 1) logb α − m + logb ((2α − 1) fk(α))
∣∣ <

10

log b
× b−∇1 . (95)

If k = 2,

|�|/n = | logb α − m/n| <
10

n log b
× b−∇1 ,

then we use Lemma 5 with y := n < M , M as in Table (94) and assuming that

⌈
logb

(
20M

log b

)⌉
< ∇1.

So, we obtain

1

(ab + 2)n2
≤ |�|/n <

10

n log b
× b−∇1 <

1

2n2
(96)

where

∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣

b tb qtb+1 ab := max0≤�≤tb+1{a�}
2 151 1.15154 × 1077 880
3 145 3.6664 × 1077 871
5 160 1.34411 × 1079 59
6 161 3.84468 × 1078 347
7 154 7.75164 × 1078 94
10 155 4.71288 × 1078 770

∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣

(97)

and therefore
∣∣∣∣∣
b = 2 3 5 6 7 10
∇1 ≤ 269 171 116 105 96 82

∣∣∣∣∣
(98)
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Now we apply the Lemma 4 on inequality (95) with k > 2 and the parameters

u := n − 1, τ := logb α, μ := logb ((2α − 1) fk(α)) , v := m,

A := 10/log b, B := b, w := ∇1

and M as in Table (94). Then we obtain

∣
∣∣
∣
∣
∣∣
∣
∣
∣∣
∣
∣
∣∣
∣
∣

b q(k)
b ∈ ε

(k)
b ∈ logB

(
Aq(k)

b /ε
(k)
b

)
∈

2 [3.7152 × 1077, 1.9302 × 10188] [3.5105 × 10−7, 0.49840] [262, 631]
3 [1.5099 × 1078, 3.5935 × 10131] [5.5922 × 10−55, 0.49244] [166, 391]
5 [4.8352 × 1078, 9.4465 × 1081] [0.00064540, 0.49196] [114, 119]
6 [6.7455 × 1078, 1.3659 × 10132] [4.1106 × 10−55, 0.49170] [102, 239]
7 [8.6331 × 1078, 1.6014 × 1081] [0.00017225, 0.49714] [94, 99]
10 [1.4470 × 1079, 1.5036 × 1082] [0.0028794, 0.49459] [80, 83]

∣
∣∣
∣
∣
∣∣
∣
∣
∣∣
∣
∣
∣∣
∣
∣

From the above and bounds (98), we arrive at

∣∣∣∣∣
b = 2 3 5 6 7 10

∇1 ≤ U (1)
b := 631 391 119 239 99 83

∣∣∣∣∣
(99)

Now, we consider each possibility of ∇1.
Case 1. ∇1 = (n − n1 − 3) logb α ≤ U (1)

b . Here, we use the inequality (27) to see
that

�1 < 1/2 for m − m1 ≥ 3.

Then we use the inequality (14) on �1 in (27) and dividing by log b on both sides, we
obtain

|�1| <
2b2

log b
× b−(m−m1). (100)

where

�1 :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(n1 − 1) logb α − m; if (k, n − n1) = (2, 1),

(n1 + 1) logb α − m; if (k, n − n1) = (2, 2),

(n1 + 1) logb α − (m − 1); if (k, n − n1, b) = (2, 3, 2),

(n1 + 3) logb α − (m − 2); if (k, n − n1, b) = (2, 6, 2),

(n1 − 1) logb α − m + logb
(
(2α − 1) fk (α)(αn−n1 − 1)

) ; otherwise.

First let us consider the cases

(k, n − n1, b) ∈ {(2, 1, b), (2, 2, b), (2, 3, 2), (2, 6, 2)} ,
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for them we use Lemma 5 on the inequality (see inequality (100))

|�1|/y =
∣∣∣∣τ − x

y

∣∣∣∣ <
2b2

y log b
× b−(m−m1),

with M > y − 3 as before,

τ := logb α and
x

y
∈
{

m

n1 ± 1
,
m − 1

n1 + 1
,
m − 2

n1 + 3

}
.

We assume for a moment that

⌈
logb

(
4b2(M + 3)

log b

)⌉
< m − m1

and therefore

1

(ab + 2)y2
≤ |�1|/y <

2b2

y log b
× b−(m−m1) <

1

2y2
.

Then we note that the above inequality leads us to obtain the same values from
Table (97) since we again use Lemma 5 with τ := log2 α and the upper bound for y
given by M + 3 also satisfies those results. So

∣∣
∣∣∣

b = 2 3 5 6 7 10
m − m1 ≤ 268 170 116 105 96 83

∣∣
∣∣∣

(101)

Now, we apply the Lemma 4 on inequality (100) with (k, n − n1, b) in the set

(

[2, 625] ×
[

1,

⌊

3 + U (1)
b

logb α

⌋]

× {2, 3, 5, 6, 7, 10}
)

\ {(2, 1, b), (2, 2, b), (2, 3, 2), (2, 6, 2)}

and the parameters

u := n1 − 1, τ := logb α, μ := logb
(
(2α − 1) fk(α)(αn−n1 − 1)

)
,

v := m, A := 2b2

log b
, B := b, w := m − m1,
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with M is as in Table (94). Then we obtain

∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣

b qb ∈ εb ∈ logB
(
Aqb
εb

)
∈

2 [3.72 × 1077, 1.93 × 10188] [1.72 × 10−59, 0.5] [263, 638]
3 [1.51 × 1078, 1.46 × 10132] [4.01 × 10−57, 0.5] [168, 397]
5 [4.84 × 1078, 9.45 × 1081] [2.17 × 10−7, 0.499] [116, 126]
6 [6.73 × 1078, 2.84 × 10132] [3.91 × 10−57, 0.5] [104, 245]
7 [8.63 × 1078, 3.04 × 1081] [6.74 × 10−6, 0.5] [96, 104]
10 [1.45 × 1079, 1.50 × 1082] [1.94 × 10−6, 0.5] [82, 88]

∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣

and comparing the bounds in the above table and bounds (101), we conclude that

∣∣
∣∣∣

b = 2 3 5 6 7 10
m − m1 ≤ 638 397 126 245 104 88

∣∣
∣∣∣

(102)

Case 2. ∇1 = m − m1 ≤ U (1)
b . We use the inequality (29) to see that

�2 < 1/2 for n − n1 ≥ 6.

Then we use the inequality (14) on �2 in (29) and dividing by log b on both sides, we
obtain

|�2| <
2.4α3

log b
× α−(n−n1) (103)

where

�2 :=
{
n logb α − m1; if (k,m − m1, b) = (2, 1, 2),

(n − 1) logb α − m1 + logb
(

(2α−1) fk(α)

bm−m1−1

)
; otherwise.

We consider the case (k,m − m1, b) = (2, 1, 2) and use Lemma 5 assuming that

⌈
logα

(
2.4Mα3

log b

)⌉
< n − n1

where M is as in Table (94). This implies that

1

(a2 + 2)n2
≤ |�2| /n <

2.4α3

n log b
× α−(n−n1) <

1

2n2

and therefore, from Table (97) (which is obtained with the same value of τ and M), it
follows that

∣∣∣∣∣
b = 2 3 5 6 7 10

n − n1 ≤ 387 389 385 389 386 391

∣∣∣∣∣
(104)
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Next, we apply Lemma 4 on inequality (103) with

(k,m − m1, b) ∈
(
[2, 625] × [1,U (1)

b ] × {2, 3, 5, 6, 7, 10}
)

\ {(2, 1, 2)}

and the parameters

u := n − 1, τ := logb α, μ := logb
(
(2α − 1) fk(α)(bm−m1 − 1)−1

)
,

v := m1, A := 2.4α3/log b, B := α, w := n − n1

and M as before. Then we obtain

∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

b qb ∈ εb ∈ logB
(
Aqb
εb

)
∈

2 [3.72 × 1077, 1.93 × 10188] [2.94 × 10−59, 0.5] [264, 919]
3 [1.51 × 1078, 7.61 × 10131] [8.15 × 10−56, 0.499] [265, 899]
5 [4.84 × 1078, 7.22 × 10131] [2.69 × 10−55, 0.5] [266, 623]
6 [6.73 × 1078, 9.97 × 10131] [3.03 × 10−56, 0.5] [267, 896]
7 [8.63 × 1078, 6.54 × 10131] [8.86 × 10−56, 0.5] [267, 624]
10 [1.45 × 1079, 1.50 × 1082] [5.57 × 10−8, 0.499] [268, 403]

∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

Therefore the above table and bounds (104) imply that

∣∣
∣∣∣

b = 2 3 5 6 7 10
n − n1 ≤ 919 899 623 896 624 403

∣∣
∣∣∣

(105)

By bounds (99), (102) and (105), we conclude

∣
∣∣∣∣∣∣

b = 2 3 5 6 7 10
n − n1 ≤ 919 899 623 896 624 403
m − m1 ≤ 638 397 126 245 104 88

∣
∣∣∣∣∣∣

(106)

Finally we will use inequality (32) to bound m. We assume for a moment that
m ≥ 6, so that �3 < 1/2. Then we use inequality (14) on �3 in (32) and dividing by
log b on both sides, we obtain

|�3| : =
∣∣∣∣(n1 − 1) logb α − m1 + logb

(
(2α − 1) fk(α)(αn−n1 − 1)

bm−m1 − 1

)∣∣∣∣<
12 × b−m

log b
.

(107)
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In fact we note that

�3 :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n1 − 1) log2 α − m1; if (b, k, n − n1,m − m1) = (2, 2, 1, 1),

(n1 + 1) log2 α − m1; if (b, k, n − n1,m − m1) = (2, 2, 2, 1),

(n1 + 1) log2 α − (m1 − 1); if (b, k, n − n1,m − m1) = (2, 2, 3, 1),

(n1 + 3) log2 α − (m1 − 2); if (b, k, n − n1,m − m1) = (2, 2, 6, 1),

(n1 + 1) log3 α − m1; if (b, k, n − n1,m − m1) = (3, 2, 3, 1),

(n1 + 3) log5 α − m1; if (b, k, n − n1,m − m1) = (5, 2, 6, 1).

Therefore we use Lemma 5 in these cases assuming that

⌈
logb

(
24M

log b

)⌉
< m

only for a moment and taking x ∈ {m1,m1 − 1,m1 − 2}, y ∈ {n1 − 1, n1 + 1, n1 + 3}
with y < M + 3 where M is as in Table (94). Then

1

(ab + 2)y2
< |�3|/y <

12 × b−m

y log b
<

1

2y2

and the values of ab in Table (97) are still valid for these cases, in conclusion

m ≤

⎧
⎪⎨

⎪⎩

268; if b = 2,

170; if b = 3,

115; if b = 5.

(108)

In another case (b, k, n − n1,m − m1) is not in the set

{(2, 2, 1, 1), (2, 2, 2, 1), (2, 2, 3, 1), (2, 2, 6, 1), (3, 2, 3, 1), (5, 2, 6, 1)}

and we apply Lemma 4 on inequality (107) with the parameters

u := n1 − 1, τ := logb α, μ := logb

(
(2α − 1) fk(α)(αn−n1 − 1)

bm−m1 − 1

)
,

v := m1, A := 12/ log b, B := b, w := m

and M as before. Thus we obtain

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣

b qb ∈ εb ∈ logB
(
Aqb
εb

)
∈

2 [3.72 × 1077, 1.93 × 10188] [4 × 10−62, 0.5] [262, 833]
3 [1.51 × 1078, 3.86 × 10133] [2.10 × 10−58, 0.4] [166, 403]
5 [4.84 × 1078, 9.86 × 10132] [2.68 × 10−56, 0.4] [114, 271]
6 [6.73 × 1078, 3.64 × 10134] [1.2 × 10−57, 0.5] [102, 247]
7 [8.63 × 1078, 2.60 × 10132] [3.26 × 10−57, 0.4] [94, 224]
10 [1.45 × 1079, 5.02 × 10132] [1.16 × 10−55, 0.4] [80, 188]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣
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Comparing bounds (108) and those of the previous table we arrive at

∣
∣∣∣∣
b = 2 3 5 6 7 10
m 833 403 271 247 224 188

∣
∣∣∣∣

Moreover, by inequality (24) we have that n ≤ ⌊3 + m logα b
⌋
and m ≤ n + 1, then

by the above bounds we have that

∣∣∣
∣∣

b = 2 3 5 6 7 10
n ≤ Ub := 1202 923 909 922 908 902

∣∣∣
∣∣

(109)

Finally with the help of Mathematica we computationally search all solutions for
Eq. (3) with parameters

k ∈ [2, 625], n ∈ [k + 1,Ub], n1 ∈ [2, n − 1],
m1 ∈ [2, n] and m ∈ [m1 + 1, n + 1].

Thus, we obtain that for b ∈ {5, 6, 7, 10} there are no solutions to Eq. (3). For b = 2
there are solutions

∣∣∣
∣∣∣∣∣
∣∣∣∣∣

k 4 4 2 2 2 2 2 2 5 3 3 3 3 3
n 5 14 4 5 5 10 10 11 11 4 5 6 6 8
n1 3 4 2 4 2 5 2 4 9 3 2 5 2 3
m 5 13 3 3 4 7 7 8 10 3 5 5 6 7
m1 4 2 2 2 3 4 3 6 4 2 4 4 5 4
c −10 8 −1 3 −5 −5 −5 −57 336 2 −13 3 −29 −10

∣∣∣
∣∣∣∣∣
∣∣∣∣∣

and for b = 3,

∣
∣∣∣∣∣
∣∣∣∣∣∣
∣

k 6 2 2 2 2 2 2 3 3
n 12 7 8 9 14 16 16 7 8
n1 10 5 7 3 10 8 7 4 7
m 7 3 3 4 6 7 7 4 4
m1 3 2 2 2 2 3 2 3 3
c 709 2 20 −5 114 20 20 −17 37

∣
∣∣∣∣∣
∣∣∣∣∣∣
∣

This ends the proof of the second part of Corollary 2.
This computation was done with the Mathematica software at Computer Center

Jurgen Tischer in the Department of Mathematics at the Universidad del Valle on 24
parallel Pc’s (Intel Xeon E3-1240 v5, 3.5 GHz, 16 Gb of RAM).
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